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Abstract 

 

 An upwind solver is presented for the unstructured grid National Combustion Code (NCC). The 

compressible Navier-Stokes equations with time-derivative preconditioning and preconditioned flux-

difference splitting of the inviscid terms are used. First order derivatives are computed on cell faces and 

used to evaluate the shear stresses and heat fluxes. A new flux limiter uses these same first order 

derivatives in the evaluation of  left and right states used in the flux-difference splitting. The k-epsilon 

turbulence equations are solved with the same second-order method. The new solver has been installed in 

a recent version of NCC and the resulting code has been tested successfully in 2D on two laminar cases 

with known solutions and one turbulent case with experimental data. 

 

Introduction 

 
 The National Combustion Code (NCC) is a state of the art Computational Fluiid Dynamics (CFD) 

program specifically designed for combustion processes
1
. The code employs an unstructured grid, 

massively parallel computing
2,3

, a dynamic wall function with the effect of adverse pressure gradient
4
, a 

low Reynolds number wall treatment
5
, a cubic non-linear k-epsilon turbulence model

6
, a lagrangian liquid 

phase spray model
7
, and stiff  laminar chemistry integration. Recently, viscous low-speed 

preconditioning
8
 has been added to improve the low-speed convergence of the NCC in viscous regions 

and the ability to handle multiple sets of periodic boundary conditions has also been added. The 

combination of these features is usually not available in other CFD codes and gives the NCC an 

advantage when computing recirculating, turbulent, reacting spray flows. Previously, the NCC has 

undergone extensive validation studies for simple flows
9
, complex flows

10
, NOx emissions prediction

11
 

and traditional gas turbine combustor injectors
12

. 

 The current NCC solver uses a finite volume discretization with unknowns stored at cell centers. The 

inviscid fluxes are evaluated with average values on the cell faces and a Jameson-type dissipation 

operator is added to avoid odd-even decoupling. For the viscous fluxes, first order spatial derivatives at 

cell centers are obtained by summing cell-face average values and cell-face derivatives are then found by 

averaging adjacent cell-center values. The equations are advanced in pseudo-time by a four stage Runge-

Kutta scheme in which residual smoothing is applied at each stage. For time-accurate simulations, a dual 

time-stepping approach is employed. 

 There are a number of flow regimes in which an upwind solver should produce a more accurate 

solution than the current NCC solver. The most obvious involve transonic flows with shocks. A less 

obvious case involves turbulent shear layers where the decrease in artificial dissipation inherent in the 

upwind method should produce more accurate solutions of the k-epsilon equations. Finally, for reacting 

flows, the decrease in artificial dissipation should again give more accurate solutions for the species 

transport equations. In addition, for these flows as well as others, the use of face-centered derivatives in 

the viscous fluxes should lead to more accurate solutions for all equations. 

 In the present work, we introduce an upwind solver for use on the unstructured grids of NCC. 

Preconditioned flux-difference splitting is employed for the inviscid fluxes. First order derivatives are 

computed on cell faces and used to evaluate shear stresses and heat fluxes. A new flux limiter, based on a 

nonlinear average of  these same face-centered derivatives, is used in the evaluation of the left and right 

states for flux-difference splitting. Since the test cases in this paper are all two-dimensional non-reacting 
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flows, for simplicity the description of the method is similarly limited. The extension to three-

dimensional reacting flows is straightforward. 

 

Governing Equations 

 

 The governing equations are the two-dimensional compressible Navier-Stokes equations with time-

derivative preconditioning plus the two-equation k-є turbulence model. Let x and y be space dimensions, 

t, p, u, v, h, T, and   are time, pressure, x and y velocities, enthalpy, temperature and density, respectively 

and all variables are dimensional. In addition, for low Mach number flows, it is convenient to subtract off 

the large background pressure p  (set by user) by setting 

 

 .ppp   (1) 

 

The equations are written in vector conservation-law form 

 

     ,1 HFF
y

EE
xt

U
P vvc 














 (2) 

Where 

 

 

 

 

 
 

 

  ,,,0,0,0,0

,,,,,,0

,,,,,,0

,,,,,,

,,,,,,

,,,,,,

2

2

T

k

T

ykyyyyyxyyyxv

T

xkxxxyxxxyxxv

T

t

T

t

T

SSH

qvuF

qvuE

vvkvhpvuvvF

uukuhuvpuuE

kevuU





























 (3) 

 

cP   is the preconditioning matrix, phe t
  is the total energy, and )( 22

2
1 vuhht   is the total 

enthalpy. Note that subtraction of the constant background pressure p  does not change the basic form of 

the conservation equations. The density   is given by the equation of state for an ideal gas 

 

   ,RTpp   (4) 

 

where R  is the gas constant for the fluid. The viscous stresses,   and   viscous terms and the heat flux 

vector are given by 
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here  ptteff C 1Pr  is the effective thermal conductivity,  ,, t  and pC  are the fluid 

viscosity, eddy viscosity, thermal conductivity and specific heat, respectively. Also 
11, 

 k  are model 

constants and tPr  is the turbulent Prandtl number. The turbulence source terms SSk , are given by 

 ,,
2
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where the production term kP  is 
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and 21,  CC  are additional model constants. The Reynolds stresses and the eddy viscosity are given by 

  









































 ij

k

k

i

j

j

i
tijji

x

u

x

u

x

u
kuu 

3
2

3
2''''

 (8) 

and 

 .
2


 

k
Ct   (9) 

Note that we are using only the linear terms in the Reynolds stress model
6
. However, we have found it 

necessary to use the variable C  from that reference in order to capture the near wall behavior. This is 

given by 
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For turbulent flows the generalized wall function
4
 is applied at all solid walls. 

 The preconditioning matrix cP  is adapted from the work of Turkel
13

. First consider the inviscid 

equations written in terms of the primitive variables   ,,,,,,
T

kSvupV   where ,2 dcpdSd   

RTc 2
 is the speed of sound and   is the ratio of specific heats. These are written as 
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For this system the simplest form of Turkel’s preconditioner is a diagonal matrix written as 

 

   ,1,1,1,1,1,21   mDiagPp  (13) 

 

where 
222 / cm  and 

2  is chosen to bring the system eigenvalues closer together at low Mach 

numbers. The eigenvalues of pp AP  are given by 
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The conservation-law form is then given by 
1 MMPP pc  with .VUM   Finally, following Choi 

and Merkle
8
, we express Eq.(2)  in terms of altered primitive variables  TkhvupQ ,,,,,  
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where NMPP pQ

11    and QVN  . 

 For most flows it is sufficient to set 
2  equal to the square of the local flow speed together with 

lower and upper limits. However, for viscous flows near walls, convergence is improved by introducing 

the viscous limit of Choi and Merkle
8
. Hence we take  
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where 
2

0  is a global user specified lower limit and 
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Here cellRCV Re/ ,  RCV is the ratio of CFL to von Neumann numbers (user specified), 

effnncell v Re is the local cell Reynolds number, nv  is the velocity normal to the cell face and n  

is the spacing between adjacent cell centers. 

 

Discrete Formulation 
 

 The governing equations are solved on an unstructured grid (triangles or quads in 2D) with 

unknowns stored at cell centers. Integration of Eq. (16) over a cell together with explicit time differencing 

gives 

   ,1 n

Q RQtAP 
 (19) 

where A  is the cell area, t   is the time step, ,1 nn QQQ  
 and the area-weighted residual R  is 

given by 

      
j iiijijvijijvi AHdxFFdyEER ,  (20) 

where the summation is over all faces j  of  cell i , while ijij dxdy ,  are the changes in xy ,  respectively, 

along face .j   

 The cell-face inviscid fluxes E  and F  in Eq. (20) are approximated by preconditioned flux-

difference splitting
14 
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where 
LU  and 

RU  are, respectively, left and right states, ,UEAc   cÂ  denotes evaluation at an 

average state, and .111   MAPMPAPP pppccc  Here pp AP  is computed using the eigenvectors and 

absolute eigenvalues of .pp AP  Eq.(21) is rewritten in terms of the altered primitive variables Q  

        ,ˆ
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where .1 NAPMPA ppp

a   The left and right states 
RL QQ ,  are obtained by extrapolating from the 

adjacent cell-centers. Note this linear extrapolation leads to a second order approximation for the fluxes. 

Let 2,1 ii  denote the centers of two adjacent cells and fc  denote the centroid of the cell face separating 

these two cells. Then 
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In the present implementation the average state Q̂  is taken as a simple average of 
LQ  and 

RQ . The flux 

F  is approximated by expressions similar to Eqs. (21) and (22) with cA  replaced by UFBc   and 

aA  replaced by .1 NBPMPB ppp

a 
 
 

 The cell-center derivatives in Eq. (23) are obtained by a weighted average process that is a 

modification of that used by Huynh
15

 for triangular cells. Let ij  represent face j  of cell i  and set 
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where these expressions are applied to each of the variables in Q . Note the resulting cell-center 

derivative is biased toward the least steep of the surrounding cell-face slopes and thus serves as a flux 

limiter. Also, this formulation works for any cell shape, in two or three dimensions. 

 The cell-face derivatives are obtained by integrating over a volume surrounding the face. Let 2,1 ii  

denote the centers of two adjacent cells and 2,1 kk  the ends of the face separating these two cells. 

Averaging the derivatives over this volume gives 
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where 
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Since 1kQ  and 2kQ  are not stored on the grid, their difference has to be approximated. First we obtain 

simple approximations to the cell-center derivatives by integrating over the cell volumes, 
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where the sum is over all the cell faces and the face values jQ  are taken as the average of the adjacent 

cell-center values. Then we approximate 12 kk QQ   as 
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Eqs. (26) together with Eq. (29) are used to evaluate the cell-face derivatives. These are used not only for 

the weighted averages of Eq. (22) but also for the cell-face shear stresses and heat fluxes of Eq. (5). 

 

Time Marching Solution 

 

 Eq.(19) for Q  is advanced in pseudo-time by a four stage Runge-Kutta scheme. The viscous stresses 

and heat transfer in Eq. (5) together with the numerical dissipation in Eq. (22) are updated in the first two 

stages only. For the turbulence variables k  and  , the updated values are under-relaxed at each Runge-

Kutta stage. Finally, residual smoothing is applied at each stage using two sweeps of an under-relaxed 

Jacobi iteration. 
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 For the steady flow problems considered here, convergence is based on the root-mean-square of the 

x  and y  momentum residuals, .totres  The solution is considered converged when goalresres tottot 1/  

for 100 consecutive iterations, where 
1

totres  is the value after 1 iteration and 
4105 goal  for the two 

laminar cases and 
310goal  for the turbulent case. For all cases the CFL number is set to 4 while the 

Von Neumann number is set to 1 for the laminar cases and 0.5 for the turbulent case.  

 

Results and Discussion 

 

 Three test cases have been chosen to demonstrate the accuracy of the upwind method. For the two 

laminar cases, existing numerical results are used to check the current solutions. For the turbulent case the 

present results are compared with experimental data. Note, for the laminar cases, we assume air at 1 atm. 

and 300 K with a  reference  length D   of 1 m. The reference velocity refu  is then chosen to give the 

desired Reynolds number, .Re  Duref  

 

Lid-driven cavity 

 

  The lid-driven cavity is a common benchmark for recirculating flows. The second-order 

streamfunction-vorticity results of Ghia et al
16

., computed on a uniform 256 by 256 grid, are generally 

accepted as standard. Isothermal flow is set up in a square cavity, side 1, with a top that moves to the right 

at constant speed refu . The current work uses a triangular grid with 128 cells along each wall and grid 

spacing along the wall varying from 0.0005  in the corners to 0.02  in the middle. The resulting grid, with 

10,514 triangular cells, is shown in Fig. 1. 

 The case 1000Re  is obtained by setting refu 0.015936 m/sec. A contour plot for refuu , shown 

in Fig. 2, gives the general structure of the flow. Note the two recirculating regions in the bottom corners 

of the flow. Convergence to the desired level is shown in Fig. 3. Note that this took 6683 iterations. 

Profiles of refuu  on the vertical centerline and refuv  on the horizontal centerline are compared with 

the Ghia et al. results  in Figs. 4 and 5, respectively. Considering the sparseness of the grid, the 

comparison is excellent. 

 

Laminar backward-facing step 

 

 We consider isothermal laminar flow over a backward-facing step with a step height of half the 

downstream channel height D  and a parabolic inlet velocity     refuyyyu  5.024  for 5.00  y  

specified at the step. The outflow boundary is taken at 15 channel heights downstream of the step. 

Gartling
17

 set up this problem as a test for outflow boundary conditions. Numerical results were obtained 

for 800Re   with the outflow boundary at 30 channel heights and used a Galerkin-based finite element 

method with 40800  biquadratic velocity elements and linear discontinuous pressure elements. The 

current work uses a 240 by 64 quad grid with stretching in y  only. The grid spacing is set at 0.001 at the 

top and bottom walls and 0.03 at the centerline. 

 The case 800Re   is given by setting 012749.0refu  m/sec. A contour plot for refuu , shown 

in Fig. 6, gives the structure of the flow. Note the separation bubble on the upper wall at 7x . 

Convergence to the desired level is shown in Fig. 7. Profiles of refuu at 7x  and 15x  are 

compared with Gartling’s results in Figs. 8 and 9, respectively. Again the results are quite good. Note that 

15x  is the exit boundary for the current computation. 
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Turbulent backward-facing step 

 

 Kim, Kline and Johnston
18,19

  (KKJ) studied the turbulent flow over a backward-facing step with two 

main objectives. The first was to characterize the flow in the separated shear layer, the reattachment 

region, and the developing boundary layer downstream of reattachment. The second was to obtain 

experimental data that would be useful in the development of computational models. In KKJ’s experiment  

the step height h  was 3.81 cm, the channel width upstream of the step was h2 , and boundary layer trips 

were placed on each side wall at a distance of h8 upstream of the step. On the centerline of the channel, a 

distance of h4  upstream of the step (termed the reference point), the reference speed refu  was 18.2 m/s 

and the dynamic pressure was 20.3 mm of water. 

 In the current work the computational domain is taken from h8  upstream to h30 downstream of the 

step. We use a stretched quad grid with 30 by 32 cells  yx,  upstream and 50 by 64 cells downstream. 

The y  grid spacing is set at h002.0  along both side walls. The x grid spacing varies from h1.0 at the 

upstream boundary  h8  to h4.0 at the step, remains constant to hx 10 , and then increases gradually 

to h312.1 at the exit  h30 . The resulting grid, from hx  = -4 to 20,  is shown in Fig. 10. The 

computation is started at h8 to allow the turbulent boundary layers to grow to suitable thickness before 

reaching the reference point. At the upstream boundary we assume a uniform inflow with a speed inu , 

turbulence level of 5%, and a mixing length of 0.001m. The inlet speed was varied until the solution at the 

reference point agreed with the experimental value refu  18.2 m/sec. This required a value of inu  

17.5 m/sec. Note this value was not very sensitive to the inlet values of turbulence level and mixing 

length. A contour plot of refuu /  , shown in Fig. 11, gives the general structure of the flow and 

convergence to the desired level is shown in Fig. 12. The computed reattachment length, as determined 

from the change in sign of the wall shear stress, was hxR 6.75. This is well within the experimental 

range of 17   reported by KKJ. 

  The computed wall-static pressure on the step side of the channel (plotted as the  pressure coefficient 

Cp )  is compared with experimental values in Fig. 13. Here Cp  is given by 

 .
2

2
1

ref

ref

u

pp
Cp




  (30) 

We determine refp  by forcing the computed pressure to go through the first data point downstream of the 

step. This comparison is quite good although the computed pressure rise occurs a little early. Profiles of 

refuu  at four locations downstream of the step are compared with the experimental values in Figs. 14 to 

17. Again the comparison is quite good except in the reverse flow portion of the separation zone. Here 

KKJ note that the flow was unsteady and the measurements may not be accurate. 

 

Conclusions 

 

 An upwind solution method for the unstructured grid National Combustion Code has been presented. 

The solver uses preconditioned flux-difference splitting for the inviscid terms and face-centered first 

derivatives for the shear stresses and heat fluxes. A new flux limiter uses these same first order 

derivatives in the evaluation of  left and right states used in the flux-difference splitting. The same 

methodology is used for the k-epsilon turbulence equations. The solver has been tested in 2D on two 

laminar and one turbulent flow and shown robust convergence in all cases. The laminar results appear 

quite accurate when compared with known computational solutions. The turbulent results are in good 
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agreement with the experimental data. The second order solution of the k-epsilon equations shows 

promise for the future analysis of turbulent reacting flows. 
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Fig. 1. Grid for lid-driven cavity with 10,514 triangular cells. 

 

Fig. 2. Contours of  u/uref  for the lid-driven cavity at Re = 1000. 
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Fig. 3. Convergence of 
 
restot/restot

1
  for the lid-driven cavity at Re = 1000. 

 

 

Fig. 4. Comparison of  u/uref  on the vertical centerline with the results of Ghia et al for Re = 1000. 
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Fig. 5. Comparison of  v/uref  on the horizontal centerline with the results of Ghia et al for Re = 1000. 

 

 

 

Fig. 6. Contours of  u/uref  for the laminar backward-facing step at Re = 800, 

(where the grid portion from x = 10 to 15 is not shown). 
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Fig. 7. Convergence of  restot/restot
1
 for the laminar backward-facing step at Re = 800. 

 

Fig. 8. Comparison of  u/uref  at 7x  with Gartling’s results at Re = 800. 
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Fig. 9. Comparison of  u/uref  at 15x  with Gartling’s results at Re = 800. 

 

 

Fig. 10. Grid for turbulent backward-facing step 

(full grid goes from x/h = -8 to 30) 
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Fig. 11. Contours of  u/uref  for turbulent backward-facing step 

 

 

Fig. 12. Convergence of  restot/restot
1
 for the turbulent backward-facing step. 
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Fig. 13. Comparison of computed and experimental pressure coefficients. 

 

Fig. 14. Comparison of computed  u/uref with data at x/h = 2.667. 
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Fig. 15. Comparison of computed  u/uref with data at x/h = 5.333. 

 

Fig. 16. Comparison of computed  u/uref with data at x/h = 6.222. 

u/u
ref

y
/h

0 0.5 1
0

0.5

1

1.5

2

2.5

3

computed
experiment

u/u
ref

y
/h

0 0.5 1
0

0.5

1

1.5

2

2.5

3

computed
experiment



 

18 
 

 

 

Fig. 17. Comparison of computed  u/uref with data at x/h = 8.000. 
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