

May 2011

NASA/TM-2011-217152

Model Checking � Self-Stabilizing Distributed
Clock Synchronization Protocol �or Arbitrary
Digraphs

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

 Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information
(STI) program plays a key part in helping NASA
maintain this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

� TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

� TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

� CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

� CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

� SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

� TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

� Access the NASA STI program home page at

http://www.sti.nasa.gov

� E-mail your question via the Internet to

help@sti.nasa.gov

� Fax your question to the NASA STI Help Desk

at 443-757-5803

� Phone the NASA STI Help Desk at

443-757-5802

� Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

May 2011

NASA/TM-2011-217152

Model Checking � Self-Stabilizing Distributed
Clock Synchronization Protocol �or Arbitrary
Digraphs

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Acknowledgments

This effort was conducted under the Integrated Vehicle Health Management (IVHM) project of
NASA’s Aviation Safety program. The author would like to thank the reviewers for their in-
depth reviews and constructive comments.

The use of trademarks or names of manufacturers in this report is for accurate reporting
and does not constitute an official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and Space Administration.

 v

Abstract

This report presents the mechanical verification of a self-
stabilizing distributed clock synchronization protocol for arbitrary
digraphs in the absence of faults. This protocol does not rely on
assumptions about the initial state of the system, other than the
presence of at least one node, and no central clock or a centrally
generated signal, pulse, or message is used. The system under
study is an arbitrary, non-partitioned digraph ranging from fully
connected to 1-connected networks of nodes while allowing for
differences in the network elements. Nodes are anonymous, i.e.,
they do not have unique identities. There is no theoretical limit on
the maximum number of participating nodes. The only constraint
on the behavior of the node is that the interactions with other
nodes are restricted to defined links and interfaces. This protocol
deterministically converges within a time bound that is a linear
function of the self-stabilization period. A bounded model of the
protocol is verified using the Symbolic Model Verifier (SMV) for a
subset of digraphs. Modeling challenges of the protocol and the
system are addressed. The model checking effort is focused on
verifying correctness of the bounded model of the protocol as well
as confirmation of claims of determinism and linear convergence
with respect to the self-stabilization period.

 vi

Table of Contents
1. INTRODUCTION .. 1
2. SYSTEM OVERVIEW .. 3

2.1. DRIFT RATE (�) AND THE LOGICAL CLOCK (LOCALTIMER) ... 3
2.2. COMMUNICATION DELAY (D), NETWORK IMPRECISION (D), AND � ... 3
2.3. TOPOLOGY (T) ... 4

3. THE PROTOCOL .. 5
3.1. THE GRAPH THRESHOLD (TS) ... 6
3.2. SYNC MESSAGE AND ITS VALIDITY ... 6
3.3. THE MONITOR, THE SYNCHRONIZER, AND PROTOCOL FUNCTIONS ... 7
3.4. PROTOCOL ASSUMPTIONS .. 8
3.5. THE SELF-STABILIZING DISTRIBUTED CLOCK SYNCHRONIZATION PROBLEM .. 8
3.6. THE SELF-STABILIZING DISTRIBUTED CLOCK SYNCHRONIZATION PROTOCOL FOR ARBITRARY DIGRAPHS 9

4. VERIFICATION MODEL .. 10
4.1. MODELING COMMUNICATION CHANNELS... 13
4.2. MODELING MONITORS .. 13
4.3. MODELING NODES .. 13
4.4. MODELING COMMUNICATION DELAYS ... 14
4.5. MODELING CLOCKS AND TIMERS ... 14
4.6. MODELING DRIFT ... 15
4.7. MODELING NETWORK ... 16

5. PROPOSITIONS .. 17
6. RESULTS AND CONCLUSION .. 19
REFERENCES: ... 21
APPENDIX A. SYMBOLS .. 22
APPENDIX B. EXAMPLE .. 23

 1

1. Introduction

Synchronization algorithms are essential for managing the use of resources and controlling
communication in a distributed system. Synchronization of a distributed system is the process
of achieving and maintaining a bounded skew among independent local clocks. A distributed
system is said to be self-stabilizing if, from an arbitrary state, it is guaranteed to reach a
legitimate state in a finite amount of time and remain in a legitimate state. A legitimate state is a
state where all parts in the system are in synchrony. The self-stabilizing distributed-system clock
synchronization problem is, therefore, to develop an algorithm (i.e., a protocol) to achieve and
maintain synchrony of local clocks in a distributed system after experiencing system-wide
disruptions in the presence of network element imperfections. The convergence and closure
properties address achieving and maintaining network synchrony, respectively. Hereafter in this
report, we use the term synchronization to mean self-stabilizing clock synchronization in
distributed systems.

A thorough understanding of the synchronization of a distributed system has proven to be elusive
for decades. The main challenges associated with distributed synchronization are the complexity
of developing a solution and proving the correctness of these solutions. It is possible to have a
solution that is hard to prove or refute. Such a solution, however, is not likely to be accepted or
used in practical systems. The proposed solutions must restore synchrony and coordinated
operations after experiencing system-wide disruptions in the presence of network element
imperfections and, for ultra-reliable distributed system, in the presence of various faults. A fault
is a defect or flaw in a system component resulting in an incorrect state [Gir 2005] [Tor 2005]
[But 2008]. In addition, a proposed solution must be proven to be correct. If a mathematical
proof is deemed difficult, at a minimum, the proposed solution must be shown to be correct using
available formal methods. Furthermore, addressing network element imperfections is necessary
to make a solution applicable to realizable systems.

Typically, verification of a protocol is conducted by the composition of a paper-and-pencil proof.
Verification of such proofs is another challenge associated with self-stabilization, especially as
the complexity of the protocol increases. Such proofs are error prone.

In [Mal 2011] a solution is presented for an arbitrary network (digraph) in the absence of faults.
The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to
1-connected networks of nodes while allowing for differences in the network elements. Some
networks of interest include grid, ring, fully connected, bipartite, and star (hub) formation. This
solution does not require any particular information flow nor imposes changes (e.g., embedding a
directed spanning tree or rewiring) to the network in order to achieve synchrony. The
assumption of an absence of faults is equivalent to the assumption that all faults are detectable.
This departure from our previous work at the Byzantine extreme of the fault spectrum [Mal
2006] is in part because of the niche use and the extra cost associated with the Byzantine faults.
Also, using authentication and error detection techniques, it is possible to substantially reduce
the effects of variety of faults in the system. Furthermore, the classical definition of a self-
stabilizing algorithm assumes generally that there are no faults in the system.

 2

In this report we present model checking efforts in support of the claims of A Self-Stabilizing
Distributed Clock Synchronization Protocol For Arbitrary Digraphs [Mal 2011]. In particular,
this effort encompasses the verification of correctness of a bounded model of the protocol by
confirming that a set of candidate systems self-stabilizes from any state. This effort,
furthermore, includes the verification of claims of determinism and linear convergence of the
bounded model of the protocol with respect to the self-stabilization period. Toward this
objective, a number of abstractions and reduction techniques are devised to reduce the state
space. The model checking results of the bounded model of the protocol have validated the
correctness of the protocol as they apply to the networks with unidirectional and bidirectional
links. In addition, the results have confirmed the claims of determinism and linear convergence.

The following sections describe the model checking efforts in detail. In section 2 we provide a
system overview. We present the protocol and its description in section 3. Modeling
specifications and abstractions used in describing a bounded model of this protocol are described
in section 4, where the underlying topology and network models are defined. In section 5 we
enumerate the propositions used and, finally, in section 6, we present a summary of the model
checking results and concluding remarks.

 3

2. System Overview

We consider a system of pulse-coupled entities (e.g., oscillators, pacemaker cells) pulsating
periodically at regular time intervals. We model the system as a set of nodes that represent the
pulse-coupled entities and a set of communication channels that represent their interconnectivity.
The underlying topology considered here is a network of K ≥ 1 nodes that exchange messages
through a set of communication channels. Nodes are anonymous, i.e., they do not have unique
identities. All nodes are assumed to be good, i.e., actively participate in the synchronization
process and correctly execute the protocol. The communication channels are assumed to connect
a set of source nodes to a set of destination nodes with a source node being different than a
destination node. All communication channels are assumed to be good, i.e., reliably transfer data
from their source nodes to their destination nodes. The nodes communicate with each other by
exchanging broadcast messages. Broadcast of a message by a node is realized by transmitting
the message, at the same time, to all nodes that are directly connected to it. The communication
network does not guarantee any relative order of arrival of a broadcast message at the receiving
nodes, that is, a consistent delivery order of a set of messages does not necessarily reflect the
temporal or causal order of the message transmissions [Kop 1997]. There is neither a central
system clock nor an externally generated global pulse or message at the network level. The
communication channels and nodes can behave arbitrarily provided that eventually the system
adheres to the protocol assumptions (Section 3.4).

2.1. Drift Rate (��) And The Logical Clock (LocalTimer)

Each node is driven by an independent, free-running local physical oscillator (i.e., the phase is
not controlled in any way) and a logical-time clock (i.e., a counter), denoted LocalTimer, which
locally keeps track of the passage of time and is driven by the local physical oscillator. An
oscillator tick, also called a clock tick, is a discrete value and the basic unit of time in the
network.

An ideal oscillator has zero drift rate with respect to real-time, perfectly marking the passage of
time. Real oscillators are characterized by non-zero drift rates with respect to real-time. The
oscillators of the nodes are assumed to have a known bounded drift rate, �, which is a small
constant with respect to real-time, where � is a unitless non-negative real value and is expressed
as 0 � � << 1. The maximum drift of the fastest LocalTimer over a time interval of t is given by
(1+�)t. The maximum drift of the slowest LocalTimer over a time interval of t is given by
(1/(1+�))t. Therefore, the maximum relative drift of the fastest and slowest nodes with respect
to each other over a time interval of t is given by the following equation.

δ(t) = ((1+�) - 1/(1+�))t (1)

2.2. Communication Delay (D), Network Imprecision (d), And �

The communication latency between the nodes is expressed in terms of the minimum event-
response delay, D, and network imprecision, d. These parameters have units of real time clock
ticks and are described with the help of Figure 1. As depicted in this figure, a message

 4

transmitted at real time t0 is expected to arrive at all destination nodes, be processed, and
subsequent messages are generated within the time interval of [t0+D, t0+D+d]. Communication
between independently clocked nodes is inherently imprecise. The network imprecision, d, is the
maximum time difference among all receivers of a message from a transmitting node with
respect to real time. The imprecision is due to the drift of the oscillators with respect to real
time, jitter, discretization error, temperature effects and differences in the lengths of the physical
communication media. These two parameters are assumed to be bounded such that D � 1 and d
� 0 and both have discrete values with units of real time clock tick. The communication latency,
denoted �, is expressed in terms of D and d, and is constrained by � = (D+d) and so has units of
real time clock ticks.

t +D0 t +D+d0
t0

D d

time

Figure 1. Event-response delay, D, and network imprecision, d.

2.3. Topology (T)

The general topology, T, considered is a strongly connected directed graph (digraph) consisting
of K nodes, where each node is connected to the graph by at least one channel1, there is a path2
from any node to any other node, and the channels are either unidirectional or bidirectional.
Furthermore, we assume there is no direct path from a node to itself, i.e., no self-loop, and there
are no multiple channels directly connecting any two nodes in any one direction.

The number of strongly connected directed graphs for a given set of nodes have been studied by
Liskovets [Lis 1970]. In this report, we use the terms network and graph interchangeably as well
as the terms link, channel and edge. The following graph specific terms are used in the
subsequent sections.

� Two nodes are said to be adjacent to each other or neighbors if they are connected to
each other via a direct communication link.

� L, an integer value with units of links, denotes the largest loop in the graph, i.e., the
maximum value of the longest path lengths3 from a node back to itself visiting the nodes
along the path only once (except for the first node which is also the last node).

� W, an integer value with units of links, signifies the width or diameter of the graph, i.e.,
the maximum value of the shortest path connecting any two nodes.

In general, for digraphs, L and W are at their maximum, i.e., L = K and W = K - 1.

1 A channel is an edge in the graph, a physical connection, between two nodes.
2 A path is a logical connection consisting of one or more edges/links/channels.
3 A path length is the number of edges/links/channels connecting any two nodes.

 5

3. The Protocol

In this section we enumerate protocol assumptions, properties, parameters, and describe the
protocol in pseudo-code. The general form of the distributed synchronization problem, S, is
defined by the following septuple [Mal 2011].

S = (K, T, D, d, �, P, F)

In other words, the distributed synchronization problem is a function of the number of nodes (K),
network topology (T), communication delay (D), communication imprecision (d), oscillator drift
rate (�), synchronization period (P), and number of faults (F), respectively. The solution to this
problem is a protocol with convergence and closure properties, at a minimum, as discussed
subsequently in this section. However, in this protocol we do not deal with faults.

Each node is driven by an independent logical-time clock, i.e., LocalTimer. The clocks need to
be periodically synchronized due to their inherent drift with respect to each other. In order to
achieve synchronization, the nodes communicate by exchanging Sync messages. The periodic
synchronization after achieving the initial synchrony is referred to as the resynchronization
process whereby all nodes reengage in the synchronization process. A node is said to time-out
when its LocalTimer reaches its maximum value. The resynchronization process begins when
the first node (fastest node) times-out and transmits a Sync message and ends after the last node
(slowest node) transmits a Sync message. For ρ << 1, the fastest node cannot time-out again
before the slowest node transmits a Sync message [Mal 2011].

A node consists of a synchronizer and a set of monitors. A Sync message is transmitted either
as a result of a resynchronization timeout, or when a node receives Sync message(s) indicative of
other nodes engaging in the resynchronization process. The messages to be delivered to the
destination nodes are deposited on communication channels.

The following definitions and terms are used in the description and operation of the protocol.
All protocol parameters have discrete values with the time-based terms having units of real time
clock ticks. The discretization is for practical purposes in implementing and model checking of
the protocol. Although the network level measurements are real values, locally and at the node
level, all parameters are discrete.

� The resynchronization period, denoted P, has units of real time clock ticks and is
defined as the upper bound on the time interval between any two consecutive resets of the
LocalTimer by a node.

� Drift per t, denoted δ(t), has units of real time clock ticks and is defined as the maximum
amount of drift between any two nodes for the duration of t, δ(t) � 0. In particular:
� Drift per D, denoted δ(D), for the duration of one D, δ(D) � 0.
� Drift per �, denoted δ(�), for the duration of one �, δ(�� � 0.
� Drift per P, denoted δ(P), for the duration of one period P, δ(P) � 0.

� The graph threshold, TS, is based on a specified graph topology and has units of real
time clock ticks.

 6

� The guaranteed precision or simply precision of the network, denoted π, 0 ≤ π < P, has
units of real time clock ticks and is defined as the guaranteed achievable precision among
all nodes.

� The convergence time, denoted C, has units of real time clock ticks and is defined as the
bound on the maximum time it takes for the network to converge, i.e., to achieve
synchrony.

� Precision between LocalTimers of any two adjacent nodes Ni and Nj at time t is denoted
by �ij(t) and has units of real time clock ticks.

� The initial synchrony is a state of the network and the earliest time when the precision
among all nodes, upon convergence, is within π. The initial synchrony occurs at time
CInit.

� The initial precision among LocalTimers of all nodes at time t is by denoted �Init(t), has
units of real time clock ticks and is defined as a measure of the precision of the network
after elapse time of CInit.

� The initial guaranteed precision among LocalTimers of all nodes at time t is denoted by
�InitGuaranteed(t), has units of real time clock ticks and is a measure of the precision of the
network after elapse time of C.

3.1. The Graph Threshold (TS)

When a node receives a Sync message, except during a predefined window, it accepts the Sync
message and undergoes the resynchronization process where it resets its LocalTimer and relays
the Sync message to others. The predefined window where the node ignores all incoming Sync
messages, referred to as ignore window, provides a means for the protocol to stop the vicious
cycle of resynchronization processes triggered by the follow up Sync messages. The upper
bound on the ignore window is referred to as the graph threshold, TS, and is a function of a
specified graph topology and satisfies the following equation.

TS � (L+2)(� + δ(���

Defining TS in terms of L requires knowledge of the topology of the given network. Thus, in
order to generalize the expression for TS, make it independent of the topology, and to help
simplify the proof process, we express it in terms of its worst case value, L = K. However, for a
specific application, optimizing TS by expressing it in terms of L results in faster synchrony and
better performance.

3.2. Sync Message And Its Validity

In order to achieve synchrony, the nodes communicate by exchanging Sync messages. Since
only one message type is used for the operation of this protocol, a single bit suffices. When the
system is in synchrony, the protocol overhead is at most one message per resynchronization
period P. Assuming physical-layer error detections are dealt with separately, the reception of a
Sync message is indicative of its validity in the value domain. The protocol performs as intended
when the timing requirements of the messages from every node are satisfied. However, in the
absence of faults, the reception of a Sync message is indicative of its validity in the value and
time domains. A valid Sync message is discarded after it is relayed to the synchronizer and has
been kept for one local clock tick.

 7

3.3. The Monitor, The Synchronizer, And Protocol Functions

To assess the behavior of other nodes, a node employs as many monitors as the number of nodes
it is connected to with one monitor for each source of incoming messages. A node neither uses
nor monitors its own messages. A monitor keeps track of the activities of its corresponding
source node. Specifically, a monitor reads, evaluates, validates, and stores the last valid message
it receives from that node. Upon conveying the valid message to the local synchronizer, a
monitor disposes of the valid message after it has been kept for one local clock tick.

The assessment results of the monitored nodes are utilized by the node in the synchronization
process. The synchronizer describes the behavior of the node utilizing assessment results from
its monitors.

The function ValidateMessage() used by the monitors determines whether a received Sync
message is valid. We assume physical-layer error detections are dealt with separately. The
function ConsumeMessage() used by the monitors invalidates the stored Sync message after it
has been kept for one local clock tick. The function ValidSync() used by the synchronizer
examines availability of valid Sync messages.

Figure 2. The protocol functions.

ValidateMessage():
if (incoming message = Sync) then
{Message is valid,
 Store it.}

ConsumeMessage():
if (stored message timer > 1 tick) then
{Message is invalid,
 Clear it.}

ValidSync():
if (number of stored messages > 0) then
{ return true,
 else

return false.}

 8

3.4. Protocol Assumptions

1. All nodes correctly execute the protocol.
2. All channels correctly transmit data from their sources to their destinations.
3. K � 1.
4. T = strongly connected digraph.
5. A message sent by a node will be received and processed by all other nodes within �,

where � = (D + d).
6. 0 ≤ � << 1.
7. Absence of faults in the links and nodes.
8. The initial values of the variables of a node are within their corresponding data-type

range, although possibly with arbitrary values. (In an implementation, it is expected that
some local mechanism exists to enforce type consistency for all variables.)

3.5. The Self-Stabilizing Distributed Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time references are with
respect to an initial real time t0, where t0 = 0 when the protocol assumptions are satisfied, and for
all t > t0 the system operates within the protocol assumptions.

We define the following symbols:
� C denotes a bound on the maximum convergence time,
� �Net(t), for real time t, is the maximum difference of values of the LocalTimers of any two

nodes (i.e., the relative clock skew) for t � t0, and
� π, the synchronization precision, is the guaranteed upper bound on �Net(t), for all t � C.

The maximum difference in the value of LocalTimer for all pairs of nodes at time t, �Net(t), is
determined by the following equation that accounts for the variations in the values of the
LocalTimer across all nodes.

r = (W + 1)�,
LocalTimermin(x) = min (Ni.LocalTimer(x)), and
LocalTimermax(x) = max (Ni.LocalTimer(x)), for all i,
�Net(t)= min ((LocalTimermax(t) - LocalTimermin(t)),

 (LocalTimermax(t - r) - LocalTimermin(t - r))).

There exist C and π such that the following self-stabilization properties hold.
1. Convergence: �Net(C) � π, 0 � π < P
2. Closure: For all t � C, �Net(t) � π
3. Congruence: For all nodes Ni, for all t � C, (Ni.LocalTimer(t) = � implies �Net(t) � π).

 9

3.6. The Self-Stabilizing Distributed Clock Synchronization Protocol For Arbitrary
Digraphs

The protocol is presented in Figure 3 and consists of a synchronizer and a set of monitors which
execute once every local clock tick.

Figure 3. The self-stabilizing clock synchronization protocol for arbitrary digraphs.

The following is a list of protocol parameters when all links are bidirectional.
 TS � (L+2)(� + δ(���

P � 3TS, for ρ = 0
P � 3TS + 3δ(TS), for L = K and ρ > 0
P � max ((2K + 1)� + (2K + 1)δ(�), 3TS + 3δ(TS)), for L = f(T) and ρ > 0

The following is a list of protocol parameters for digraphs, i.e., when at least one link is
unidirectional.
 TS � (K+2)(� + δ(���

P � KTS + Kδ(TS)

Regardless of the types of links in the network, the following is a list of protocol measures.

CInit = 2P + K(� + δ(��)
�Init(CInit) ≤ (K - 1)(� + δ(��)
C = CInit + 	�Init(CInit) /�
 P
Wd ≤ �InitGuaranteed(t) ≤ W(� + δ(��), for all t � C
π = �InitGuaranteed(t) + δ(P) � 0, for all t � C, and 0 ≤ π < P

A trivial solution is when P = 0. Since P > TS and the LocalTimer is reset after reaching P
(worst-case wraparound), a trivial solution is not possible.

Appendix B provides an example to give the reader a quick review and help in understanding of
the behavior of the protocol.

Monitor:
case (message from the corresponding node)
{Sync:

ValidateMessage()

 Other:
Do nothing.

} // case
ConsumeMessage()

Synchronizer:
E1: if (ValidSync() and (LocalTimer < D))

LocalTimer := �,

E2: elseif ((ValidSync() and (LocalTimer � TS))
LocalTimer := �,
Transmit Sync,

E3: elseif (LocalTimer � P) // time-out
LocalTimer := 0,
Transmit Sync,

E4: else
LocalTimer := LocalTimer + 1.

 10

4. Verification Model

There are two general formal methods approaches for the verification of the correctness of a
protocol; theorem proving and model checking. Verification via theorem proving requires a
deductive proof of the protocol. Verification via model checking is based on specific scenarios
and generally limited to a subset of the problem space. A deductive proof of the protocol will be
the subject of a subsequent report. In the mean time, we chose the model checking approach for
its ease, feasibility, and quick examination of a subset of the problem space while attempting a
more comprehensive proof via theorem proving. In this section, we present the details of the
model checking efforts by describing models of the system components, their data structures,
and the modeling simplification and abstractions techniques employed in the mechanical
verification of the protocol.

A matter of concern in model checking is the ease of encoding the algorithm and assumed
environment in the language of the model checker. In model checking, the state explosion, i.e.,
the time and space required to run the model checker, grows rapidly and eventually becomes
infeasible as the size and complexity of the model grows. Therefore, abstraction must be
employed with respect to the size of the model and real-time delays.

The algorithm described in this report is fairly subtle and must cope with many kinds of timing
behaviors. Model checking has been used to explore and verify distributed algorithms but faces
certain difficulties [Ste 2004] [Lön 1997] [Mal 2008]. One of the foremost challenges is a
realistic representation of time as a continuous variable. Timed automata provide a suitable
formalism of this kind and are mechanized in model checkers such as Kronos and UPPAAL [Ste
2004]. Model checking for timed automata is computationally complex. As the network size
and complexity increase, the resulting state explosion renders the model computationally
infeasible.

As we elaborated earlier in this report, although the network level measurements are real values,
locally and at the node level, all parameters are discrete. Since continuous time model is
impracticable, we looked for an abstraction employing discrete time. Also, although we cannot
yet prove the soundness of this abstraction, our decision to use a discrete model for time was
critical to our ability to undertake this verification effort. A basic model of various elements of
the protocol is presented Figure 4 where the concurrent operations are separated by ‘||’.

The Symbolic Model Verifier (SMV) was used in modeling of this protocol on a PC with 4GB of
memory running Linux [SMV]. SMV allows the designers to formally verify temporal logic
properties of finite state systems. Developers use SMV to verify the design for all possible input
sequences, instead of a chosen selection of sequences as in simulation. SMV’s language
description and modeling capability provide relatively easy translation from the pseudo-code.
SMV also provides the desired capability to introduce randomness into the initial values of the
variables.

SMV syntax consists of a hierarchy of modules. Modules can be instantiated many times, where
each instantiation creates a copy of the local variables. The parameters to a module are passed

 11

by reference. SMV semantics is synchronous composition, where all assignments are executed
in parallel and synchronously. Thus, a single step of the resulting model corresponds to a step in
each of the components. SMV is also a parallel assignment language with guarded assignments.
Guards are evaluated sequentially. The first one that is true determines the resulting value and if
none of the guards are true, result is numeric value 1.

Global Constants K, D, d, P, TS, �, maxMessageTimer : integer�
MessageType : {NONE , Sync}

MonitorType (InputMessage, ValidatedMessage)
{

Input InputMessage : MessageType
Output ValidatedMessage : Boolean

if (InputMessage = Sync)
 ValidatedMessage := True
else
 ValidatedMessage := False

}

SynchronizerType (ValidatedMessages, TransmitMessage)
{

Input ValidatedMessages : array of Boolean [NumInputs]
Output TransmitMessage : MessageType
Local LocalTimer : integer, range = 0 .. P

Function ValidSync() := OR (ValidatedMessages[j]), j = 1 .. NumInputs

TransmitMessage := NONE

if (ValidSync() and (LocalTimer < D))

LocalTimer := �
elseif (ValidSync() and (LocalTimer ≥ TS))

LocalTimer := �
TransmitMessage := Sync

elseif (LocalTimer ≥ P))
LocalTimer := 0
TransmitMessage := Sync

else
LocalTimer := LocalTimer + 1

}

Figure 4.a. The basic model.

 12

NodeType (NumInputs, InputMessages, NumOutputs, OutputMessages)
{

Input InputMessages : array of MessageType [NumInputs]
Output OutputMessages : array of MessageType [NumOutputs]
Local Monitors : array of MonitorType [NumInputs]
 Synchronizer : SynchronizerType
 TransmitMessage : MessageType

ValidatedMessages : array of Boolean [NumInputs]

Synchronizer(ValidatedMessages, TransmitMessage)

OutputMessages[1] := TransmitMessage ||
OutputMessages[2] := TransmitMessage ||
 ||
OutputMessages[h] := TransmitMessage, h = 1 .. NumOutputs

Monitors[1](InputMessages[1], ValidatedMessages[1]) ||
Monitors[2](InputMessages[2], ValidatedMessages[2]) ||
 ||
Monitors[j](InputMessages[j], ValidatedMessages[j]), j = 1 .. NumInputs

}

Network ::
{

Local Nodes : array of NodeType [K]

Loop forever ()

Nodes[1] || Nodes[2] || .. || Nodes[K]
}

Notation: Concurrent operations are separated by ‘||’.

Figure 4.b. The basic model.

 13

4.1. Modeling Communication Channels

An explicit model of the communication channel requires a separate entity (SMV module) with
its own local memory, at a minimum, to store and forward a message. This approach would
readily exhaust the available 4GB memory even for small values of K and render the model
checking effort ineffective. To reduce state space, channels are implicitly modeled and the
outgoing message is kept within the transmitting node long enough for the receiving nodes to
sample it.

4.2. Modeling Monitors

A monitor keeps track of activities of its corresponding source node and manages message
validity. Recall that we assume physical-layer error detections are dealt with separately and so,
receiving a Sync message is indicative of its validity in the value and time domains. In other
words, we analyze the system at the point where the valid messages arrive at the Synchronizer of
the node. Since we assume no faulty nodes are present, an explicit model of the monitors is not
necessary. Instead, and to reduce the state space, monitors are implicitly modeled at the
receiving nodes.

4.3. Modeling Nodes

The synchronizer describes the collective behavior of the node utilizing assessment results from
its monitors. The local measures within each node are used to keep track of timing of the self-
stabilization events. Although the protocol parameters are defined with respect to real time,
ultimately, in implementations they have to be translated into discrete values. Discretization of
the protocol parameters is performed using the ceiling operation. In this protocol, all local
variables and watchdog timers are discretized and represented by integer values. These local
variables are, therefore, measured with respect to the local clock.

A parameterized node, NodeType, is introduced that executes the protocol and consists of local
variables. The NodeType’s data structure consists of Monitors, Synchronizer, and MessageOut.
The Synchronizer in turn consists of LocalTimer which represents the duration of time since the
node has gone through the resynchronization process. The MessageOut element represents the
out going message of the node. The range of values that these elements can hold is enumerated
as follows.

LocalTimer = {0 .. P}
MessageOut = {NONE, Sync}

In the basic models of Figure 4 system parameters, e.g., K, P, and TS are defined as global
constants. However, in the SMV implementation some of these parameters are passed on to the
node as input parameters. In particular, the parameters TS and P are customized for each node
and are passed on to the node as input parameters (Section 4.6). Also, the SMV implementation
of the NodeType has an additional input parameter, NodeId, that is not a protocol requirement but
is used in the model checking process for node-specific operations, e.g., to specify a node with
the highest drift rate, i.e., the fastest/slowest node.

 14

The set of unidirectional inputs/outputs links, InputMessagesj/OutputMessagesh, specify the
input/output links and sources/destination of the messages, respectively. Together, they define
the network topology.

Because of the message validity assumptions and implicit model of the monitors, the related
protocol functions are implemented at the NodeType. These functions examine the number of
available messages at the transmitting node utilizing implicit model of the communication
channels. The function ValidSync() is an or operation over the set of input messages.
 ValidSync() = OR (Nodej.MessageOut), i ≠ j

4.4. Modeling Communication Delays

Since we have assumed absence of malicious faulty nodes, the nodes react to each other’s
messages within � and the minimum event-response delay, D, and the network imprecision, d,
do not play distinctive roles in the synchronization process. In other words, the effects of D and
d in the synchronization process are incorporated in �. This assertion is not true in the presence
of malicious faulty nodes. These parameters, however, directly contribute to the guaranteed
precision of the network.

An explicit model of D and d requires more memory to store and delay a message both in the
node and the communication channel modules. These explicit models would exponentially
increase state space. Recall that all system parameters are discretized to local ticks. Therefore,
an increase of one local tick in the communication delays directly increases the value of all other
timing parameters. As a result, this approach would readily exhaust the available 4GB memory
even for small values of K and render the model checking effort ineffective. To further minimize
state space, D and d are chosen to be at their minimum values of 1 and 0 clock ticks,
respectively. As a result, � is at its minimum value of 1 clock tick. This simplification,
consequently, implies that the local oscillators of the nodes are in phase with each other but it
does not imply that the nodes are synchronized with each other.

4.5. Modeling Clocks and Timers

Each node has a logical clock, LocalTimer, that locally keeps track of time. This logical clock is
used in measuring the self-stabilization precision, π, across the nodes from an external view of
the system. A single clock per node suffices to advance a nodes’s LocalTimer. Since � = 1
clock tick, a single clock suffices to advance all LocalTimers. To further minimize the state
space, all timers, LocalTimers and GlobalClock (Section 4.7), are incremented once per model
checker cycle. The SMV cycle, therefore, binds the whole system together, providing a means
for advancing the GlobalClock and the LocalTimer at the nodes and providing an external view
of the system at any time. Although the use of SMV cycle, along with � = 1 clock tick, does not
imply synchrony at the nodes, it does imply that the nodes are in phase with each other at the
local oscillator level. However, due to the inherent non-deterministic execution of a model in the
model checker, the order of execution of the nodes is not predetermined. Since there is no
control over the order of transmission of messages and the start of execution of the nodes at each
model checker cycle, the nodes potentially broadcast and receive messages out of order of
issuance.

 15

4.6. Modeling Drift

In a realizable distributed system the clocks drift with respect to real time and each other. As a
result, any viable solution has to account for the clock drift rate, �. An explicit model of � would
require dealing with real values. Since all parameters are locally represented with integer values,
we opt to stretch the time line by an equivalent factor in order to deal with integer values instead.
Dealing either with real values or their equivalent integer values for � increases the state space
drastically. As a result, this approach would readily exhaust the available 4GB memory even for
small values of K and render the model checking effort ineffective.

To reduce state space, we have introduced a modeling technique to model � implicitly.
Hereafter, we refer to it as implicit drift model. We explain this modeling technique with
respect to P. In the absence of drift, all nodes have the same synchronization period, P. In the
presence of drift, the effective synchronization period of a node is a function of the drift rate
associated with the node (its local oscillator). The relative drift of any two nodes is also a
function of their associated drift rates with at least two nodes in the system having the maximum
relative drift of δ(P) during the synchronization period. In implicit drift model approach, instead
of explicitly specifying the drift rate for a node’s local oscillator and determining the node’s drift
on a clock tick base, we determine the node’s effective period based on the drift rate and pass the
effective period to the node. Since the synchronization period is passed down to a node as an
input parameter, each node will have its unique synchronization period with the incorporated
amount of drift. In this approach the effective synchronization period is directly applied to the
nodes with at least one node being the slowest and another the fastest in the system with their
maximum relative drift being δ(P). One advantage of this modeling technique is that it
drastically reduces state space. Another advantage is that when a node’s behavior is not
influenced by the behavior of other nodes for duration of time, the model checking time can
advance to the end of that time interval4. Thus, the implicit drift model substantially improves
the model checking performance.

In order to expedite the self-stabilization process, in general, and in order to minimize the state
space for model checking purposes, in particular, the convergence time has to be minimized.
The convergence time is a function of P, therefore, P has to be as small as possible. Since P is a
function of TS (TS < P), TS too has to be optimized. When state space exceeds our available
resources, we optimize P by expressing TS in terms of the largest loop, L, for the network
(instead of its default maximum value) that is being model checked.

We apply the implicit drift model approach to all parameters that are based on time including �,
TS, and P. The amount of drift applied to a particular parameter is linearly proportional to its
value. Since typically � << 1 and � is very small, the effect of � during � is negligible, i.e.,
δ(�) = 0. Also, since all parameters are locally defined as integers, we set TS and P to large
enough values, beyond their minimum values, to guarantee proportional presence of the effect of
drift in TS and P in the nodes.

4 The concept of advancing time has been used in hardware description language (e.g., VHDL and Verilog)
simulation tools for decades.

 16

In the advent of a more capable model checker and availability of more memory to handle
explicit models of D, d and the communication channels, the implicit drift model is still a viable
technique.

As mentioned earlier, the use of SMV cycle, along with � = 1 clock tick, imply that the nodes
are in phase with each other at the local oscillator level. However, applying the implicit drift
model implies that the nodes are out of phase with each other at the LocalTimer level. Once
again, due to the inherent non-deterministic execution of a model in the model checker, the order
of execution of the nodes is not predetermined, there is no control over the order of transmission
of messages and the start of execution of the nodes at each model checker cycle, thus, the nodes
potentially broadcast and receive messages out of order of issuance. As a result, we believe our
modeling techniques and abstractions properly capture the intended properties of a realizable
system.

4.7. Modeling Network

Model checking is conducted on a given network consisting of a set of nodes that are instances
of the NodeType and are interconnected to reflect a desired topology. A single step of the
resulting model corresponds to a step in each of the components. A global clock, GlobalClock,
is introduced to measure passage of time from the beginning of the operation and with respect to
the real time and from the perspective of an external observer. The GlobalClock is used to
measure the convergence time, C, and is incremented once per model checker cycle.

The synchronization properties are examined at the network level and provide an external view
of the system. The properties examined to verify the claims of the protocol are described in
section 5.

 17

5. Propositions

Computational tree logic (CTL), a temporal logic, is used to express properties of a system in
this context. CTL uses atomic propositions as its building blocks to make statements about the
states of a system. CTL then combines these propositions into formulas using logical and
temporal operators with quantification over runs. In CTL formulas are composed of path
quantifiers, E and A, and temporal operators, X, F, G, and U [Cla 1981].

Symbol Meaning
E there exists an execution
A for all executions
X next
F finally (eventually)
G globally

In this section the claims of convergence, closure, and congruence properties as well as the
claims of maximum convergence time and determinism of the protocol are examined. Although
in the description of the protocol convergence and closure properties are stated separately, they
are examined via one CTL proposition. This proposition also expresses the claims of
determinism and linear convergence. Validation of this general CTL proposition requires
examination of a number of underlying propositions. In particular, since �LocalTimer(t) is defined
in terms of the LocalTimer of the nodes, examination of the properties that described proper
behavior of the LocalTimer take precedence. In this section, the general propositions that verify
the convergence, closure, and congruence properties of the protocol as well as the claims of
maximum convergence time and determinism are examined.

The variable ElapsedTime is used in these properties and is defined here.

ElapsedTime = (GlobalClock >= ConvergenceTime) ;

The GlobalClock is a measure of elapsed time from the beginning of the operation and with
respect to the real time, i.e., external view. The ElapsedTime is indicative of the GlobalClock
reaching its target maximum value of ConvergenceTime.

Proposition Liveness: This property addresses the Liveness property of the system by
examining whether or not time advances and the amount of time elapsed, ElapsedTime, has
advanced beyond the predicted convergence time, ConvergenceTime.

AF (ElapsedTime)

 18

Proposition ConvergenceAndClosure: This proposition encompasses the criteria for the
convergence and the closure properties as well as the claims of maximum convergence time and
determinism. This proposition specifies whether or not the system will converge to the predicted
precision after the elapse of convergence time, ElapsedTime, and whether or not it will remain
within that precision thereafter. This and subsequent properties are expected to hold.

The proper value of the AllWithinPrecision is determined by measuring the difference of
maximum and minimum values of the LocalTimers of all nodes for the current tick and in
conjunction with the result from the previous (W+1)� ticks. The expected difference of
LocalTimers is the predicted precision bound.

To eliminate trivial results and false positives, the following proposition is examined and the
expected result is a false value. This property specifies that after the elapse of convergence time,
ElapsedTime, whether or not the system will not converge or if it converges, whether or not it
drifts apart beyond the expected precision bound.

Proposition Congruence: This property specifies the criteria for the congruence property of the
protocol. This property is described with respect to only one node, namely Node_1. Since all
nodes are identical, due to symmetry, the result of the proposition equally applies to other nodes.

AF (ElapsedTime) ˄ -- Determinism Property
AG (ElapsedTime → AllWithinPrecision) ˄ -- Convergence Property
AG ((ElapsedTime ˄ AllWithinPrecision) →

AX (ElapsedTime ˄ AllWithinPrecision)) -- Closure Property

AF (ElapsedTime) ˄
AG (ElapsedTime → AllWithinPrecision) ˄
AG ((ElapsedTime ˄ AllWithinPrecision) → EX (¬AllWithinPrecision))

AF (ElapsedTime) ˄
AG ((ElapsedTime ˄ (Node_1.LocalTimer= �)) →

AX (ElapsedTime ˄ AllWithinPrecision)) -- Congruence Property

 19

6. Results And Conclusion

Since in the protocol we do not limit the size of the network, K, model checking of all possible
digraphs for all K, even for idealized scenarios (d = 0, � = 0), is simply impossible. Model
checking of all possible topologies for a given K is also a daunting task. Given the limited
resources available and to circumvent state space explosion, we had to limit the network size.
Nevertheless, to verify our claims of the correctness of the protocol, we have model checked all
possible digraphs for smaller K. Additionally, we were able to model check some topologies for
larger K. Table 1 is a list of the model checked networks with their sizes and corresponding
number of topologies while bounding the drift to 0 � � � 0.2. Each row of the table corresponds
to a given K and two types of topologies considered with the number of model checked graphs of
the possible total combinations for the corresponding topology type in its column.

Table 1. Model checked networks.

K Topology
(all links bidirectional)

Topology
(digraphs)

2 1 of 1 1 of 1
3 2 of 2 5 of 5
4 6 of 6 83 of 83
5 21 of 21 Single Directed Ring

2 Variations of
Doubly Connected

Directed Ring
6 112 of 112 -
7 Linear* Linear*
7 Star* Star*
7 Fully Connected* Fully Connected*

7 (3×4) Fully Connected Bipartite* Fully Connected Bipartite*
7 Combo 4 of 4
7 Grid -
7 Full Grid -

9 (3×3) Grid -
15 Star* Star*
20 Star* Star*

* For Linear and Star topologies and for the network to be strongly connected (to be precise,1-
connected), the links are by necessity bidirectional. For Fully Connected (Complete) and Fully
Connected Bipartite topologies the links are by definition bidirectional.

One example of a random graph is depicted in Figure 5. The Combo topology is a 7-node graph
consisting of a Linear topology of two nodes (1 and 2), a Ring topology of three nodes (2, 3, and
4), and a Star topology of four nodes (4, 5, 6, and 7). Note that there is only one possible
digraph for the Linear and Star topologies. Also, for three nodes, there are five digraphs.

 20

However, for a Ring of three nodes, there are four variations. Therefore, after omitting
symmetry, there are four digraphs for the Combo topology to be examined. Sample SMV codes
will be made available at (http: //shemesh.larc.nasa.gov/people/mrm/publicantion.htm).

1 2
3

4 5

6

7
Figure 5. Combo topology.

A bounded model of A Self-Stabilizing Distributed Clock Synchronization Protocol For
Arbitrary Digraphs is model checked using SMV where, for a set of digraphs, the entire state
space is examined and verified to self-stabilize from an arbitrary state. This SMV model
checking effort was performed on a PC with 4GB of memory running Linux. We described
modeling concepts by abstracting the problem to discrete time and for realizable systems. The
model checking results have confirmed the correctness of the protocol as they apply to the
networks with unidirectional and bidirectional links as described earlier (Section 2.3). Also, the
results indicate that the protocol is applicable to realizable systems and practical applications. In
addition, the results confirmed the claims of determinism and linear convergence with respect to
the synchronization period. Because of the model checking results, we conjecture that the
protocol solves the general case of this problem for all K ≥ 1 and is applicable to realizable
systems and practical applications. Furthermore, this model checking effort has shown that, at a
minimum, a deterministic solution for this problem exists.

 21

References:

[But 2008] Butler, R.: “A primer on architectural level fault tolerance,” NASA/TM-2008-

215108, February 2008.
[Cla 1981] Clarke, E.M.; Emerson, E.A.: Design and synthesis of synchronization skeletons

using branching time temporal logic. In Logic of Programs: Workshop, Yorktown
Heights, NY, May 1981, LNCS 131. Springer, 1981.

[Gir 2005] Girault, A.; Rutten, E.: “Modeling Fault-tolerant Distributed Systems for Discrete
Controller Synthesis,” Electronic Notes in Theoretical Computer Science, vol. 133,
pp. 81-100, 2005.

[Kop 1997] Kopetz, H: “Real-Time Systems, Design Principles for Distributed Embedded
Applications,” Kluwar Academic Publishers, ISBN 0-7923-9894-7, 1997.

[Lis 1970] Liskovets, V.A.: “number of strongly connected directed graphs,” Matmaticheskie
Zameki, Vol. 8, No. 6, pp. 721-732, December 1970.

[Lön 1997] Lönn, H.; and Pettersson, P.: “Formal verification of a TDMA protocol start-up
mechanism” In Pacific Rim International Symposium on Fault-Tolerant Systems,
pages 235–242, Taipei, Taiwan, Dec. 1997. IEEE Computer Society.

[Mal 2006] Malekpour, M.R.: A Byzantine-Fault Tolerant Self-Stabilizing Protocol for
Distributed Clock Synchronization Systems. Eighth International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS06), November
2006.

[Mal 2008] Malekpour, M.R.: “Verification of a Byzantine-Fault-Tolerant Self-Stabilizing
Protocol for Clock Synchronization.” IEEE Aerospace Conference, March 2008.

[Mal 2011] Malekpour, M.R.: “A Self-Stabilizing Distributed Clock Synchronization Protocol
For Arbitrary Digraphs”. NASA/TM-2011-217054, pp. 42, February 2011.

[SMV] http://www-2.cs.cmu.edu/~modelcheck/smv.html
[Ste 2004] Steiner, W.; Rushby, J.; Sorea, M.; Pfeifer, H.: “Model Checking a Fault-Tolerant

Startup Algorithm: From Design Exploration To Exhaustive Fault Simulation,” The
International Conference on Dependable Systems and Networks (DSN’04), 2004.

[Tor 2005] Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: ROBUS-2: A fault-tolerant
broadcast communication system. NASA/TM-2005-213540, pp. 201, March 2005.

 22

Appendix A. Symbols

The symbols used in the protocol are described in detail in [Malekpour 2010] and are listed here
for reference.

Symbols Descriptions

K sum of all nodes
T network topology
D event-response delay
d network imprecision
� bounded drift rate with respect to real time
P self-stabilization/synchronization period
F sum of all faulty nodes

Ni the ith node
Mi the ith monitor of a node
� communication latency
L the largest loop in the graph
W the width or diameter of the graph
TS graph threshold
π the guaranteed self-stabilization/synchronization precision
C convergence time
CInit time of initial synchrony
LocalTimer node’s local logical clock
�ij(t) precision between LocalTimers of any two adjacent nodes Ni and Nj at time t
�Init(t) initial precision among LocalTimers of all nodes at time t
�InitGuaranteed(t) initial guaranteed precision among LocalTimers of all nodes at time t
δ(t) drift per t
Sync self-stabilization/synchronization message
�Net(t) precision among LocalTimers of all nodes at time t

 23

Appendix B. Example

The purpose of this example is to give the reader a quick review and help in understanding of the
behavior of the protocol. The following is an example of a ring topology consisting of 5 nodes,
interconnected with bidirectional links, operating under the ideal conditions. In the absence of
clock drift (i.e., ideal condition), � = 0, we abstracted the communication delay to 1 clock tick.
Table B.1 is an execution trace of the system and has seven columns; one for time reference, one
for each node, and the last column for network precision, π. Each depicts activities of all nodes
at the corresponding time. Cell contents for the node columns consist of a number corresponding
to the value of the LocalTimer of the node in conjunction with a Sync message if the node
transmits the message.

System parameters:
K = 5 nodes � W = 	K / 2
 = 3 nodes
� = 0 � δ(����δ(P), δ(*) = 0
D = 1 clock tick, d = 0 clock tick �� = 1 clock tick
TS � (K+2)(� + δ(����
����������������
��clock ticks�
P � KTS + Kδ(TS) = 5 * 7 + 0 = 35 clock ticks
CInit = 2P + K(� + δ(��) = 2 * 35 + 5(1 + 0) = 80 clock ticks
�Init(CInit) ≤ (K - 1)(� + δ(��) = (5 - 1)(1 + 0) = 4 clock ticks
C = CInit + 	�Init(CInit) /�
 P = 80 + 4/1 = 84 clock ticks
Wd ≤ �InitGuaranteed(t) ≤ W(� + δ(��), for all t � C � �InitGuaranteed(t) = 0 clock tick
π = �InitGuaranteed(t) + δ(P) � 0, for all t � C, and 0 ≤ π < P � π = 0 clock tick

N1

N2

N3N4

N5

Figure B.1. A ring topology.

 24

Table B.1. An execution trace of a ring of 5 nodes.

Time N1 N2 N3 N4 N5 π
1 22 4 33 25 2 31
2 23 5 34 26 3 31
3 24 6 0, Sync 27 4 24
4 25 7 1 1, Sync 5 24
5 26 8 2 2 6 24
… … … … … … …
13 34 16 10 10 14 24
14 0, Sync 17 11 11 15 17
15 1 1, Sync 12 12 1, Sync 11
16 2 2 1, Sync 1, Sync 2 1
17 3 3 2 2 3 1
18 4 4 3 3 4 1
19 5 5 4 4 5 1
20 6 6 5 5 6 1
… … … … … … …
48 34 34 33 33 34 1
49 0, Sync 0, Sync 34 34 0, Sync 1
50 1 1 1, Sync 1, Sync 1 0
51 2 2 2 2 2 0
… … … … … … …

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE

 Model Checking a Self-Stabilizing Distributed Clock Synchronization
Protocol for Arbitrary Digraphs

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Malekpour, Mahyar R.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20029

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary
digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the
presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under
study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing
for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical
limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions
with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound
that is a linear function of the self-stabilization period.

15. SUBJECT TERMS

Algorithm, Clock Synchronization, Communication Network, Digraphs, Distributed Systems, Protocol, Self-Stabilizing
18. NUMBER
 OF
 PAGES

31
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.02.07.30

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2011-217152

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
05 - 201101-

