Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

References

Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

James Woodworth
NASA Postdoctoral Program Fellow
Electrochemistry Branch Glenn Research Center

Richard Baldwin and William Bennett
Electrochemistry Branch Glenn Research Center
Introduction

• Future missions of the National Aeronautics and Space Administration (NASA) require advanced energy storage systems
 – High specific energies (Wh/kg)
 – High energy densities (Wh/l)
• Develop advanced lithium ion cells
• Anode development is a key component
• the anode represents 24% of cell mass and additional opportunity for cell mass reduction
• Key performance parameters
 – Threshold value of 600 mAh/g
 – Goal of 1000 mAh/g

Estimates for component weight fraction in 30 Ah cell
Anode Materials

- **Graphite**
 - Excellent cycling characteristics
 - Theoretical capacity of 372 mAh/g

- **Silicon**
 - Theoretical capacity of 4200 mAh/g
 - Expands 400% upon lithiation
 - High irreversible capacity loss
 - High fade rate
 - Poor coulombic efficiency

- **Silicon carbon composites**
 - Carbon matrix absorbs expansion of the silicon and maintains electrical contact
 - Carbon matrix prevents direct electrolyte contact
In-House Anode Synthesis

- Silicon containing carbon gel microbeads
- Carbon fiber paper supported silicon containing carbon nanofoam
- Based on resorcinol-formaldehyde gel precursors containing nano-silicon
- Porous carbon matrix will absorb the expansion of the silicon and prevent direct silicon-electrolyte contact
- Makes use of traditional cost-effective laboratory techniques
Carbon Cryogel Anode Materials

Carbon-Silicon Microbeads

Carbon Nanofoam with Nano-Silicon Supported on Carbon Paper

Originally investigated by Hasegawa, Mukkai, Shiratu and Tamon *Carbon* 42, 2004 pp. 2573-2579

Carbon nanofoams are currently under investigation by J. Long at NRL for use in electrochemical capaciters and as electrode support materials
Carbon-Silicon Microbeads

Mix microbeads with binder and cast onto copper foil current collector

- **Advantage**: Uses conventional manufacturing techniques
- **Disadvantage**: Requires heavy copper current collector

Carbon Nanofoam with Nano-Silicon Supported on Carbon Paper

- **Advantage**: “Stand Alone” electrode that does not require the use of a current collector (Lighter)
- **Disadvantage**: Would require development of new electrode and cell manufacturing techniques

Estimates for Component Weight Fraction in 30 Ah Cell

Anode copper current collector represents a significant weight fraction (8%)
Copper Vs. Carbon

Copper Foil 2g
• Not electrochemically active towards lithium

Carbon Paper 0.2 g
• Electrochemically active towards Li (250 mAh/g)

Theoretical Specific Capacities at the Active Material and Electrode Levels

<table>
<thead>
<tr>
<th>Electrode</th>
<th>mAh/g Active Material</th>
<th>mAh/g Electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanofoam</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Graphite With Cu</td>
<td>350</td>
<td>170</td>
</tr>
<tr>
<td>Si With Cu</td>
<td>1000</td>
<td>312</td>
</tr>
</tbody>
</table>
Carbon Microbead Testing

- Carbon microbeads were slurried with NaCMC
- 0.005” film cast onto copper foil
- Anodes placed in coin cells using lithium as the counter electrode
- Electrolyte: 1M LiPF$_6$ 1:1:1 ethylene carbonate, diethyl carbonate and dimethyl carbonate
- Cells formed at C/10 and cycled from 10mV to 1.5 V
Electrochemical Cycling of Carbon Microbeads

Specific Capacity
- Cell 1
- Cell 2
- Cell 3

Coulombic Efficiency
- Cell 1
- Cell 2
- Cell 3

Silicon Contribution to Specific Capacity
- Cell 2
 - Bulk Capacity
 - Si Contribution
 - Si Only

- Cycle Number: C/10, C/5
Carbon-Silicon Microbead Electrodes

As Cast Nano- Silicon Carbon Gel Microbead Electrode

Cast Nano- Silicon Carbon Gel Microbead Electrode After Cycling
Carbon Nanofoam Half Cells

• Pouch cells
• Nanofoam material placed on copper foil current collectors
• Nickel tab spot-welded instead of the copper foil
• Lithium counter electrode
• First formation at approximately C/5
• Second formation at C/20
Electrochemical Cycling of Carbon Nanofaom Electrodes

![Graphs showing specific capacity and coulombic efficiency over cycle number for different electrode materials.](image-url)
Si-Carbon Microbeads Cell 1

Specific Capacity

- Cycle Number
- Specific Capacity (mAh/g)

Voltage and Current Vs. Test Time

- Test Time (h)
- Voltage (V)
- Current (mA)

dQ/dV

- Volts Vs Li
Formation of Lithium Ion Diffusion Pathways

Pre-Formation
- Full Intercalation of Li$^+$ Ions Into Carbon Matrix and Si
- Establishment of Diffusion Pathways Through Carbon Matrix to Si
- Establishment of Diffusion Pathways into Carbon Matrix
- Intercalation of Li$^+$ Ions Into Carbon Matrix and Surface Si

Establishment of Diffusion Pathways
- Pre-Formation of Li$^+$ Ions in Carbon Matrix
- Establishment of Diffusion Pathways Through Carbon Matrix to Si
- Full Intercalation of Li$^+$ Ions Into Carbon Matrix and Si
- Establishment of Diffusion Pathways into Carbon Matrix
- Intercalation of Li$^+$ Ions Into Carbon Matrix and Surface Si

Graph
- dQ/dV vs Volts Vs Li
- Cycle 1, Cycle 2, Cycle 3, Cycle 5, Cycle 6, Cycle 8, Cycle 9

Diagrams
- Li$^+$ Ions in Carbon Matrix
- Carbon and Silicon
Initial Results

- **Microbeads**
 - 425 mAh/g
 - Short of threshold value of 600 mAh/g and goal of 1000 mAh/g

- **Nanofoam**
 - Initial results showed 400 mAh/g at the electrode level
 - “Stand Alone” anode 100% active material
 - Determined to have a higher potential to meet or exceed goals
 - Decided to focus on development of the carbon nanofoam anodes

Theoretical Specific Capacities at the Active Material and Electrode Levels

<table>
<thead>
<tr>
<th>Electrode</th>
<th>mAh/g Active Material</th>
<th>mAh/g Electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanofoam</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Graphite With Cu</td>
<td>350</td>
<td>170</td>
</tr>
<tr>
<td>Si With Cu</td>
<td>1000</td>
<td>312</td>
</tr>
</tbody>
</table>
New Experiments

- Improve the performance of the Si-carbon nanofoams by addition of conductive additives or binders
 - Addition of graphite to resorcinol formaldehyde gel
 - Coat with polyaniline doped with LiPF$_6$
- New formation procedure
New Formation Procedure

- Very slow initial formation to 10 mV
- Replace taper charge with very low constant current to 10 mV
Carbon-Silicon Nanofoam Electrodes

Volts Vs. Li

\[\frac{dq}{dv} \]

0 0.5 1 1.5

Cycle 1
Cycle 2

Voltage Vs. Li

\[\frac{dq}{dv} \]

0 1

cycle 1
cycle 2
cycle 3
cycle 12

Carbon-Silicon-Graphite Nanofoam
Carbon-Silicon Nanofoam
Poylaniline Coated Carbon-Silicon Nanofoam

Carbon-Silicon-Graphite Nanofoam

Carbon-Silicon Nanofoam
Nyquist Plot For Si-Carbon Nanofoam Anodes

- The nanofoam containing graphite has a lower impedance than the nanofoam which does not contain graphite
- Samples coated with polyaniline/LiPF$_6$ show drastically lower impedances than those without the coating
- The presence of graphite in combination with the polyaniline coating resulted in a higher impedance than that of a coated sample not containing graphite
Conclusions

• A “Stand Alone” anode has been synthesized with specific capacities that meet and/or exceed the ETDP threshold value of 600 mAh/g and would likely compare favorably, with regard to specific capacity, at the electrode level to conventional coated anode materials

• “Stand Alone” carbon-silicon nanofoam anodes have the greater potential to address NASA goals

• Stand Alone” carbon-silicon nanofoam anodes have the potential to significantly increase the specific energies (Wh/kg) for lithium-ion cells

• Addition of graphite to the silicon containing carbon nanofoam dramatically increases capacity

• Use of the conductive binder polyaniline doped with LiPF$_6$ dramatically increases capacity

• Very slow formation cycle is required to fully lithiate silicon
Future Work

• Investigate the use of various conductive additives
 – Graphites
 – Carbon Nanotubes
• Investigate different binders or coatings
• Investigate different gel formulations
Acknowledgements

- This research was supported by an appointment to the NASA Postdoctoral Program at NASA Glenn Research Center administered by Oak Ridge Associated Universities through a contract with NASA.
- NASA Exploration Technology Development Program Energy Storage Project
- NASA Glenn Research Center Electrochemistry Branch with special thanks to:
 - Eunice Wong (ASRC)
 - Dan Welna (NASA GRC)
 - Concha Reid (NASA GRC)
 - Tom Miller (NASA GRC)
 - Dave Yendriga (Sierra Lobo)
 - Marjorie Moats (SGT)
 - Michelle Manzo (Electrochemistry Branch Chief NASA GRC)
Supplementary Slides
Synthetic Conditions

- **Carbon-Silicon Microspheres**
 - Resorcinol-Formaldehyde containing 50 nm silicon is dispersed in a solution of cyclohexane and Span 80 surfactant
 - Sonicated
 - Stirred for two days at room temperature
 - Recovered and rinsed
 - Freeze dried in t-butanol
 - Pyrolyzed at 1000° in argon

- **Carbon-Silicon Nanofoam**
 - Carbon fiber paper impregnated with resorcinol-formaldehyde gel containing 50 nm silicon particles
 - Sealed in plastic bags and placed between glass plates
 - Cured at room temperature for 2 days
 - Freeze dried in t-butanol
 - Pyrolyzed at 1000° C in argon

Key Performance Parameters for Battery Technology Development

<table>
<thead>
<tr>
<th>Customer Need</th>
<th>Performance Parameter</th>
<th>State-of-the-Art</th>
<th>Current Value</th>
<th>Threshold Value</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, reliable operation</td>
<td>No fire or flame</td>
<td>Instrumentation/control-layers used to prevent unsafe conditions. There is no non-flammable electrolyte in SOA</td>
<td>Preliminary results indicate a small reduction in performance using safer electrolytes and cathode coatings</td>
<td>Tolerant to electrical and thermal abuse such as over-temperature, over-charge, reversal, and short circuits with no fire or thermal runaway***</td>
<td>Tolerant to electrical and thermal abuse such as over-temperature, over-charge, reversal, and short circuits with no fire or thermal runaway***</td>
</tr>
<tr>
<td>Specific energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lander: 150 – 210 Wh/kg 10 cycles</td>
<td>Battery-level specific energy [Wh/kg]</td>
<td>90 Wh/kg at C/10 & 30°C 83 Wh/kg at C/10 & 0°C (MER rovers)</td>
<td>160 at C/10 & 30°C (HE) 170 at C/10 & 30°C (UHE) 80 Wh/kg at C/10 & 0°C (predicted)</td>
<td>135 Wh/kg at C/10 & 0°C “High-Energy”</td>
<td>150 Wh/kg at C/10 & 0°C “Ultra-High Energy”</td>
</tr>
<tr>
<td>Rover: 160-200 Wh/kg 2000 cycles</td>
<td>Cell-level specific energy [Wh/kg]</td>
<td>130 Wh/kg at C/10 & 30°C 118 Wh/kg at C/10 & 0°C</td>
<td>199 at C/10 & 23°C (HE) 213 at C/10 & 23°C (UHE) 100 Wh/kg at C/10 & 0°C (predicted)</td>
<td>165 Wh/kg at C/10 & 0°C “High-Energy”</td>
<td>180 Wh/kg at C/10 & 0°C “Ultra-High Energy”</td>
</tr>
<tr>
<td>EVA: 270Wh/kg 100 cycles</td>
<td>Cathode-level specific capacity [mAh/g]</td>
<td>180 mAh/g</td>
<td>252 mAh/g at C/10 & 25°C 190 mAh/g at C/10 & 0°C</td>
<td>260 mAh/g at C/10 & 0°C</td>
<td>280 mAh/g at C/10 & 0°C</td>
</tr>
<tr>
<td>EVA: 270Wh/kg 100 cycles</td>
<td>Anode-level specific capacity [mAh/g]</td>
<td>280 mAh/g (MCMB)</td>
<td>330 mAh/g @ C/10 & 0°C (HE) 1200 mAh/g @ C/10 & 0°C for 10 cycles (UHE)</td>
<td>600 mAh/g at C/10 & 0°C “Ultra-High Energy”</td>
<td>1000 mAh/g at C/10 0°C “Ultra-High Energy”</td>
</tr>
<tr>
<td>Energy density</td>
<td>Battery-level energy density</td>
<td>250 Wh/l</td>
<td>n/a</td>
<td>270 Wh/l “High-Energy”</td>
<td>320 Wh/l “High-Energy”</td>
</tr>
<tr>
<td>Lander: 311 Wh/l</td>
<td>Cell-level energy density</td>
<td>320 Wh/l</td>
<td>n/a</td>
<td>385 Wh/l “High-Energy”</td>
<td>390 Wh/l “High-Energy”</td>
</tr>
<tr>
<td>Rover: TBD</td>
<td>Operating environment</td>
<td>0°C to 30°C</td>
<td>0°C to 30°C</td>
<td>0°C to 30°C</td>
<td>0°C to 30°C</td>
</tr>
<tr>
<td>EVA: 400 Wh/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>