Software

Wallops Ship Surveillance System

Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spacecraft activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer-base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition.

A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas:

1. Communication Link – threads that control the networking of workstations;
2. Contact List – a thread that controls a list of protected item (ocean vessel) information;
3. Hazard List – threads that control a list of hazardous item (debris) information and associated risk calculation information;
4. Display – threads that control operator inputs and screen display outputs; and
5. Archive – a thread that controls archive file read and write access.

Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.

This work was done by Donna C. Smith of Goddard Space Flight Center. Further information is contained in a TSP (see page 1).

Guidance, Navigation, and Control Program

The Rendezvous and Proximity Operations Program (RPOP) is real-time guidance, navigation, and control (GN&C) domain piloting-aid software that provides 3D Orbiter graphics and runs on the Space Shuttle’s Criticality-3 Payload and General Support Computer (PGSC) in the crew cockpit. This software provides the crew with “Situational Awareness” during the rendezvous and proximity operations phases of flight. RPOP can be configured from flight to flight, accounting for mission-specific flight scenarios and target vehicles, via initialization load (I-load) data files. The software provides real-time, automated, closed-loop guidance recommendations and the capability to integrate the crew’s manual backup techniques.

The software can bring all relative navigation sensor data, including the Orbiter’s GPC (general purpose computer) data, into one central application to provide comprehensive situational awareness of the rendezvous and proximity operations trajectory.

RPOP also can separately maintain trajectory estimates (past, current, and predicted) based on certain data types and co-plot them, in order to show how the various navigation solutions compare. RPOP’s best estimate of the relative trajectory is determined by a relative Kalman filter processing data provided by the sensor suite’s most accurate sensor, the trajectory control sensor (TCS). Integrated with the Kalman filter is an algorithm that identifies the reflector that the TCS is tracking.

Because RPOP runs on PC laptop computers, the development and certification lifecycles are more agile, flexible, and cheaper than those that govern the Orbiter FSW (flight software) that runs in the GPC. New releases of RPOP can be turned around on a 3- to 6-month template, from new Change Request (CR) to certification, depending on the complexity of the changes.

This work was done by Heather Hinkel, Scott Tamblyn, and William L. Jackson of NASA’s Johnson Space Center; Chris Foster of Jacobs Engineering (ESCG); Jack Brazel and Thomas R. Manning of McDonnell Douglas Space Systems; and Fred Clark, Pete Spehar, Jim D. Barrett, and Zoran Milenkovic of Lockheed Martin. Further information is contained in a TSP (see page 1).

Source Lines Counter (SLiC) Version 4.0

Source Lines Counter (SLiC) is a software utility designed to measure software source code size using logical source statements and other common measures for 22 of the programming languages commonly used at NASA and the aerospace industry. Such metrics can be used in a wide variety of applications, from parametric cost estimation to software defect analysis. SLiC has a variety of unique features such as automatic code search, automatic file detection, hierarchical directory totals, and spreadsheet-compatible output. SLiC was created for extensibility; new programming language support can be added with minimal effort. A single workstation is designated the controller of the official ship information and associated risk calculation. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas:

1. Communication Link – threads that control the networking of workstations;
2. Contact List – a thread that controls a list of protected item (ocean vessel) information;
3. Hazard List – threads that control a list of hazardous item (debris) information and associated risk calculation information;
4. Display – threads that control operator inputs and screen display outputs; and
5. Archive – a thread that controls archive file read and write access.

Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.

This work was done by Erik W. Monson, Kevin A. Smith, Brian J. Newport, Roli D. Gostelow, Jairus M. Hihn, and Ronald K. Kandt of Caltech for NASA’s Jet Propulsion Laboratory. For more information, contact iaoffice@jpl.nasa.gov.

This software is available for commercial licensing. Please contact Daniel Broderick of the California Institute of Technology at danielb@caltech.edu. Refer to NPO-45962.

Single-Frame Terrain Mapping Software for Robotic Vehicles

This software is a component in an unmanned ground vehicle (UGV) perception system that builds compact, single-frame terrain maps for distribution to other systems, such as a world model or an operator control unit, over a local area network (LAN). Each cell in the map encodes an elevation value, terrain classification, object classification, terrain traversability, terrain roughness, and a confidence value into four bytes of memory. The input to this software component is a range image (from a lidar or stereo vision system), and optionally a terrain classification image and an object classification image, both registered to the range image. The single-frame terrain map generates estimates of the support surface elevation, ground cover elevation, and minimum canopy elevation; gener-