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Abstract—The loading of spacecraft propellants is a complex,
risky operation. Therefore, diagnostic solutions are neces-
sary to quickly identify when a fault occurs, so that recov-
ery actions can be taken or an abort procedure can be initi-
ated. Model-based diagnosis solutions, established using an
in-depth analysis and understanding of the underlying physi-
cal processes, offer the advanced capability to quickly detect
and isolate faults, identify their severity, and predict their ef-
fects on system performance. We develop a physics-based
model of a cryogenic propellant loading system, which de-
scribes the complex dynamics of liquid hydrogen filling from
a storage tank to an external vehicle tank, as well as the in-
fluence of different faults on this process. The model takes
into account the main physical processes such as highly non-
equilibrium condensation and evaporation of the hydrogen
vapor, pressurization, and also the dynamics of liquid hydro-
gen and vapor flows inside the system in the presence of he-
lium gas. Since the model incorporates multiple faults in the
system, it provides a suitable framework for model-based di-
agnostics and prognostics algorithms. Using this model, we
analyze the effects of faults on the system, derive symbolic
fault signatures for the purposes of fault isolation, and per-
form fault identification using a particle filter approach. We
demonstrate the detection, isolation, and identification of a
number of faults using simulation-based experiments.
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1. INTRODUCTION

The loading of cryogenic spacecraft propellants is an inher-
ently risky and unsafe operation, especially in the case of hy-
drogen [1–4]. Therefore, diagnostic solutions are necessary
to quickly identify when a fault occurs, so that recovery ac-
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tions can be taken or an abort procedure can be initiated be-
fore system safety is compromised. Model-based diagnosis
approaches enable quick and robust detection, isolation, and
identification of faults, because they rely on a detailed model
of system behavior under nominal and faulty conditions.

Applying a model-based approach requires an in-depth anal-
ysis and understanding of the underlying physical processes
in order to produce an accurate and reliable system model.
However, cryogenic propellant loading involves complex
physical processes that are difficult to capture. In this paper,
we develop a medium-fidelity, lumped-parameter dynamical
model of propellant loading that takes into consideration a
variety of complex multi-phase phenomena that govern the
storage and transfer of cryogenic propellants, yet is simple
enough to allow for physics analysis and numerical simula-
tions of real loading systems [5]. We concentrate on a system
of liquid hydrogen (LH2) filling that is functionally represen-
tative of the Space Shuttle refueling system. In this system,
LH2 is stored on the ground in a spherical, insulated, double-
walled storage tank (ST), and is transfered to the external ve-
hicle tank (ET) through a network of pipes and valves. The
model takes into account the main physical processes such as
highly non-equilibrium condensation and evaporation of the
hydrogen vapor, pressurization, and also the dynamics of liq-
uid hydrogen and vapor flows inside the system in the pres-
ence of helium gas. Since the model incorporates faults in
the system, it provides a suitable framework for model-based
diagnostics and prognostics algorithms.

We apply a model-based diagnostic approach to the system
using a combined qualitative-quantitative diagnosis method-
ology based on the approach of [6]. Deviations in measured
values from model-predicted values are compared to qualita-
tive predictions made using the system model for quick fault
isolation. Fault identification is performed using particle fil-
ters for joint state-parameter estimation. Using simulation-
based experiments, we demonstrate the detection, isolation,
and identification of a number of faults.

The paper is organized as follows. Section 2 describes the
propellant loading system and its physics model. Section 3
overviews the diagnosis approach. Section 4 describes the
fault detection methodology, Section 5 discusses fault isola-
tion, and Section 6 develops the fault identification approach.
Section 7 verifies the approach with a number of simulation-
based experiments. Section 8 concludes the paper.
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Figure 1. LH2 propellant loading schematic.

2. SYSTEM MODELING

Model-based diagnosis algorithms utilize a model of the sys-
tem for the fault detection, isolation, and identification tasks.
We advocate a physics-based modeling approach, because an
understanding of the physical processes in both the nominal
and faulty cases is necessary for successful fault identifica-
tion. Information on fault severity is necessary in order to
make appropriate recovery actions in response to a fault, es-
pecially in the propellant loading domain. In this section,
we develop the physics model of the LH2 propellant load-
ing system. Since the focus of the paper is on diagnostics,
we review the main features of the model, and refer to [4, 5]
for additional details. We first summarize the filling protocol,
followed by mathematical descriptions of the tank histories.

Filling Protocol

The purpose of the LH2 propellant loading system is to move
LH2 from the ST to the ET. Fig. 1 shows a simplified, but
functionally equivalent schematic of the system. Initially,
the ullages of the tanks are at atmospheric pressure due to
the presence of gaseous hydrogen (GH2). Before filling, the
tanks are first pressurized. The ST is pressurized to 54.7 psia,
then 80.7 psia through the use of the vaporizer, which boils
off LH2 from the ST and returns the GH2 to the ullage of
the ST. The ET is filled with gaseous helium (GHe) through
the prepressurization valve, until it reaches 38.7 psia. The
purpose of pressurization is two-fold. First, it limits potential
boiling of the propellant by keeping a high vapor pressure in
the ullage of the tanks. Second, the pressure difference be-
tween the ST and ET drives propellant from the ST to the ET
in the absence of a pump.

Filling progresses in stages with different filling rates, con-
trolled by the position of the transfer line valve (in reality
there are a number of valves between the tanks, but in this
paper we consider a simplified representation consisting of
a single valve). Slow fill begins first with a low flow rate
and chilling of the ET. As the liquid drains out of the ST, its
ullage pressure drops, so the vaporizer constantly maintains
the ullage pressure to keep LH2 flowing to the ET. The flow
through the vaporizer valve is modulated based on the error
between the measured ST ullage pressure and the ST pressure
set point. As the ET is filled, its ullage volume decreases, and,
therefore, its ullage pressure increases. The ullage pressure

Figure 2. Control Volumes (CV), mass and energy flows in
an LH2 tank.

in the ET is maintained using its vent valve, which opens and
closes to maintain the pressure between 38.7 and 41.7 psia.

When the ET is 5% full, fast fill begins at a flow rate around
30 kg/s. When the ET is 72% full, the ullage pressure of the
ST is reduced to 64.7 psia, reducing the flow rate. When the
ET is 85% full, the fill rate is reduced further by partially
closing the transfer line valve. When the ET is 98% full, top-
ping begins at a lower flow rate. The ET vent valve is also
opened, reducing the ET ullage pressure to 14.7 psia. Finally,
at 100% full, topping ends and the tank is then continuously
replenished until launch to replace the boil off. During re-
plenish, the fill valve position is modulated to maintain the
ET level at 100%.

Tank Modeling

For each tank, we consider three control volumes: the vapor,
the liquid, and the vapor film, as shown in Fig. 2. By conven-
tion, positive mass/energy flows enter the CV, and negative
flows exit the CV.

The vapor CV (v) consists of GH2 (subscript v) and GHe
(subscript g), and is treated as a mixture of ideal gases with
partial densities ρv(g) and pressures pv(g), as well as a com-
mon temperature Tv , all related to each other by the following
equations of state:

pv = ρvRvTv (1)
pg = ρgRgTv. (2)

The liquid CV (l) is where, far from the surface, the tempera-
ture is equal to Tl and the liquid is treated as incompressible.
Tl is treated as a constant at 20 K.

The vapor film CV (f ) separates the liquid and gas phases. It
is treated as saturated hydrogen vapor, whose temperature is
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equal to that of the liquid/vapor interface, where [1, 4, 7]

Tf = TC

(
pv
pC

)n
, (3)

with pC = 1.315 MPa, TC = 33.2 K, and n = 5 [7].

For the liquid CV, the net mass flow is defined by the exter-
nal mass flow Jle (i.e., the flow across its boundaries other
than through the interface), and the interphase (condensation-
evaporation) flow Jlv (defined later):

ṁl = Jle + Jlv (4)

Similarly, the GH2 and GHe mass conservation for CV (v) is

ṁv = Jve − Jlv (5)
ṁg = Jge. (6)

where Jve and Jge are the external GH2 and GHe flows. For
a given tank volume V , the vapor volume is fully defined by
the mass of liquid, since it has a constant density:

V = Vv + Vl = Vv +ml/ρl. (7)

The energy conservation law for the vapor CV yields:

d(mvuv +mgug)
dt

= U̇v = Q̇ve − Q̇vf − Ẇ−

Jlvhvf + Jve(hve + v2
ve/2) + Jge(hge + v2

ge/2), (8)

where uv(g) = cV,v(g)Tv are specific internal energies of the
gases, U̇v is the net rate of change in internal energy of the
mixed gas, Q̇ve is the net external heat flow into the CV (v)
through the tank walls, Q̇vf is the heat flow lost through the
interface, Ẇ = −ptdVl/dt is related to the quasi-static power
due to compression (expansion) of the CV (v), hvfJlv is the
interphase enthalpy flow (the specific enthalpy hvf is equal
to that of the saturated vapor), hve and hge are the specific
enthalpies of the hydrogen and helium gas entering the CV,
and vve and vge are the velocities of the incoming gases [8].
Here, the kinetic energies associated with both the GH2 and
GHe mass flows entering the CV (v) are taken into consider-
ation, because the corresponding velocities vv(g)e are much
greater than the one related to interphase flow. The specific
enthalpies hv(g) = uv(g) + pv(g)/ρv(g) = uv(g) +Rv(g)Tv =
cP,v(g)Tv . Here, cP,v(g) = cV,v(g) +Rv(g) and is the specific
heat at constant pressure. The temperature of the mixed gas
is then described by

Ṫv =
1

mvcV
(U̇v − ṁvcV,vTv − ṁgcV,gTv), (9)

where cV,v and cV,g are the specific heats at constant volume
for the vapor and gas, and cV is the specific heat at constant
volume for the mixed gas.

If the film layer is considered negligibly thin so that one can
ignore its mass [1], then the energy balance equation for the
CV (f ) can be written as

Q̇vf − Q̇fl + Jlvhlv = 0, (10)

where Q̇vf is the heat flow from the vapor CV, Q̇fl is the heat
flow to the liquid CV, and hlv is the enthalpy (heat) of vapor-
ization. Strictly speaking, hlv depends on the saturated vapor
temperature, such that it goes to zero when the surface tem-
perature approaches the critical temperature TC [9]. To take
this effect into consideration, we use the following simple in-
terpolation formula for Tf ≤ TC :

hlv(Tf ) = h0
lv

(
TC − Tf
TC − Tl

)1/2

, (11)

where for liquid hydrogen, TC = 33 K and h0
lv
∼= u0

lv =
4.5×105 J/kg at p = 1 atm and Tl = 20 K [9]. The heat flow
terms may be computed based on the liquid, vapor, and film
temperatures, allowing for Jlv to be computed with (10).

The heat flows Q̇fl and Q̇vf are dominated either by conduc-
tion or convection, depending on the relative temperatures of
the liquid, vapor, and film [5]. If Tf > Tl then conduction
heat transfer defines Q̇fl, else convection does. If Tv > Tf ,
then conduction heat transfer defines Q̇vf , else convection
does. In the case of conduction, we use the following approx-
imation:

Q̇condfl = Afα
cond
fl (Tf − Tl) (12)

Q̇condvf = Afα
cond
vf (Tv − Tf ), (13)

where Af is the surface area of the interface, and the α terms
are heat transfer coefficients (see [5]). Typically, conduction
expressions contain complex integral relations, but here, we
use this algebraic approximation that has proven adequate for
our system [5]. For convection, we use

Q̇convfl = Afα
conv
fl (Tf − Tl) (14)

Q̇convvf = Afα
conv
vf (Tv − Tf ). (15)

Both the liquid and vapor CVs absorb external (e) heat from
the tank walls. This heat is transferred by means of convec-
tion so that

Q̇v(l)e = Av(l)αv(l)e

(
Tw − Tv(l)

)
, (16)

where Av(l) are the internal tank surfaces in contact with va-
por (liquid), and αv(l)e are the convection heat transfer coef-
ficients [5]. The wall temperature Tw is governed by the heat
flow passing through the walls from the environment [1–3].

The temperature Tw of the tank wall, considered uniform, is
defined by the heat exchange rate with the tank surroundings
with the effective ambient temperature Ta:

Q̇w = Awαw (Ta − Tw) , (17)

where Aw is the external tank surface area. The wall temper-
ature is governed by the tank energy conservation:

mwcwṪw = Q̇w − Q̇le − Q̇ve. (18)

Here, the heat transfer coefficients describe natural convec-
tion inside and outside the tank walls [1, 10].
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The Storage Tank

The above equations apply equally well to both the ST and
the ET. We denote variables of the ST with a 1 subscript, and
variables of the ET with a 2 subscript. For the ST, there is
no GHe in the ullage volume, so pg1 = ρg1 = 0. The exter-
nal mass flow for the liquid consists of vaporizer flow Jvap,
transfer line flow Jtr, and leak flow J,leak,1:

Jle1 = −Jvap − Jtr − Jl,leak1. (19)

Jtr is described by

Jtr = λtrσtrαtr
√
p1 − p2, (20)

where λtr is the valve position (an input), αtr is the flow
coefficient, p1 = pv1 + ρlghl1 is the total ST pressure where
hl1 is the height of the liquid, p2 = pv2 + pg2 + ρlghl2 is the
total ET pressure, g is the acceleration due to gravity and σtr
is a (dimensionless) multiplicative factor describing a transfer
line blockage fault.

In the vaporizer, a certain amount of LH2 is evaporated and
returned to the ST, thus controlling its ullage pressure. We
assume that all liquid flow through the vaporizer is converted
instantaneously to GH2. The flow is given by

Jvap = λvapσvapαvap
√
pv1 − pvap (21)

where λvap is the vaporizer valve position, αvap is the flow
coefficient, pvap is the pressure in the vaporizer (close to at-
mospheric pressure), and σtr is a multiplicative factor de-
scribing the vaporizer valve blockage fault. The vaporizer
valve position is controlled by

λvap = min
(

1,max
(

0, 10
p∗v1 − pv1

p∗v1

))
, (22)

where p∗v1 is the desired ST ullage pressure.

The liquid leak flow is given by

Jl,leak,1 = Al,leak,1αl,leak,1
√
p1 − patm, (23)

where Al,leak,1 is the the area of the leak hole, αl,leak,1 is the
leak hole flow coefficient, and patm is atmospheric pressure.

In the vapor CV, Jve1 = −Jv,leak,1, where

Jv,leak,1 = Av,leak,1αv,leak,1
√
pv1 − patm. (24)

Heat leaks constitute the external heat flow term, i.e., Q̇ve1 =
Q̇leak,1.

The External Tank

For the ET, the external liquid flow is given by

Jle2 = Jtr − Jl,leak,2 − Jboil, (25)

where Jl,leak2 is described similar to that for the ST, and
Jboil = Q̇le2/hlv(Tw2 − Tl2) is responsible for intense LH2

evaporation as the ET walls are being initially chilled down
during the beginning of the slow fill stage.

In the vapor CV, the external flows are given by

Jve2 = −Jv,vent,2 − Jv,leak,2 (26)
Jge2 = Jg,pp − Jv,vent,2 − Jg,leak,2, (27)

where Jg,pp is the prepressurization flow of GHe, and

Jv(g),vent,2 = λvent,2σvent,2
Avent,2ρv(g)

√
γ(pv2+pg2−patm)

Γ
√
Kvent,2(ρv2+ρg2)

.

(28)

Here, the dimensionless flow coefficient K (the loss factor)
can be found in Schmidt et. al. [10] (see Tables 7-2 and 7-3
therein); a dimensionless relative valve position assumes val-
ues between λk = 1 (fully open) and λk = 0 (fully closed)
[10]. During filling, the valve opens when the pressure ex-
ceeds 41.7 psia and closes when it falls below 38.7 psia. The
vapor/gas and heat leaks may be defined as with the ST.

Nominal Dynamics

Fig. 3 summarizes the major results of the simulation of a
nominal loading regime, which are based on the parameters,
initial conditions, and filling protocol that are typical for LH2
loading systems. These values are provided in [5].

It can be seen that the LH2 level in the ST drops monoton-
ically (Fig. 3a) as the level in the ET rises (Fig. 3d). The
pressure pv1 in the ST (Fig. 3b) is determined by the load-
ing dynamics and controlled by the vaporizer. Once achieved
during slow fill, the pressure in the ST is maintained at ap-
proximately 80.7 psia up to the start of the reduced-pressure
fast fill (see Figs. 3b and 3j), at which point it is maintained
at 64.7 psia. Meanwhile, the ET ullage pressure (Fig. 3e) is
oscillating due to the cycling of the vent valve that maintains
the pressure between the lower and upper thresholds of 38.7
and 41.7 psia. The fluctuations in the ET ullage temperature
(Fig. 3f) as well as in the mass flow rates (Figs. 3j and 3h) are
driven by the ET pressure oscillations.

The LH2 partial pressure in the ET rises due to the contin-
uing hydrogen supply, while the GHe partial pressure drops
because the helium is being permanently removed through
the vent valve (Fig. 3i). In this case, due to the condensation
blocking effect [4], the flow of the condensed vapor in the ET
(Fig. 3h) is much smaller than that in the ST (Fig. 3g), be-
cause the vapor pressure is being maintained approximately
equal to the equilibrium pressure of the condensed vapor at
the temperature of LH2. The ullage temperature Tv2 in the
ET (Fig. 3f) increases initially due to the introduction of the
GHe during the pressurization stage, then drops from the ini-
tial high value due to venting and near-wall boiling that gen-
erates relatively cold GH2 during filling. The liquid surface
temperature Tf1 in the ST increases (Fig. 3c) due to the vapor
condensation at the interface. Simultaneously, the ST ullage
temperature Tv1 increases, mainly because the relatively hot
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Figure 3. Nominal regime of LH2 propellant loading.

GH2 is supplied by the vaporizer as loading occurs. As a
result, the ullage temperature approaches the temperature of
LH2 saturated vapor at a pressure close to the final ST ullage
pressure of approximately 5 atm (Fig. 3b).

3. DIAGNOSIS APPROACH

We apply a model-based diagnosis approach using the
physics model of the LH2 system. In this paper, we con-
sider the problem of single fault diagnosis. The system may
be described in the following general form:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv
is the process noise vector, f is the state equation, y(t) ∈ Rny
is the output vector, n(t) ∈ Rnn is the measurement noise
vector, and h is the output equation.

Measurements are time-varying signals of y(t) obtained from
the system sensors. In the LH2 system, we consider the fol-
lowing measurements for diagnosis: Vl1, p1, Tv1, Vl2, p2,
Tv2, Jtr, λvap, and λvent,2.

We consider single, abrupt faults, modeled as unexpected step
changes in system parameter values. We name faults by the
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Figure 4. Diagnosis architecture.

associated parameter and the direction of change, i.e., θ+ de-
notes a fault defined as an increase in the value of parameter θ,
and θ− denotes a fault defined as a decrease in the parameter
value. For the LH2 system, we consider liquid and gas leaks,
heat leaks, and valve clogging. The liquid and vapor leaks are
defined by the equivalent leak areas, nominally zero, so faults
are defined as increases in these areas, denoted by A+

l,leak,1,
A+
v,leak,1, A+

l,leak,2, and A+
v,leak,2. The heat leaks are defined

by the heat leak rate, nominally zero, so faults are increases
in these values, denoted by Q̇+

leak,1 and Q̇+
leak,2. The valve

clogging faults are described by the σ parameters, which are
nominally 1, so faults are decreases in these values (0 at a
minimum), denoted by σ−tr, σ

−
vap, and σ−vent,2.

The diagnosis architecture is shown in Fig. 4. The system
receives inputs u(t) and produces outputs y(t). The physics
simulation runs simultaneously, producing predicted outputs
ŷ(t), given the inputs u(t). Using statistical methods, the
fault detection module decides when a measurement has de-
viated from its nominal value, triggering fault isolation. Mea-
surement deviations are then used to quickly isolate faults F .
Fault identification computes, for each fault f ∈ F , the value
of the fault parameter that best fits the outputs of the system,
and the candidate with the lowest output error is selected as
the best candidate.

4. FAULT DETECTION

In model-based fault detection, a model of the system pro-
vides reference outputs representing nominal system behav-
ior. For each sensor output y(t), we define the residual as
r(t) = y(t) − ŷ(t), where ŷ(t) is the model-predicted out-
put signal. Statistically significant deviations of the actual
system outputs from the model-predicted outputs imply the
presence of a fault. If the model is accurate, then fault detec-
tion thresholds can be small and faults detected quickly. The
thresholds are dynamic in that they are defined with respect
to nominal behaviors as a function of time. This is favorable
to the current practice with such systems, where thresholds
are static, preventing the detection of subtle deviations from
nominal behavior that indicate faults.

We use the Z-test for robust fault detection using a set of slid-
ing windows, as described in [11, 12]. The current mean of a

residual signal, µr(t), is estimated over a small window W2:

µr(t) =
1
W2

t∑
i=t−W2+1

r(i).

The variance of the nominal residual signal, σ2
r(t), is com-

puted using a large window W1 preceding W2, by a buffer
Wdelay, ensuring that W1 does not contain any samples after
fault occurrence. The variance is computed using

σ2
r(t) =

1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

(r(i)− µ′r(t))2,

where

µ′r(t) =
1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

r(i).

A given confidence level determines the bounds z− < 0 and
z+ > 0 for a two-sided Z-test. The fault detection thresholds,
ε−r (t) and ε+

r (t), are dynamically computed using

ε−r (t) = z−
σr(t)√
W2

− E

ε+
r (t) = z+ σr(t)√

W2

+ E,

where E is a modeling error term. A fault is detected if µr(t)
lies outside of the thresholds at time t. If µr(t) < ε−r (t), a
- symbol for the measurement is used by the fault isolation
module, and if µr(t) > ε+

r (t), a + symbol is used. Generally,
the parametersW1,W2,Wdelay, the z bounds, andE must be
tuned to optimize performance to minimize both false alarms
and missed detections.

5. FAULT ISOLATION

We utilize a qualitative diagnosis methodology that isolates
faults based on the transients they cause in system behav-
ior, manifesting as deviations in observed measurement val-
ues from nominal measurement values [6]. The transients are
abstracted using qualitative + (increase), - (decrease), and 0
(no change) values to form fault signatures. Fault signatures
represent these measurement deviations from nominal behav-
ior as the immediate (discontinuous) change in magnitude,
and the first nonzero derivative change.
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The fault signatures can be derived automatically from a
graph-based representation of the system model, known as a
temporal causal graph (TCG) [6]. A TCG captures dynamic
system variables as nodes in a graph, and the qualitative re-
lations between them as edges. These edges are labeled with
dt, representing integration, +1, denoting a proportionality,
−1, denoting an inverse proportionality, and system parame-
ters. Faults that are modeled as parameter changes appear on
edges, allowing the qualitative effects of parameter changes
to be propagated over the system variables. Propagation to
measured variables reveals the qualitative effects of faults on
measurements.

A partial TCG for the LH2 system, showing some key vari-
ables of the ST, is shown in Fig. 5. Variables within dashed
boxes are measured. Here, we show only the σvap fault. A
forward propagation algorithm may be used to derive the fault
signatures. Details may be found in [6], so here, we use the
vaporizer valve clogging fault as an example to illustrate the
general procedure. According to the TCG, a decrease in σvap
will lead to a decrease in Jvap, and, subsequently, a decrease
in Jv1, and, due to the −1 label, an increase in Jl1. The de-
crease in Jv1 will lead to a first-order decrease (due to the
dt label) in mv1 and, subsequently, pv1, which is a measured
variable. This change then propagates as a decrease in Jtr,
and then towards ET variables. The increase in Jl1 will lead
to a first-order increase in ml1 and Vl1, which is measured,
leading to an increase in Jtr. This conflicts with the previ-
ously predicted decrease from the other path with the same
derivative order, resulting in an ambiguity denoted with a *.
We can use the simulation and knowledge of the system dy-
namics to resolve these ambiguities. In this case, we know
that the hydrostatic pressure due to the height of the liquid
is negligible compared to pv1 due to the very low density of
LH2. Therefore, we know that the decrease effect will domi-
nate. The propagation continues to all system variables.

Fault signatures for the LH2 system are shown in Table 1.
Due to the dynamics of the system, all faults appear as smooth
changes in the measured values, so only the first change
presents useful diagnostic information, hence, we show only
the first symbol derived from forward propagation. Recall
that the derived symbols represent deviations from nominal
behavior, so, for example, the + symbol for Vl1 caused by
A+
v,leak,1 does not necessarily mean that Vl1 increases, rather,

it increases with respect to its nominal value, i.e., it decreases
at a slower rate. The remaining * symbols are for those in
which the qualitative effect may be different depending on the
state of the system. Note also that this is a hybrid system, i.e.,
it has continuous dynamics mixed with discrete dynamics due
to the valves, and we show only the signatures for the mode
where the vent valve is closed. When the vent valve opens,
some of the signatures will flip. A systematic framework for
dealing with this issue is discussed in detail in [13].

Using the signatures, we can perform diagnosability analy-
sis to determine the effectiveness of the isolation step. We

Figure 5. Partial TCG of the LH2 system.

Table 1. Fault Signatures for the LH2 System

Fault Vl1 p1 Tv1 Vl2 p2 Tv2 Jtr λvap λvent,2

A+
l,leak,1 - - * - - * - + -

A+
v,leak,1 + - - - - * - + -

Q̇+
leak,1 - + + + + * + - +

A+
l,leak,2 - - * - - * + + -

A+
v,leak,2 - - * + - - + + -

Q̇+
leak,2 + + * - + + - - +

σ−tr + + * - - - - - -

σ−vap + - - - - * - + -

σ−vent,2 + + * - + + - - +

can see that in most cases, the set of signatures produced dis-
tinguishes most faults. One exception is the pair A+

v,leak,1

and σ−vap, which have all the same signatures, therefore, fault
identification will have to distinguish between them, since
quantitatively, they should have different effects on the mea-
sured variables. If we measure Jvap, then the faults can
be distinguished, because σ−vap would produce a decrease
in Jvap, whereas A+

v,leak,1 would produce an increase. The
faults Q̇+

leak,2 and σ−vent,2 are similarly indistinguishable.

We can also use the signatures to perform measurement se-
lection. The measurement of λvap always has the same sig-
nature as p1, therefore one of these can be eliminated with-
out loss of diagnosability. However, both quantities are rela-
tively easy to measure, so there is value in keeping them both.
λvap is typically more sensitive to faults than p1, since p1 is
controlled by the vaporizer, which may mask faults. Simi-
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larly, both p2 and λvent,2 are not needed. Changes in p2 are
reflected in changes in the switching frequency of the vent
valve, and therefore provide the same information, although
changes in the vent valve position can be detected much more
easily, again because the control of p2 leads to fault masking
in that measurement. It is also beneficial to keep as many
measurements as possible, because this gives more informa-
tion for fault identification. Further, the qualitative fault sig-
natures say nothing about fault magnitude. Some faults may
not produce large enough changes in some variables for the
changes to be detected, therefore, having more measurements
helps to alleviate this problem.

6. FAULT IDENTIFICATION

Fault identification is initiated immediately after the initial set
of fault candidates is produced after fault detection. Each can-
didate has its own identification module that updates its esti-
mate at every time step. Identification is performed using the
particle filtering algorithm for joint state-parameter estima-
tion [14, 15], which has seen previous application in model-
based diagnosis and prognosis algorithms [16–19]. The mag-
nitude of the fault parameter θ is estimated along with the
system state.

The identification module must compute p(xk,θk|y0:k). A
general solution to this problem is the particle filter, which
may be directly applied to nonlinear systems with non-
Gaussian noise terms. Particle filters offer approximate (sub-
optimal) solutions to the state estimation problem for systems
where optimal solutions are unavailable or intractable [14,
15]. In particle filters, the state distribution is approximated
by a set of discrete weighted samples, called particles. As
the number of particles is increased, performance increases
and the optimal solution is approached. Due to the highly
nonlinear dynamics of the LH2 loading system, particle fil-
ters are favored over other estimation approaches such as the
extended Kalman filter.

The particle approximation to the state distribution is given
by

{(xik,θ
i
k), wik}Ni=1,

where N denotes the number of particles, and for particle i,
xik denotes the state vector estimate, θik denotes the parameter
vector estimate, and wik denotes the weight. The posterior
density is approximated by

p(xk,θk|y0:k) ≈
N∑
i=1

wikδ(xik,θik)(dxkdθk),

where δ(xik,θik)(dxkdθk) denotes the Dirac delta function lo-
cated at (xik,θ

i
k).

We use the sampling importance resampling (SIR) particle
filter with systematic resampling [14, 20]. The pseudocode
for a step of the filter is shown as Algorithm 1. Each particle

Algorithm 1 SIR Filter
Inputs: {(xi

k−1,θ
i
k−1), wi

k−1}
N
i=1,uk−1:k,yk

Outputs: {(xi
k,θ

i
k), wi

k}
N
i=1

for i = 1 to N do
θi

k ∼ p(θk|θi
k−1)

xi
k ∼ p(xk|xi

k−1,θ
i
k−1,uk−1)

wi
k ← p(yk|xi

k,θ
i
k,uk)

end for

W ←
N∑

i=1

wi
k

for i = 1 to N do
wi

k ← wi
k/W

end for
{(xi

k,θ
i
k), wi

k}
N
i=1 ← Resample({(xi

k,θ
i
k), wi

k}
N
i=1)

is propagated forward to time k by sampling new parameter
and state values. The particle weight is assigned using yk.
The weights are then normalized, and then the particles are
resampled (see [14]).

Note that the parameters θk evolve by some unknown process
that is independent of the state xk. The particle filter algo-
rithm requires some type of evolution to the parameters. We
use a random walk, i.e., for parameter θ, θk = θk−1 + ξk−1,
where ξk−1 is Gaussian noise. The particles generated with
parameter values closest to the true values should match the
outputs better, and, therefore, be assigned higher weight, thus
allowing the particle filter to converge to the true values. The
selected variance of the random walk noise affects both the
rate of this convergence and the estimation performance after
convergence. Using the simulation, we can determine appro-
priate values for the random walk variances.

Under the single fault assumption, we can run a set of par-
allel particle filters, one for each consistent fault candidate.
This reduces the dimensionality of the estimation task over
combined estimation of all fault parameters, and allows the
particle filters to be much more efficient. The particle filters
are initiated at the point of fault detection, using the model-
estimated state at that time point for initialization of the states.
The fault parameter estimate starts at its value during nomi-
nal operation (e.g., 0 for leak areas). When the fault isolation
module reduces the set of candidates F , the identification task
continues only for those faults remaining in F .

Because diagnosability may be limited, fault identification
must also be used to help refine fault candidates. The par-
ticle filter for the true fault candidate should estimate the cor-
rect fault parameter and track the faulty outputs with low er-
ror, whereas the particle filters for the incorrect faults will not
track and result in large error. We compute the mean squared
output error for each candidate from the point of fault detec-
tion to the present time. The candidate with the lowest output
error e is considered to be the true candidate.
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7. RESULTS

We illustrate the diagnosis process with the A+
v,leak,1 fault

injected at 2600 s with magnitude 3 × 10−3 m2. Note that
from diagnosability analysis, the observed signatures will be
consistent with both the ST vapor leak fault A+

v,leak,1 and the
vaporizer valve clogging fault σ−vap, so the fault identification
stage will have to resolve the ambiguity. Relevant measure-
ments are shown in Fig. 6. The diagnoser, running at a sample
time of once per second, detects the fault at 2605 s due to an
observed decrease in p1. The initial list of consistent faults is
{A+

v,leak,1, A
+
v,leak,2, A

+
l,leak,1, A

+
l,leak,2, σ

−
vap}. At 2608 s, a

decrease in Jtr is detected, followed by an increase in λvap
at 2612 s and a decrease in Tv1 at 2690 s. The candidate
set remains the same. At 2703 s, a decrease in Vl2 is de-
tected, which rules out the ET vapor/gas leak fault A+

v,leak,2.
At this point, the output error of the A+

v,leak,1 fault is an or-
der of magnitude less than for all other remaining candidates.
At 2806 s, a detected increase in Vl1 rules out A+

l,leak,1 and
A+
l,leak,2, resulting in the candidate list {A+

v,leak,1, σ
−
vap}. By

this time, the particle filter forA+
v,leak,1 has also converged on

the correct value of the fault magnitude, as shown in Fig. 7.
The fault was detected within 5 seconds of its occurrence, and
identification confirmed the true fault with correct magnitude
within 200 s. It is important to quickly discriminate between a
vapor leak in the ST and a clogging of the vaporizer, because
the former requires an abort, whereas the system can continue
fueling in a safe manner with the latter. As discussed in Sec-
tion 5, measuring Jvap would allow a faster discrimination of
these two faults.

Diagnosis results over the complete set of faults are shown in
Table 2. Here, ∆td denotes the time to detect the fault, ∆ti
denotes the time to isolate, taken as the last time at which
the candidate set is reduced, Fid denotes the output of the
fault identification module at the end of the scenario, and f∗

denotes the final output of the diagnoser, i.e., the identified
fault with the lowest error. For the fault identification stage,
50 particles were used per particle filter, which seemed to
offer a reasonable trade off between computation time and
identification accuracy.

Overall, the results are fairly good. In all cases, the correct
fault was identified with sufficient accuracy. In some cases,
the effects of the faults are very subtle at first, and it takes
some time before the changes they produce can be distin-
guished from the sensor noise. For the vent valve clogging
fault, the effects are visible only when the valve is open, so
if the fault first appears when the valve is closed, it will take
time for the fault to be detected. The σ−tr fault was detected
immediately because the change in Jtr was significant. With-
out this measurement, it would take some time for the fault to
be visible in the liquid volumes of the tanks.

For some faults, the operation of the vaporizer masks the
change in ST pressure, therefore, it is important to monitor
the vaporizer valve position in order to obtain a more sensitive
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Figure 6. Predicted and observed outputs for the A+
v,leak,1

fault injected at 2600 s with magnitude 3× 10−3 m2.
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Figure 7. Estimated fault magnitudes and output error for the
A+
v,leak,1 fault injected at 2600 s with magnitude 3×10−3 m2.

TheA+
v,leak,1 estimator converges to the true value by 2800 s.

Theσvap estimator converges by 2800 s also, but it cannot
track the outputs, as shown by the corresponding error eσ̂vap ,
which is greater than eÂv,leak,1 at 2800 s.

9



Table 2. Diagnosis Results

Fault Magnitude ∆td ∆ti Fid f∗

A+
l,leak,1 1× 10−3 m2 17 113 A+

l,leak,1 = 9.98× 10−4, e = 97.1 A+
l,leak,1 = 9.98× 10−4

A+
v,leak,1 3× 10−3 m2 5 206 A+

v,leak,1 = 3.04× 10−4, e = 27.1 A+
v,leak,1 = 3.04× 10−4

σ−vap = 0.35, e = 7.89× 105

Q̇+
leak,1 3× 104 W 111 151 Q̇+

leak,1 = 2.95× 104, e = 9.44 Q̇+
leak,1 = 2.95× 104

A+
l,leak,2 1× 10−3 m2 28 131 A+

l,leak,2 = 1.10× 10−3, e = 121 A+
l,leak,2 = 1.10× 10−3

A+
v,leak,2 1× 10−4 m2 39 138 A+

v,leak,1 = 1.30× 10−4, e = 409 A+
v,leak,2 = 1.07× 10−4

A+
v,leak,2 = 1.07× 10−4, e = 7.50

A+
l,leak,1 = 6.78× 10−5, e = 463

A+
l,leak,2 = 5.16× 10−4, e = 2.86× 105

σ−vap = 0.95, e = 410

Q̇+
leak,2 3× 104 W 18 131 Q̇+

leak,1 = 4.15× 103, e = 1930 Q̇+
leak,2 = 3.19× 104

Q̇+
leak,2 = 3.19× 104, e = 8.97

σ−tr 0.5 0 13 σ−tr = 0.50, e = 56.8 σ−tr = 0.50

σ−vap 0.5 7 71 A+
v,leak,1 = 2.14× 10−3, e = 3.47× 105 σ−vap = 0.50

σ−vap = 0.50, e = 8.06

σ−vent,1 0.5 141 152 Q̇+
leak,2 = 3.21× 103, e = 105 σ−vent,1 = 0.50

σ−vent,1 = 0.50, e = 9.55

detection. Changes in the vent valve switching frequency are
also easy to observe, but one must wait for the upper pressure
threshold to be reached before it can be determined whether
it closes early or late. We also observed that faults in the ET
have very small effects on measured variables in the ST, re-
sulting in the large size of Fid for A+

v,leak,2. In such cases,
fault identification becomes even more crucial to resolving
ambiguities.

8. CONCLUSIONS

In this paper, by applying our previously developed physics-
based model of a propellant loading system [5], we analyzed
the effects of faults, and applied a model-based diagnosis ap-
proach to fault detection, isolation, and identification. The
detection stage compares observed and model-predicted out-
puts to detect faults. The isolation stage compares model-
predicted fault transients to observed measurement deviations
to quickly isolate faults and reduce the complexity of the
identification stage. The fault identification stage uses par-
ticle filters to estimate the values of fault parameters and re-
solve isolation ambiguities.

The simulation results showed that with such a model-based
diagnosis approach, faults can be quickly detected, isolated,
and identified, and this knowledge can be used to determine
if the system can continue loading safely or if an abort is re-
quired. We considered only single faults here, and in the fu-
ture we will extend the framework to multiple faults. Sensor
faults were not considered here, but can be easily incorpo-
rated into a model-based framework by including models of
the sensors [12]. Using the physics model for prognostics and
loading optimization is also of interest.

We would like to validate the approach by using available his-
torical data of faulty situations. Such data can be difficult to

find, and, further, there is only a limited capability to inject
faults into the system for the purpose of diagnosis algorithm
validation, due to the high cost of a fueling operation and the
explicit danger that fault injection presents in such a system.
Therefore, an accurate simulation with which to validate di-
agnosis algorithms, such as that used here, is very valuable.
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