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Abstract The movement of passengers through an airport quickly, sa fely, and efficiently is the main function of the various checkpoints (check­
in, security. etc) fourld in airports. Human error combined w~h other breakdowns In the oom~e. system 01 the airport can diSI'Upt passenger 
flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model 01 passenger 
flow through an airport using discrete event simulation thai will provide a doser look into the possible reasons for breakdowns and their 
implications for passenger flow. The simulation is based on data coll~ted al Norfolk Intemahonal Airport (ORF). The primary goal of this 
simulation is to present ways to optimize the work force to keep passenger now smooth even wring peak travet times and for emergency 
preparedness at ORF In case of adverse events. In this simulation we ran th ree different scenarios: real world. increased check-in stations, and 
multiple wa~ing lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines 
decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger 
now through the airport . 

1.0 INTRODUCTION 

At the turn of the millennium, erroneous 
information typed into a central database at Hong 
Kong's $20 billion Chek Lap Kok airport triggered a 
domino effect that sent the new facility into almost 
comic confusion: flights taking off without luggage, 
airport officials tracking flights with plastic pieces 
on a magnetic board, and airlines calling confused 
ground staff on cellular phones to say where even 
more confused passengers could find their planes. 
Similar scenes were played out at Malaysia'S $2.2 
billion Kuala Lumpur International Airport, where 
stranded cargo translated quickly in the tropical 
heat into rotting refuse . Such examples drive home 
one of the oldest rules of computer programming, 
the simple postulate that a machine is only as 
good as the humans using it. 

Clearly airports are very complex environments in 
which passengers are the consumers and 
efficiency is the key to organizing the complexity. 
Airports can be thought of as systems with many 
parts that need to work together in order to 
accomplish a task. This task is to get passengers 
through the airport and onto waiting airplanes. 
This system can break down when problems 
occur. Therefore, modeling of processes to 
optimize traffic flow is where emergency planning 
can come into play. Some of the integral 
components of an airport are infrastructure 
features such as buildings, passenger ground 
transport systems, runways , taxiways , and 
vehicles (needed for getting baggage, fuel , and 
food onto the planes). 

Additional features of the system are the computer 
systems such as baggage check computers and x­
ray baggage machines. The final link in the airport 
system is the human component, i.e. , workers that 
operate the machinery and computers. 

1.1 Role of the runway 

The runway plays an important part in regulating 
traffic flow by allowing aircraft to land and take off 
safely. Taxiways serve the same purpose, 
although they are primarily used to get the planes 
from the runway to the terminal. The bigger the 
aircraft, the longer and tougher the runway and 
taxiways must be to handle the weight. 

1.2 Role of computer systems 

The computer systems in an airport are important 
to the flow of traffic in that they help keep track of 
all the flights coming and going, as well as the flow 
of passengers and their baggage. In addition, 
computer systems play an important role in airport 
security by screening luggage, and profiling 
passengers using video cameras. 

1.3 The human component 
The presence of humans is integral to the running 
of all the above components. The workers that 
operate the systems are an important factor to 
take into account when looking at the airport as a 
system of systems. It is the humans that make the 
decisions, and keep the other systems working. A 
significant proportion of errors in these systems, 
therefore, are due to incidences of human error. 
This raises the importance of model ing human 
behavior to better understand the behavioral 
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implications on traffic flow in a large system of 
systems such as an airport. 

A few attempts have been made so far to quantify 
and model passenger flow in various contexts 
ranging from train station platforms to elevators of 
tall buildings [1 ,2] . Nahke created a simulation of 
Hartsfield Atlanta International Airport's passenger 
movement system which consisted of nine trains 
moving passengers from terminal to terminal [3] . 
Through the use of this simulation, Nahke were 
able to see what effects increasing the number of 
tra ins had to try and increase passenger capacity. 
They were able to show that through small 
changes the train system that was designed for a 
maximum of nine trains could easily handle ten 
trains, increasing passenger capacity [31. 
Ke, Zizheng, and Uling used simulation to optimize 
bus schedules during peak times [4}. Wusheng 
and Qian created a simulation using queuing 
theory to examine passenger flow at the curbside 
of an airport [5} . Another study examined the flow 
of traffic in an airport through simulation and 
modeling in a similar way to what is being 
proposed (6). Although this study effectively 
examined the problem of passenger flow from the 
standpoint of scheduling, the model ignored the 
degree of heterogeneity among the passengers 
themselves that are largely accountable for several 
system bottlenecks. Specifically, the model did not 
take into account passenger behaviors that would 
be related to their degree of flight experience, 
physical abilities, presence of children, etc, which 
would certainly impact the overall rate of 
passenger flow through an airport. Furthermore, 
the earlier model is dated and does not include 
data on baggage screening procedures, which are 
an integral component of airport security in the 
present day. 

Simulation can also be used in the design process. 
It can be used to look at how people will move 
through a building, or to see how a change affects 
the rest of the system being designed. Brown and 
Garcia [7] used Simulink, in Matlab, to help design 
a control system for unmanned aerial vehicle 
helicopters. This allowed them to try different 
control systems without incurring the cost of 
building them and testing them in the real world 

The goal of our current research therefore is to 
develop a working model of an airport using 
discrete event simulation with particular emphasis 

on homeland security. The simulation can be used 
for homeland security purposes to understand 
better where wori<ers are needed to provide 
optimal security for waiting passengers. 

Through this model , we represent traffic flow 
through an airport as a chronological set of events 
that is tied in to passenger behavior. Each event 
(e.g., arriving at check·in, carry·on baggage check, 
and final ticket check) occurs as an instant in time 
and mari<s a change of state in the system. The 
simulation was designed using ARENA Discrete 
Event Simulation software as described in the next 
section. Discrete Event Simulation (DES) software 
was created to simulate real world events that 
have random components to them and that are not 
time driven. How the simulation moves forward is 
based on arrival and service times drawn from a 
random number generator, which can be given 
functions from which to draw these numbers. 
These random times tell when an entity will arrive, 
and how long it takes to process the entity . The 
reason to use DES for the airport simulation is due 
to its simplicity in creating, the ability to recreate 
the random arrival and service times, and that the 
arrival of passengers and the time it takes to 
process them is not moved forward by the time 
moving forward. 

2.0 THE SIMULATION 

2.1 Materials 

Laptop computer with Windows XP running 
ARENA DES Software Version 10.0 build 30. 

2.2 Simulation Components 
The simulation can be broken into multiple 
components each of which is combined in different 
places of the simulation to create the integrated 
airport simulation. 

2.2.1 Creation module 
This module is used to populate the simulation 
with entities , which in this simulation are 
passengers. The creation module determines how 
many passengers are going to arrive at the airport, 
and how often they arrive. With having a creation 
module, at the end of the simulation a delete 
module must be used to remove the passengers 
and have them leave the simulation. 
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2.2 Assign module 

This module allows specific attributes to be 
assigned to the passengers , such as a function to 
predict how long it should take the passenger to 
get through the baggage check·in. 

2.2.3 Decision modyle 
The decision module is used to route passengers 
through a choice. For example one decision 
module routes the passenger to either the 
automated self check·in, or the manned check·in 
counter based on random chance, based on a 
percentage of passengers or even a formula . 

2.2.4 Process module: 

This module is used to carry out a specific 
process, such as the check·in process or the 
luggage screening process. Each process has 
specific resources that are assigned to it, such as 
the security screeners , baggage handlers and 
check·in agents. 

2.3 Data Collection 

Data for the simulation was collected from the 
Norfolk International Airport with consent from the 
different airlines and also the Transportation 
Security Administration for the airport. Data was 
collected between 7:00 am and 3:00 pm Monday 
through Thursday for two weeks. Arrival times 
were collected by using a stop watch and 
measuring the time between each passenger 
crossing a particular point when arriving into the 
airport building. These times were then recorded 
for later use in the simulation. 

The processing times for the check-in were 
measured by observing passengers checking in. 
VVhen the passenger started talking with the ticket 
counter agent or when they fi rst touched the 
computer screen the stop watch was started. 
VVhen the passenger gathered their luggage and 
moved away was when the time would stop. This 
data was recorded for later use in the simulation. 

Processing times for the carry-on luggage 
screening were collected by observing passengers 
going through the security checkpoint. The stop 
watch was started once passengers put their 
luggage on the conveyor belt and stepped away to 
go through the metal detector. The time was 
stopped once they picked up their luggage. 

These different times were put into the input 
analyzer of Arena DES so that an equation could 
be fit to the data and then put into the simulation. 
See table 1 for the airport data. 

2.4 The Airport Simulation 
Since this simulation deals primarily with 
passenger flow through an airport, the only parts of 
the airport that were simulated were those that 
directly affect the passengers themselves as they 
enter and travel through the airport, and finally 
board their plane. 

Three main areas that were used in the simulation: 
(i) the initial check-in , 
(ii) the carry-on luggage screening 

Input Equations 

Arrival times -O.Den + GAMM(O, 0) 

Manned check-in TImes 54 + EXPO(O) 

Self-cheek-in times 60 + WEIB(O, 0) 

Security check point 10 + WEIB(O, 0) 

See Figure 1 for a diagram of the ARENA 
simulation. These two points were chosen 
because they are the points where passenger flow 
is controlled by airport authorities , yet have the 
most impact on passenger behavior. The time 
when the passenger arrives at the airport cannot 
be contrOlled , and is therefore a random variable 
within the simulation, and is treated as such. 

The arrival times of passengers are randomized 
based on data collected at the Norfolk International 
Airport. The passengers were categorized based 
on the main air carriers operating at the Norfolk 
Airport: 

• American/Continental Airlines 
• Southwest Airlines 
• USAirways 

American and Continental Airlines were grouped 
together due to the extremely low passenger rate 
observed at the airport. Each passenger category 
was assigned a different process time based on 
times collected from each processing area. The 
check-in area (see Figure 1) is divided into self 
check-in and manned check-in, for each airline. 
For the self check·in , the primary resource is the 
automated check-in machine. For the manned 
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station the primary resource is personnel manually 
checking the passengers and their luggage. 

The next area the passengers went through was 
the luggage screening security checkpoint (see 
Figure 1). Each passenger goes through this 
section, just as they do in the real world. Random 
stops were able to be initiated in the simulation at 
this point. For example, the number of passengers 
stopped could be set as a predetermined 
percentage, and that many passengers will be 
stopped. Alternatively, certain passengers can be 
assigned a particular attribute tag such as race, 
gender or physical ability; then those passengers 
would be stopped more often in the simulation 
than other types of passengers. The simulation 
was run for 80 iterations, one iteration being a 24 
hour a day. 

3.0 SIMULATION RESULTS 

After running the simulation, the average number 
of entities that entered the simulation was 179.14 
for American/Continental , 1068.43 for Southwest, 
and 957.09 for USAirways. See table 2 for the 
range and average wait times. 

The wait time for USAirways in the simulation 
indicated a significant difference between the 
manned check-in and self-check-in (t(78) = 4.33, P 
< .001), with the manned check in having a lower 
wait time (M = 2.64, SD = 1.23) than the self­
check-in (M = 12.07, SO = 3.98) . The manned 
check-in and automated check-in for 
American/Continental and Southwest airlines were 
not statistically different (t(7B) = 0.16, P = ns; t(7B) 
= 0.07, P = ns). In the simulation, Southwest's 
manned and self-check-in (t(7B) = 2.11 , P < .05; 
t(7B) = 2.72, P < .01 ) and USAirways's self-check­
in (t(7B) = 5.10, P < .001) had significantly longer 
wait times than did the security checkpoints. 

I ,.,. 

L __ .J..;",._ 

Fig. 1. ARENA diagram of Airport Simulation. The red area represents the check-in area. The green area 
represents the carry-on luggage check points. 

Table 2 
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Wait Time 

Airl ine/Checkpoint Average Minimum M" 
American~ Continental 

manned 2.51 0.00 33.28 
self check-in 2.71 0.00 56.57 

Southwest 

manned 6.74· 0.00 67.72 
self check-in 6.60· 0.00 75.26 

USAir 
manned 2.64 0.00 33.92 

self check-in 12.07·" 0.00 105.48 

Security Check point 1 1.46 0.00 17.71 
Security Check point 2 1.45 0.00 18.78 
Note: time in minutes; 
·p<.Os, "·p<.OOl 

Instantaneous utilization is another way to 
look at how resources are being used within 
the simulation. See table 3. Instantaneous 
utilization shows the percentage of time that 
the resource was used. The higher the 
percentage, the more the resource was used. 

Table 3. 

Instantaneous Utilization 

Type of Service Average 

Norfolk Airport 

Manned Check-in 78.40% 
~Ir Check-in 83.38",,(, 

Security Checkpoint 82.43% 

4.0 OPTIMIZING PASSENGER FLOW 
As the results indicate, Southwest and USAir 
have the longest waiting times for both 
manned check in as well as self check-in. To 
decrease the wait times, one would assume 
that increasing the number of stations would 
decrease this wait time. As table 4 shows, the 
wait times actually increase significantly with 
increased stations, in this case 2 additional 
workers and 10 additional self check-in 
stations. 

Another way to optimize the Southwest and 
USAir wait times is to divide the check-in 

stations into multiple lines, for this case two. 
This allows people to choose a line that is 
shorter decreasing their wait time. As Table 5 
shows, dividing the check-in lines to two lines 
for Southwest and USAir, wait times were cut 
by over half. 

These wait times, however, do not tell the 
whole story. To get the full story, we also 
need to examine the resource utilization for 
these two changes. See table 6. By 
increasing the number of check-in stations, 
utilization was increased by five to six percent, 
though the security checkpoint utilization was 
decreased. So even though the wait times 
were increased, the resource usage was also 
increased. By dividing the waiting lines, table 
6 shows that resource usage was cut by 37-
39 percent for the check-in stations. This 
means that the workers were only working for 
9-10 hours of the 24 when the waiting lines 
were split in two. 

Table 4 

Wait Time 

Airl ine/Checkpoint Avera8;e Min M" 
American~Continental 

manned 2.51 0.00 33.28 
self check-in 2.71 0.00 56.57 

manned 2 additional 1.38 0.00 33.28 
self check-in 10 

additional 0.83 0.00 33.28 

Southwest 

manned 6.74 0.00 67.72 
self check-in 6.60 0.00 75.26 

manned 2 additional 25.13·" 0.00 33.28 
self check-in 10 

additional 34.05·" 0.00 33.28 

USAir 

manned 2.64 0.00 33.92 

self check-in 12.07 0.00 105.48 

manned 2 additional 24.63"· 0.00 33.28 
self check-in 10 

additional 34.45"· 0.00 33.28 
···p<.OOl 

Note: time in minutes 

Table 5 
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Wait Time 

Airline/ Checkpoint Average 

American_Continental 

manned 2.51 
self check-in 2.71 

Southwest 

USAir 

manned 6.74 

self check-in 6.60 
manned 2 lines 0.19··· 

self check-in 2 lines O.OSS·· · 

manned 2.64 
self check-in 12.07 

manned 2 lines 0.06·· 

self check-in 2 lines 0.14· ·· 

Note: time in minutes 
· · p<.OI, .up<.OOI 

Table 6 

Instantaneous Utilization 

Type of Service Average 

Two lines 

Manned Check-in 40.70% 

Self Check-in 43.89% 

Security Checkpoint 82.32% 

plus 10 Self Check-in 

Manned Check-in 85.39% 

Self Check-in 89.11% 
Security Checkpoint 79.69% 

5.0 DISCUSSION AND IMPLICATIONS 
FOR OPTIMIZING PASSENGER FLOW 
Airplanes move a large percentage of the 
population - about 580 million passengers just 
in the year 2008 in the US [8]. \M1en there is 
a procedural failure in anyone section of an 
airport it can have a drastic effect on the entire 
air transportation system. Therefore, the 
primary application of this simulation is to 
assist in optimizing traffic flow within airports. 
The results from the simulation runs indicate 
that the chokepoint at Norfolk International 
Airport resides with the initial ticketing and 
baggage checkpoints . 

Southwest and USAirways are the primary 
carriers that can take a number of actions to 
try and reduce the waiting time associated 
with check-in. One possible method of 
redressal is to increase the number of self­
check-in stations so that more people can use 
them at once. Another option is to do a 
usability analysis on the self-cheek-in station 
to make sure the process is smooth, efficient, 
and easy for inexperienced travelers to use. 
Finally, more workers could be brought in to 
help the passengers check-in. 

The maximum utility of the airport model is 
that the effects of these changes can be 
tested in the simulation before changes in the 
system can be made. The number of self­
check-in stations and manned stations can be 
repeatedly adjusted and the wait times can be 
analyzed to see w hat the optimum number is. 
The effects of failures and emergencies can 
also be examined within the model. 

For emergency planning and error redressal , 
the ultimate goal is to try and plan for future 
events by using past experi ence [9,10]. As 
described above, our model allows for the 
quantification of each contingency situation 
into a discrete variable . These discrete 
variables include passenger behaviors that 
can be quantified to create individual 'agents' 
that exhibit different behaviors at different 
points in time. Each variable is then built into 
the simulation as described to ultimately 
predict the parameters required for optimal 
rate of passenger flow inside an airport. All of 
these ideas will be done in future testing of the 
simulation model. 

6.0 CONCLUSIONS 

The simulation model has indicated that there 
are choke pOints within the Norfolk 
International Airport. Those choke points are 
the check-in stations where passengers check 
their luggage. We recommend that the 
airlines in charge of the specific stations 
should decrease the wait time by increasing 
the number of staff and/or increasing the 
number of self-check-in stations. Besides to 
the obvious economic advantages of 
regulating passenger flow, minimizing choke 
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points will also ensure fewer instances of 
confusion and crowding at airports thereby 
strengthening the degree of passenger 
security to a large extent. 
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