Leveraging M&S software to build Marine Survival Craft Training Simulators

Sebastien Loze

October 15, 2010

Statistics

- 16% - Percentage of total maritime lives lost over a 10 year period that were attributed to lifeboat accidents
- 12.5% - Percentage of lifeboat drills that were performed unsatisfactorily during a 2009 inspection campaign
- 1.4% - Percentage of ship inspections that identified lifeboat deficiencies serious enough to warrant detention

"Anyone using a lifeboat, be it in a drill or genuine evacuation, runs a risk of being injured or even killed."

UK Maritime Accident Investigation Branch – 2001
Lifeboat Training

Defined by
- International Maritime Organization (IMO)
- Offshore Petroleum Industry Training Organization (OPITO)
- Flag State Maritime Authorities

Current Limitations
- Dangerous to replicate evacuation conditions and scenarios
- Requirement to demonstrate “Methods of launching a survival craft into a rough sea” not being met
- Mariners are put to sea having never been exposed to the situations they may encounter

Lifeboat Training Gap

Emergency Conditions Training Conditions Lifeboat simulation
Lifeboat Simulation

Simulator Objectives
- Mitigate training and operational risk
- Increase realism of emergency training scenarios
- Maximize the training objectives that can be achieved through simulation
- Achieve certification/accreditation from regulatory agencies

Technical Challenges
- Stimulation of lifeboat equipment
- Simulation of lifeboat hydrodynamics

VEGA PRIME Marine
Open Programming Architecture

- Create applications using supplied wave models or use your own custom wave models
- Incorporate completely foreign wave simulation algorithms and have them incorporated automatically into the provided rendering environment
- Apply the same calculations to the visual and non-visual (i.e. host computer calculating ships motions, forces, and dynamics)
- Produce complex wave models using an open and intuitive interface

Multiple Ocean Types

- Position to any viewpoint
 - Fixed location
 - Observer-centered
 - Surf zone
 - Large Area / Round Earth
Synthesized Surfaces

- Physically correct wave model out of the box
- Maritime effects
- Customizable pre-defined ship motion strategies
- Short and Long crested waves
- Environmental and local reflections

Synthesized Surfaces

- 13 sea states described by the Beaufort scale
- 9 sea states described by the Spectral Ocean Wave Model

- Multiple user-defined ocean definition parameters
Surf Zone

- Shallow water modeling and coastline effects
 - Breaking waves
 - Cusp Surf
 - Sandbars
 - Depth and shoreline transitions
 - Wave effects on vehicle motion
 - Correct wave behavior
 - Seamless Transition from shallow to deep water

Marine Effects

- User-defined vessel characteristics:
 - Bow waves
 - Stern
 - Hull
 - Size and shape correspond to the size, shape, and speed of the vessel
 - Interaction with the ambient water waves
 - Visual aid in determining the speed, maneuvering, and turning of the vessel
- Customizable ship motion strategy for correct behavior of objects / vessels on the ocean
Survival Quest

Simulator Features
- Enclosed cabin to maximize "presence"
- Configurable to specific lifeboat models and hardware
- Simulates lifeboat motion in variable sea states

International Recognition
- Det Norske Veritas
 - Certified Class "S" Simulator
- International Maritime Organization
 - STCW Amendment, June 2010
- Transport Canada
 - Modification of TP 4957 - Marine Emergency Duties Courses
 - Model Course for Lifeboat simulation training developed

Looking Ahead

High Speed Boats
- Training for Coast Guard, Navy and Waterborne Law Enforcement
- Vessel planing at 40+ knots
- Launch and recovery in chaotic wave environments
Thank You

Virtual Marine Technology
tyler.brad@vmtechnology.ca

Presagis
Sebastien Loze
Product Marketing Manager – Visualization & Simulation
Sebastien.Loze@presagis.com