HUMAN CARDIOVASCULAR ADAPTATION TO WEIGHTLESSNESS

P. Norsk.
Element Scientist, NASA-Human Research Program
USRA/NASA-Johnson Space Center
Mail code: SK111, Houston, TX 77565, USA.

Entering weightlessness (0 G) induces immediately a shift of blood and fluid from the lower to the upper parts of the body inducing expansion of the cardiac chambers (Bungo et al. 1986; Charles & Lathers 1991; Videbaek & Norsk 1997). For many years the effects of sudden 0 G on central venous pressure (CVP) was discussed, and it puzzled researchers that CVP compared to the 1-G supine position decreased during the initial hours of spaceflight, when at the same time left atrial diameter increased (Buckey et al. 1996). By measuring esophageal pressure as an estimate of inter-pleural pressure, it was later shown that this pressure decreases more than CVP does during 0 G induced by parabolic flights (Videbaek & Norsk 1997). Thus, transmural CVP is increased, which distends the cardiac chambers. This unique lung-heart interaction whereby 1) inter-pleural pressure decreases and 2) central blood volume is expanded is unique for 0 G. Because transmural CVP is increased, stroke volume increases according to the law of Frank-Starling leading to an increase in cardiac output, which is maintained increased during months of 0 G in space to levels of some 25 % above that of the 1-G seated position (Norsk unpublished). Simultaneously, sympathetic nervous activity is at the level of the upright 1-G posture, which is difficult to explain based on the high stroke volume and decreased blood pressure and systemic vascular resistance. This paradox should be explored and the mechanisms revealed, because it might have implications for estimating the cardiovascular risk of travelling in space.

Human Cardiovascular Adaptation to Weightlessness

Peter Norsk
USRA/NASA-Johnson Space Center, Houston, Texas, USA.
Background

Short-term spaceflight (< 2 weeks):

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Effect (0 G/upright)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure (BP)</td>
<td>24-h Brachial (Oscillometry)</td>
<td>↓ (Only DAP)</td>
<td>Meck et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>Brachial (Auscultatory/oscillometry)</td>
<td>↓</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>Finger (infrared photoplethysmography)</td>
<td>→</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
<tr>
<td>Cardiac output (CO)</td>
<td>Rebreathing (Acetylene)</td>
<td>↑ →</td>
<td>Prisk et al. (J. Appl. Physiol. 1993)</td>
</tr>
<tr>
<td></td>
<td>Rebreathing (N₂O)</td>
<td>↑</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
<tr>
<td></td>
<td>Rebreathing (CO₂)</td>
<td>↑</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td>Systemic vascular resistance</td>
<td>MAP/CO</td>
<td>↓</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>MAP/CO</td>
<td>↓</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
</tbody>
</table>
Heart rate

Fritsch-Yelle et al.
J. Appl. Physiol.
80:919-914, 1996.

Systolic

Diastolic

Pre- In- Postflight
Short-term spaceflight (< 2 weeks):

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Effect (0 G/upright)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure (BP)</td>
<td>24-h Brachial (Oscillometry)</td>
<td>↓</td>
<td>Meck et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>Brachial (Auscultatory/</td>
<td>↓</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>oscillometry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finger (infrared</td>
<td>→</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
<tr>
<td></td>
<td>photoplethysmography)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac output (CO)</td>
<td>Rebreathing (Acetylene)</td>
<td>↑</td>
<td>Prisk et al. (J. Appl. Physiol. 1993)</td>
</tr>
<tr>
<td></td>
<td>Rebreathing (N₂O)</td>
<td>↑</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
<tr>
<td></td>
<td>Rebreathing (CO₂)</td>
<td>↑</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td>Systemic vascular resistance</td>
<td>MAP/CO</td>
<td>↓</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>MAP/CO</td>
<td>↓</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
</tbody>
</table>
Cardiac output

Prisk et al.
J. Appl. Physiol.
Background

Short-term spaceflight (< 2 weeks):

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Effect (0 G/upright)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure (BP)</td>
<td>24-h Brachial (Oscillometry)</td>
<td>↓ (Only DAP)</td>
<td>Meck et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>Brachial (Auscultatory/oscillometry)</td>
<td>↓</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>Finger (infrared photoplethysmography)</td>
<td>→</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
<tr>
<td>Cardiac output (CO)</td>
<td>Rebreathing (Acetylene)</td>
<td>↑→</td>
<td>Prisk et al. (J. Appl. Physiol. 1993)</td>
</tr>
<tr>
<td></td>
<td>Rebreathing (N₂O)</td>
<td>↑</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
<tr>
<td></td>
<td>Rebreathing (CO₂)</td>
<td>↑</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td>Systemic vascular resistance</td>
<td>MAP/CO</td>
<td>↓</td>
<td>Shykoff et al. (J. Appl. Physiol. 1996)</td>
</tr>
<tr>
<td></td>
<td>MAP/CO</td>
<td>↓</td>
<td>Norsk et al. (Hypertension 2006)</td>
</tr>
</tbody>
</table>
Mean 4-h plasma Noradrenaline (pg/ml)

Norsk et al.
J. Appl. Physiol.
78: 2253-59, 1995
Flights (5-6 days)

Plasma Renin (pg/ml)

Norsk et al.
J. Appl. Physiol.
78: 2253-59, 1995
Background (2):

Long-term spaceflight (> 3 months):

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Effect (0 G/upright)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure (BP)</td>
<td>Brachial or finger? (Oscillometry/photoplethysmography?)</td>
<td>(Only DAP)</td>
<td>Baevsky et al. (J. Appl. Physiol. 2007)</td>
</tr>
</tbody>
</table>
Background (2):

Long-term spaceflight (> 3 months):

<table>
<thead>
<tr>
<th>Variable</th>
<th>Method</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure (BP)</td>
<td>Brachial or finger? (Oscillometry/photoplethysmography?)</td>
<td>(Only DAP)</td>
<td>Baevsky et al. (J. Appl. Physiol. 2007)</td>
</tr>
</tbody>
</table>
Purpose

To investigate how 24-h ambulatory blood pressure and the cardiovascular system adapt to long-term (3-6 months) space flight and thus, how the daily load of gravity here on Earth affects our ambulatory blood pressure.
Hypothesis

Despite an increase in cardiac output (CO), 24-h ambulatory brachial blood pressure (BP) is unchanged or decreased by chronic systemic arterial vasodilatation during long-term (months) space flight.
Paoli Nespoli
European Space Agency astronaut
Cardiac output by rebreathing
Blood soluble gas
Blood insoluble gas
Oxygen
Blood soluble gas
Blood insoluble gas
Oxygen
Blood soluble gas
Blood insoluble gas
Oxygen
- **Blood soluble gas**
- **Blood insoluble gas**
- **Oxygen**
The diagram illustrates the flow of gases in the human body, specifically focusing on the rebreathing valve and the circulation of gases through different parts of the body. The key components include the lungs, capillaries, shunt, arteries, veins, heart, and organs.

- **Blood soluble gas** (represented by yellow dots)
- **Blood insoluble gas** (represented by green dots)
- **Oxygen** (represented by a yellow circle)

An inset graph shows the normalized gas concentration over time (s), indicating the dynamic process of gas exchange.
Experimental protocol

Pre-flight: Launch minus 2 months or more
In-flight: Launch + 3 to 6 months
Post-flight: Landing + 2 months or more.

<table>
<thead>
<tr>
<th>Time</th>
<th>12:00</th>
<th>16:00</th>
<th>20:00</th>
<th>24:00</th>
<th>04:00</th>
<th>08:00</th>
<th>12:00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14:00</td>
<td>18:00</td>
<td>22:00</td>
<td>02:00</td>
<td>06:00</td>
<td>10:00</td>
<td></td>
</tr>
</tbody>
</table>

Blood pressure:
(Ambulatory)
X X X X X X X X X X X X X X X X X X

Cardiac output:
(Seated)
X X X X X X

Blood sampling:
(Seated)
X

Urine collection:
(ambulatory)
>--<

X: Execution.
Experimental protocol

Pre-flight: Launch minus 2 months or more

In-flight: Launch + 3 to 6 months

Post-flight: Landing + 2 months or more.

<table>
<thead>
<tr>
<th>Time</th>
<th>12:00</th>
<th>16:00</th>
<th>20:00</th>
<th>24:00</th>
<th>04:00</th>
<th>08:00</th>
<th>12:00</th>
<th>14:00</th>
<th>18:00</th>
<th>22:00</th>
<th>02:00</th>
<th>06:00</th>
<th>10:00</th>
</tr>
</thead>
</table>

Blood pressure:
(Ambulatory)

X X X X X X X X X X X X X X X

Cardiac output:
(Seated)

X X X X

Blood sampling:
(Seated)

X

Urine collection:
(ambulatory)

>---<

X: Execution
Results

(N = 6 males)
24-h mean arterial pressure

PRE FLIGHT POST

80 100 120

mm Hg
24-h mean arterial pressure

PRE FLIGHT POST

24-h mean arterial pressure in mm Hg:
- PRE: 103 ± 3
- FLIGHT: 93 ± 31
- POST: 105 ± 3

* Indicates a significant difference.
24-h systolic arterial pressure

mm Hg

PRE FLIGHT POST

*
24-h diastolic arterial pressure

mm Hg

PRE FLIGHT POST

*
Cardiac output

L min$^{-1}$

PRE FLIGHT POST

*
Cardiac output

HR = 62.3 (bpm)

HR = 67.4 (bpm)

HR = 63.2 (bpm)
Stroke volume

ml

PRE | FLIGHT | POST

*
Systemic vascular resistance

\[\text{mm Hg L}^{-1}\text{min} \]
Systemic vascular resistance

PRE FLIGHT POST

Systemic vascular resistance

NE = 0.72 0.17
(ng·ml⁻¹)

NE = 0.69 0.11
(ng·ml⁻¹)

NE = 0.73 0.13
(ng·ml⁻¹)
Day MAP vs. night MAP

- **PRE**: MAP comparison
- **FLIGHT**: Reduced MAP
- **POST**: Increased MAP

Significant difference ()
Conclusions:

Months of space flight on the ISS:

- 24-h ambulatory BP ↓
- SV and thus CO ↑
- Systemic vascular resistance ↓
- SNA →
- Night dip of BP →
Mechanisms:

Weightlessness?
 Chronic pulsatile baroreceptor stimulation by increased central blood volume (increased SV and thus CO).
 But what about the high SNA?

Exercise training effect?
 But HR and plasma NE unchanged!

High salt intake?
 But 24-h renal Na⁺ excretion unchanged!

Other factors (radiation, oxidative stress etc.)?
Mechanisms:

Weightlessness?
 Chronic pulsatile baroreceptor stimulation by increased central blood volume (increased SV and thus CO).
 But what about the high SNA?

 • Exercise training effect?
 But HR and plasma NE unchanged!

High salt intake?
 But 24-h renal Na\textsuperscript+ excretion unchanged!

Other factors (radiation, oxidative stress etc.)?
Hypothesis:

Seated

↓

0 G

• Venous return
• Cardiac output

↑

Central blood volume

↑

Natriuretic & vasodilatory peptides

↑

Vascular distension of upper body

↓

SVR

(N)

• Vestibular disturbance
• Intracranial pressure
• Aortic stiffness
• Stress

↑

Blood pressure

(SNA)

(+)
Gravity effects:

- Blood pressure: 100 mm Hg
- Arteriolar resistance: 80 mm Hg
- Blood pressure: 215 mm Hg
Gravity effects:

- Blood pressure:
 - 80 mm Hg
 - 100 mm Hg
 - 215 mm Hg

Arteriolar resistance

A mechanism for hypertension???
Acknowledgements:

Co-authors

Niels J. Christensen (Herlev Univ. Hosp., Denmark)
Ali Asmar (Univ. CPH, Denmark)
Morten Damgaard (Univ. CPH, Denmark).

Laboratory technical assistance

Jakob Utzon-Frank (Univ. CPH, Denmark)
Inge H. Petersen (Univ. CPH, Denmark)

ESA assistance

Poul Knudsen (Damec ApS)
Thomas A. E. Andersen (Damec ApS)
Allain Maillet (Cadmos, CNES)
Stephanie Herr (Cadmos, CNES)
Simone Thomas (ESA)
Astronauts (ESA)

NASA assistance

Clinic at NASA-Johnson Space Center
Astronauts
Thank you