Nonlinear Oscillation and Multiscale Dynamics in a Closed Chemical Reaction

Yongfeng Li
(joint work with Yingfei Yi and Hong Qian)

Division of Space Life Sciences
Universities Space Research Association

May 12, 2011
Oscillatory Chemical Reaction

History.

Systems of Chemical Reaction

Mathematical Modeling

Main Results

Closed System – The Second Law of Thermodynamics
Far-from-equilibrium Dynamics in \mathcal{T}^o
Near-equilibrium Dynamics in \mathcal{T}^n
Dynamical Transition from \mathcal{T}^o to \mathcal{T}^n

Canonical vs Grand Canonical Systems

Future Work
History

- G.T. Fechner, et al. (1828-1900)
- V. Volterra (1926)
- B. Belousov (1951)
- A.M. Zhabotinsky (1961)
- Ilya Prigogine and his Brussels school

BZ reaction—chemical reaction exhibiting oscillatory behavior.
Systems of Chemical Reaction

- Open system
 Exchange of both molecules and energy with the surroundings is allowed. (for *in vivo* studies)

- Closed system
 Exchange of energy but NOT molecules with the surroundings is allowed. (for *in vitro* studies)

Most of currently existing reaction models exhibiting oscillation are open system.
Irreversible Lotka-Volterra Model

- Irreversible Reaction:
 \[A + X \xrightarrow{k_1} 2X, \quad X + Y \xrightarrow{k_2} 2Y, \quad Y \xrightarrow{k_3} B, \quad (1) \]

- By the Law of Mass Action, one has

 \[
 \begin{align*}
 \dot{c}_A &= -k_1 c_A x \\
 \dot{x} &= k_1 c_A x - k_2 xy \\
 \dot{y} &= k_2 xy - k_3 y \\
 \dot{c}_B &= k_3 y.
 \end{align*}
 \quad (2)
 \]

 \[
 \begin{align*}
 \dot{x} &= k_1 c_A x - k_2 xy \\
 \dot{y} &= k_2 xy - k_3 y.
 \end{align*}
 \quad (3)
 \]
Reversible Lotka-Volterra System

Reversible Reaction.

\[A + X \xrightleftharpoons[k_{-1}]{k_1} 2X, \quad X + Y \xrightleftharpoons[k_{-2}]{k_2} 2Y, \quad Y \xrightleftharpoons[k_{-3}]{k_3} B. \] (4)
Reversible Lotka-Volterra System

- Reversible Reaction.

\[A + X \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} 2X, \quad X + Y \overset{k_2}{\underset{k_{-2}}{\rightleftharpoons}} 2Y, \quad Y \overset{k_3}{\underset{k_{-3}}{\rightleftharpoons}} B. \quad (4) \]

- Rate Equations

\[
\begin{align*}
\frac{dx}{dt} &= k_1 c_A x - k_{-1} x^2 - k_2 xy + k_{-2} y^2, \\
\frac{dy}{dt} &= k_2 xy - k_{-2} y^2 - k_3 y + k_{-3} c_B, \\
\frac{dc_A}{dt} &= -k_1 c_A x + k_{-1} x^2, \\
\frac{dc_B}{dt} &= k_3 y - k_{-3} c_B.
\end{align*}
\]

(5)
Nondimensionalization

- Rescaling

\[
\begin{align*}
 u &= \frac{k_2}{k_3} x, \quad v = \frac{k_2}{k_3} y, \quad w = \frac{k_1}{k_3} c_A, \quad z = \frac{k_2}{k_3} c_B, \quad \tau = k_3 t, \\
 \sigma &= \frac{k_1}{k_2} \ll 1, \quad \frac{k_1}{k_2} = \frac{k_2}{k_2} = \frac{k_3}{k_3} = \varepsilon \ll \sigma.
\end{align*}
\]

- Dimensionless Form.

\[
\begin{align*}
 \frac{du}{d\tau} &= u(w - v) - \varepsilon(\sigma u^2 - v^2) \\
 \frac{dv}{d\tau} &= v(u - 1) - \varepsilon v^2 + \varepsilon z \\
 \frac{dw}{d\tau} &= -\sigma(wu - \varepsilon\sigma u^2). \\
 \frac{dz}{d\tau} &= v - \varepsilon z.
\end{align*}
\]

Yongfeng Li (joint work with Yingfei Yi and Hong Qian)
Closed System

- **Linear Conservation Law.**
 \[u + v + \frac{w}{\sigma} + z = \xi = \text{constant}. \]

- **Reduced system.**
 \[
 \begin{align*}
 \frac{du}{d\tau} &= u(w - v) - \varepsilon(\sigma u^2 - v^2) \\
 \frac{dv}{d\tau} &= v(u - 1) - \varepsilon v^2 + \varepsilon \left(\xi - u - v - \frac{w}{\sigma} \right) \\
 \frac{dw}{d\tau} &= -\sigma(\xi - u - v - \frac{w}{\sigma}) \\
 \end{align*}
 \] (8)
Denote
\[\mathcal{T} = \left\{ (u, v, w) \in \mathbb{R}^3, u, v, w > 0, \text{ and } u + v + \frac{w}{\sigma} \leq \xi \right\}. \]

Then \(\mathcal{T} \) is positively invariant under the flow induced by the closed system (8), and \(\mathcal{T} \) is called the reaction zone.

System (8) has a unique interior equilibrium point \(P \in \mathcal{T} \) at which its Jacobian matrix has three real eigenvalues
\[
|\lambda_1 + (1 + \varepsilon)| \sim \varepsilon^2, \quad |\lambda_2 + \varepsilon \xi| \sim \varepsilon^2, \quad |\lambda_3 + \sigma \varepsilon^2 \xi| \sim \sigma^2 \varepsilon^3.
\]

Thus \(P \) is an asymptotically stable node.
The Second Law of Thermodynamics

P is the global attractor of system (8) in \mathcal{T}. The free energy

$$L = u \ln \left(\frac{u}{u^*} \right) + v \ln \left(\frac{v}{v^*} \right) + \frac{w}{\sigma} \ln \left(\frac{w}{w^*} \right) + \left(\xi - u - v - \frac{w}{\sigma} \right) \ln \left(\frac{\xi - u^* - v^* - \frac{w^*}{\sigma}}{\xi - u^* - v^* - \frac{w^*}{\sigma}} \right)$$

serves as the Lyapunov function, where $P = (u^*, v^*, w^*)$.

Yongfeng Li (joint work with Yingfei Yi and Hong Qian)
Far-from-equilibrium – Oscillation Zone

There exist $\mathcal{T}^o \subset \mathcal{T}$ and a 1D curve $W^o_{\sigma, \varepsilon} \subset \mathcal{T}^o$ such that all the oscillatory solutions in \mathcal{T}^o go around $W^o_{\sigma, \varepsilon}$. The total oscillation time is $T_o \sim -\frac{\ln \sigma}{\sigma}$. For fixed $w_0 > w_1$, there are at least N complete oscillations by 2π with w decreasing from w_0 to w_1, where $N \geq \frac{\ln w_0 - \ln w_1}{2\sigma K} - 1$. And $W^o_{\sigma, \varepsilon}$ is approximately given by

$$W^o_{\sigma, \varepsilon} \sim \left\{(u, v, w), \quad u = \frac{1}{1+\sigma}, \quad v = w, \quad w \in [w, \bar{w}]\right\}.$$
Consider the partially perturbed system where $\varepsilon = 0$

\[
\begin{align*}
\dot{u} &= u(w - v) \\
\dot{v} &= v(u - 1) \\
\dot{w} &= 0
\end{align*}
\Rightarrow \begin{align*}
\dot{u} &= u(w - v) \\
\dot{v} &= v(u - 1) \\
\dot{w} &= -\sigma w u
\end{align*}
\]

which admits a stable invariant manifold

\[
W^o_{\sigma, \varepsilon} = \left\{ (u, v, w), \quad u = \mu_\sigma = \frac{1}{1 + \sigma}, \quad v = w \geq 0 \right\}.
\]

with Lyapunov function

\[
E_\sigma = (1 + \sigma) \left[u - \mu_\sigma - \ln \left(\frac{u}{\mu_\sigma} \right) \right] + \left[v - w - w \ln \left(\frac{v}{w} \right) \right]
\]
Normal Hyperbolicity of W^0_σ?

- **Generalized Lyapunov Type Numbers**
 \[
 \gamma_L(W^0_\sigma) = \lim_{t \to -\infty} \left\| \pi_p^N D\phi_t(W^0_\sigma) \right\|^\frac{1}{t} < 1,
 \]
 \[
 \sigma_L(W^0_\sigma) = \lim_{t \to -\infty} \frac{\log \| D\phi_t(W^0_\sigma) \pi^T_p \|}{\log \| \pi_p^N D\phi_t(W^0_\sigma) \|} \geq 2,
 \]

- **Exponential Dichotomy**
 \[
 u \to \mu_\sigma + x, \quad v \to v + w, \quad w \to w, \quad X = (x, y)^T
 \]
 \[
 \sigma X' = A_\sigma(w)X + G_{\sigma, \varepsilon}(X, w)
 \]
 \[
 w' = F_{\sigma, \varepsilon}(X, w),
 \]
 \[
 A_\sigma(w) = \begin{bmatrix}
 0 & -\mu_\sigma \\
 \frac{w}{\mu_\sigma} & -\sigma \mu_\sigma
 \end{bmatrix}
 \]
 \[
 \text{where } \text{Re}(\lambda(A_\sigma)) \leq -\frac{\sigma \mu_\sigma}{2} \text{ as } w \geq \frac{\sigma^2 \mu_\sigma^2}{4}.
 \]
Proof–Sakamoto (1990)

- Modified system

\[
\begin{align*}
\sigma X' &= A_\sigma(w)X + G_{\sigma,\varepsilon}(X, w) \\
 w' &= F_{\sigma,\varepsilon}(X, w)\chi_{[\sigma^2, \sigma \xi]}(w)
\end{align*}
\]

(11)

- \[
\begin{align*}
X(t) &= \frac{1}{\sigma} \int_{-\infty}^{t} \Phi_\sigma(t, s, w(s))G_{\sigma,\varepsilon}(X, w)ds \\
w(t) &= H(\eta, X)(t) < \infty, \quad w(0) = \eta \in [\sigma^2, \sigma \xi].
\end{align*}
\]

- \[
\mathcal{F}(X) = \frac{1}{\sigma} \int_{-\infty}^{t} \Phi_\sigma(t, s, H(\eta, X)(s))G_{\sigma,\varepsilon}(X, H(\eta, X)(s))ds.
\]

- \(\mathcal{F}\) is a contraction as \(|X| \leq \delta\) for some \(\delta \Rightarrow \mathcal{F}(X^*_\eta) = X^*_\eta\).

- \(W_{\sigma,\varepsilon}^0 = \{(u = \mu_\sigma + x^*_w(0), v = w + y^*_w(0), w), w \in [\sigma^2, \sigma \xi]\}\).
Define
\[T_1^o = \{(u, v, w) \in \mathcal{T} : w \geq \sigma\}, \quad T_2^o = \{(u, v, w) \in \mathcal{T} : w \geq \sigma^2\}, \]
\[\Omega_- = \{(u, v, w) \in \mathcal{T} : v < w\}, \quad \Omega_+ = \{(u, v, w) \in \mathcal{T} : v > w\}. \]

For \(\varepsilon \ll \sigma \ll 1 \) and some \(1 < \alpha < 2 \),
- \(T_1^o \subset \mathcal{T}^o \subset T_2^o \).
- \(\ln \Omega_+ , \frac{w_{2k+1}}{w_{2k}} \sim 1 \) and \(\frac{E_{2k+1}}{E_{2k}} \sim 1 \).
- \(\ln \Omega_- , \frac{w_{2k+2}}{w_{2k+1}} < e^{-\sigma c_1(w_0,E_0)} \) and \(\frac{E_{2k+2}}{E_{2k+1}} < e^{-\sigma c_2(w_0,E_0)} \).
- At the bottom of \(\mathcal{T}^o \) where \(w \sim \sigma^\alpha, \quad E \sim (\alpha - 2)\sigma^\alpha \ln \sigma \).
Near-equilibrium – Non-oscillation Zone

There exist $\mathcal{T}^n \subset \mathcal{T}$ and a 2D strongly stable invariant manifold $M^n_{\sigma, \varepsilon} \subset \mathcal{T}^n$ and a 1D stable curve $W^n_{\sigma, \varepsilon} \subset M^n_{\sigma, \varepsilon}$. The “total time” in \mathcal{T}^n is $T_n \sim -\frac{\ln \varepsilon}{\varepsilon}$. And

$$W^n_{\sigma, \varepsilon} \sim \left\{ (u, v, w), \quad v = \varepsilon \frac{\xi - u}{1 - u}, \quad w = \sigma \varepsilon u, \quad u \in [0, \bar{u}], \bar{u} < 1 \right\}.$$
Existence of $M^n_{0, \varepsilon}$

Under the following transformation

$$u \rightarrow u, \quad v \rightarrow \varepsilon v, \quad w \rightarrow \sigma \varepsilon w.$$

system (8) becomes

$$\begin{align*}
\frac{du}{d\tau} &= \varepsilon \left[u(\sigma w - v) - (\sigma u^2 - \varepsilon^2 v^2) \right] \\
\frac{dv}{d\tau} &= v(u - 1) - \varepsilon^2 v^2 + (\xi - u - \varepsilon v - \varepsilon w) \\
\frac{dw}{d\tau} &= -\sigma u(w - u).
\end{align*}$$

(12)

By Fenichel's Theorem, critical manifold

$$M^n_n = \left\{ (u, v, w), \quad v = \frac{\xi - u}{1 - u}, \quad u, w \in [0, \bar{u}], \bar{u} < 1 \right\}$$

is normally hyperbolic and thus persists under the perturbation.
Existence of $W_{\sigma, \varepsilon}^n$

- **Reduced System**

\[
\begin{align*}
\frac{du}{d\tau_1} &= \frac{\varepsilon}{\sigma} \left[u(\sigma w - h_{\sigma, \varepsilon}(u, w)) - (\sigma u^2 - \varepsilon^2 h_{\sigma, \varepsilon}^2(u, w)) \right] \\
\frac{dw}{d\tau_1} &= -u(w - u).
\end{align*}
\]

\begin{equation}
(13)
\end{equation}

Critical manifold

\[W_0^n = \{(u, w), \; w = u \in [u, \bar{u}], 0 < u < \bar{u} < 1 \} \]

is normally hyperbolic and thus persists under the perturbation.
In the Vicinity of Equilibrium P

- Stable Invariant manifold may be applied.
- Further Rescaling

\[u \rightarrow \sigma \varepsilon u, \quad v \rightarrow v, \quad w \rightarrow w, \quad \tau_2 = \frac{\varepsilon}{\sigma} \tau_1. \]

yields

\[
\begin{cases}
\frac{du}{d\tau_2} = u(\sigma w - h_{\sigma,\varepsilon}) - \left(\sigma^2 \varepsilon u^2 - \frac{\varepsilon}{\sigma} h_{\sigma,\varepsilon}\right) \\
\frac{dw}{d\tau_2} = -\sigma^2 u (w - \sigma \varepsilon u).
\end{cases}
\] (14)
Dynamical Transition from \mathcal{T}^o to \mathcal{T}^n

The passage of entering the non-oscillation zone \mathcal{T}^n from the oscillation zone \mathcal{T}^o is around the portion of the central axis connecting $W^o_{\sigma,\varepsilon}$ and $W^n_{\sigma,\varepsilon}$. This is exactly where the transition occurs.
Dynamical Transition from \mathcal{T}^o to \mathcal{T}^n
A General Network of Chemical Reactions

Consider a system of chemical reactions whose rate equations, by the law of mass action, are given by

$$X' = V(X) = AR(X)$$ \hspace{1cm} (15)

where $A = (a_{ij})$ is the stoichiometric matrix and

$$R_i(X) = r_i^f(X) - r_i^b(X)$$

with

$$r_i^f(X) = k_i \prod_{a_{ji} < 0} x_j^{-a_{ji}}, \quad r_i^b(X) = k_{-i} \prod_{a_{ji} > 0} x_j^{a_{ji}}.$$

Rewrite equation (15) as

$$\begin{align*}
X_1' &= F_1(X_1, X_2) \\
X_2' &= F_2(X_1, X_2).
\end{align*}$$ \hspace{1cm} (16)

Yongfeng Li (joint work with Yingfei Yi and Hong Qian)
Canonical System and Grand Canonical System

- **Canonical System.**
 By the linear conservation law $M_1 X_1 + M_2 X_2 = \xi$, equation (16) is reduced into

 $$X'_1 = F_1 (X_1, M_2^{-1} (\xi - M_1 X_1)) .$$ \hspace{1cm} (17)

- **Grand Canonical System.**
 By treating $X_2 = X_2^0$ as a constant vector, equation (16) is reduced into

 $$X'_1 = F_1(X_1; X_2^0).$$ \hspace{1cm} (18)
(Gibb’s Principle) For given X_2^0 and ξ, let X_c^* and X_{gc}^* be the equilibrium points of systems (17) and (18), respectively. If $X_2^0 = M_2^{-1}(\xi - M_1 X_c^*)$, then $X_c^* = X_{gc}^*$.

- Systems (17) and (18) share the “same” Lyapuov functions.

- Both X_c^* and X_{gc}^* are all asymptotically stable nodes.
Recall
\[
\begin{align*}
\frac{du}{d\tau} &= u(w - v) - \varepsilon(\sigma u^2 - v^2) \\
\frac{dv}{d\tau} &= v(u - 1) - \varepsilon v^2 + \varepsilon z \\
\frac{dw}{d\tau} &= -\sigma(wu - \varepsilon \sigma u^2) \\
\frac{dz}{d\tau} &= v - \varepsilon z.
\end{align*}
\] (19)

Canonical
\[
\begin{align*}
\frac{du}{d\tau} &= u(w - v) - \varepsilon(\sigma u^2 - v^2) \\
\frac{dv}{d\tau} &= v(u - 1) - \varepsilon v^2 + \varepsilon (\xi - u - v - \frac{w}{\sigma}) \\
\frac{dw}{d\tau} &= -\sigma(wu - \varepsilon \sigma u^2) \\
\frac{dz}{d\tau} &= v - \varepsilon z.
\end{align*}
\] (20)

Grand Canonical
\[
\begin{align*}
\frac{du}{d\tau} &= u(w - v) - \varepsilon(\sigma u^2 - v^2) \\
\frac{dv}{d\tau} &= v(u - 1) - \varepsilon v^2 + \varepsilon z \\
\frac{dw}{d\tau} &= -\sigma(wu - \varepsilon \sigma u^2) \\
\frac{dz}{d\tau} &= v - \varepsilon z.
\end{align*}
\] (21)

Yongfeng Li (joint work with Yingfei Yi and Hong Qian)

Nonlinear Oscillation and Multiscale Dynamics in a Closed Chemical Reaction
System (20) admits similar dynamics as (21) does.
Canonical System vs Grand Canonical System

When $v = v^* \sim \varepsilon$.

Yongfeng Li (joint work with Yingfei Yi and Hong Qian)
Future Work

- Effect of noise on the dynamics
 - Macroscopic level– Fokker-Planck equation
 - Microscopic level– chemical master equation (in progress)

- Dissipative perturbation of conserved system.
Thank you!