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ABSTRACT 
 
Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer 
(IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the 
atmosphere and surface under opaque cloudy conditions.  However, recent studies indicate that hyperspectral, infrared 
sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin 
clouds in observing the atmosphere and surface to a certain degree.  We have developed a retrieval scheme dealing with 
atmospheric conditions with cloud presence.  This scheme can be used to analyze the retrieval accuracy of atmospheric 
and surface parameters under clear and cloudy conditions.  In this paper, we present the surface emissivity results 
derived from IASI global measurements under both clear and cloudy conditions.  The accuracy of surface emissivity 
derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions.  
The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how 
well infrared sounders can observe the atmosphere and surface through clouds. 
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1.  INTRODUCTION 
 
Surface spectral emissivity (SSE or εν) and surface skin temperature (Ts) from current and future operational satellites 
can and will reveal critical information about the Earth’s ecosystem and land surface type properties.  The Earth 
Observing System (EOS) Aqua satellite, carrying the Atmospheric InfraRed Sounder (AIRS), was launched on May 4, 
2002.  Satellite ultraspectral data (such as that from AIRS) have been shown to be significant for atmospheric research 
and monitoring the Earth’s environment1.  The Infrared Atmospheric Sounding Interferometer (IASI)2, aboard the 
Metop-A satellite3 launched on October 19, 2006, is the first of the advanced ultra-spectral resolution temperature, 
humidity, and trace gas sounding instruments being flown as part of the Initial Joint Polar System (IJPS) of POES (U.S. 
Polar Orbiting Environmental Satellites) and EPS (EUMESAT Polar System) programs.  It is the precursor of the Joint 
Polar System (JPS) of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and EPS 
operational satellites for the purpose of improved weather forecasting, climate monitoring, and air quality observation.  
Future satellite instruments, such as the second and third units of IASI on the European Metop-B and -C satellites, the 
Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project (NPP), and the series of NPOESS satellites, 
will continue to provide ultraspectral and/or hyperspectral infrared (IR) radiance observations that will be used for long-
term monitoring of the Earth’s environment and climate change. Long-term and large-scale observations needed for global 
climate change monitoring and other research can only be supplied by space-based remote sensing4.  SSE retrieved from 
satellite ultraspectral IR measurements is crucial for achieving other highly accurate retrieved parameters, such as the 
surface skin temperature retrieved from other satellite broad-band measurements, the assimilation of IR radiances in 
numerical weather prediction models, climate monitoring, and studies of the radiation budget for the Earth system. 
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Several algorithms have been developed to derive IR emissivity from satellite measurements5–12.  Recent work13 based 
on Zhou et al.5 has been published. The work describes an improved multi-stage retrieval algorithm with an emphasis on 
the regression-training database and an SSE constraining function used in the retrieval with samples demonstrating SSE 
retrieved from different surface types Rapidly retrieved SSE using IASI satellite global measurements in conjunction 
with some initial retrieval analyses are demonstrated.  Initial validation for retrieved SSE is conducted with laboratory 
measurements from the Namib and Kalahari deserts.  Global SSE with a spatial resolution of 0.5°×0.5° in latitude-
longitude are produced with a seasonal variation, indicating seasonal diversity of global land SSE. 
 
As the retrieval is performed over all measurements, including during both clear-sky and cloudy conditions and when the 
temporal variation of the surface emissivity is subtle within a short period of time, the retrieved surface emissivity is 
used to build up a climatology dataset to estimate the cloud effects on geophysical parameter retrieval accuracy.  This 
dataset is essential in helping us understand that how well infrared sounders can observe the atmosphere and surface 
through clouds.  In this paper, four years of IASI measurements derived from surface emissivity spectra are used to 
present a statistical analysis on the retrieval accuracy of surface emissivity under different cloud categories – mainly the 
effective cloud optical depth. 
 
 

2. RETRIEVAL ALGORITHM  
 
2.1.  Radiative transfer equation and radiance calculation 
 
Following the terminology used by Strow et al.14, the channel radiance Rν leaving the top of a nonscattering, clear 
atmosphere at a certain wavenumber ν can be computed via 
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where εν is SSE, Bν is the Planck function, τν is the atmospheric layer-to-space transmittance, ps is surface pressure, Ts is 
the surface skin temperature, T(p) is atmospheric temperature at pressure p,   
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ρν
t  is the reflectance of the down-welling 

thermal flux   
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Fν
d  by the surface, Hν is the solar irradiance incident at the top of the atmosphere,   
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ρν
s  is the solar 

reflectance of the surface, and θsat and θsun are satellite and sun zenith angles, respectively.  The surface is assumed to be 
Lambertian, and reflectivity is assumed to be a function of surface emissivity, such as     
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ρν
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Eq. (1) can then be re-written as follows: 
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Radiance is a linear function of the emissivity.  It is assumed that the other parameters in the coefficients K1 and K2 are 
retrievable with ultraspectral radiance measurements. 
 
Under cloudy conditions, the top of atmosphere radiance for an atmosphere containing a single cloud layer is expressed 
by the monochromatic, radiative-transfer equation at those frequencies (note that the wavenumber ν is omitted here)15, 
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R =  R0FTτ tc + Rcτ tc + R1 + R1
↓FRτ tc , (5) 

 
where R is the total upwelling spectral radiance at the top of atmosphere.  FT and FR are the cloud transmission 
(including both direct and diffuse parts) and reflection functions, respectively.  The terms     

€ 
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R1
↓, and τtc are 

upwelling emission below the cloud, emission from the cloud, upwelling emission above the cloud, downwelling 
emission above the cloud, and the transmittance between the cloud level and the top of the atmosphere, respectively.  
Detailed expressions for these terms are described by Zhou et al.15.  If the components of solar radiation and reflectivity 
do not affect the channels used in the retrieval, the SSE is still linear with respect to the radiance under cloudy 
conditions.  Under clear-sky conditions, the surface (or window) channel radiance Rv is sensitive to surface skin 
temperature and SSE, and the SSE (εv) is a function of wavenumber.  With ultraspectral radiance measurements, SSE 
should be retrieved with a linear retrieval model.  In other words, linear-regression-retrieved SSE should be as accurate as 
physically retrieved SSE if the regression-training database is optimal in the sense of representing actual SSE from a linear 
combination of the database conditions.  In this paper, we present regression retrieved SSE with improved regression 
training and coefficients. 
 
Within this study, we use IASI measurements to derive global land surface properties to estimate the cloud effects on the 
emissivity.  IASI is a Michelson interferometer with spectral coverage between 3.62 and 15.5 µm.  At nadir, the 
instrument collects data at intervals of 25 km along track, each sample having four pixels and each pixel having a 
maximum spatial diameter of about 12 km.  The IASI fast transmittance model used herein is a combination of the 
Stand-alone AIRS Radiative Transfer Algorithm (SARTA)14 Version 1.07 and the physically-based cloud radiative 
transfer model (RTM) based on the DIScrete Ordinate Radiative Transfer (DISORT)16 calculations performed for a wide 
variety of cloud microphysical properties17.  The retrieval algorithm used for IASI is based on that first developed and 
demonstrated with NAST-I using a regional-seasonal EOF regression-training database5,18. 
 
2.2.  Training database for regression  
 
Our purpose of using a training database is to generate regression coefficients for global IASI retrievals; therefore, a 
globally representative training database with a large diversity is required.  The regression-training database consists of 
profiles obtained from the SeeBor database19, SSE from a set of laboratory measured SSE for a wide variety of surface 
types20, and cloud microphysical properties from a parameterization based on a balloon and aircraft cloud microphysical 
database21.  A random number generator is used to specify cloud-visible optical depth equally distributed within a pre-
specified range that is sensitive to IR RTM calculations.  A parameterization based on a balloon and aircraft cloud 
microphysical database is used to specify cloud effective particle diameter (De) from the cloud optical depth (τcld)15,22.  A 
simulated retrieval analysis has been performed to assess retrieval accuracy including surface parameters using the 
SeeBor database.  Based on our analyses, a few minor modifications are made to the training database in order to provide 
improved retrievals (e.g., surface parameters).  Land surface parameter retrieval accuracies are modified to obtain a more 
diverse contrast of surface skin and surface air temperature, especially over extreme hot and/or cold (e.g., desert and/or 
polar) regions.  Land surface skin temperature in the SeeBor training database is replaced by 
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Ts = Ta + Tδ  ,  (6) 
 
where Ta and Ts are surface air and skin temperature, respectively, and Tδ is a random number generated value with a 
mean of 0 K and a standard deviation (STD) of 3 K over water and 10 K over land.  

 
SSE is also replaced by a randomly selected laboratory measured SSE from a wide variety of surface types20.  The SSE 
function, 
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F(εν ) = log[log(εHB −εLB + 0.005) − log(εHB −εν )] ,  (7) 
 
is introduced here for usage in the training and retrieval algorithm instead of SSE itself in order to constrain the retrieved 
SSE within a boundary between   
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εLB (i.e., 0.5) and   
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εHB (i.e., 0.995) being preset to the best of our knowledge for surface 
emissivities.  These SSE functional spectra F(ε) are represented by their nine highest-ranking EOF amplitudes 
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of the eigenvectors   

€ 

ϕ F  generated with a set of SSE functional spectra F(ε) computed with the laboratory measured SSE 
database, where nch is the number of channels used in the retrieval, and i is the index number of EOF amplitudes. In 
order to minimize the compression error, the nine highest-ranking eigenvectors are used to compress SSE functional 
spectra F(ε) in the retrieval.  An equivalent SSE STDE from this compression is below 0.006 with a mean error near 
zero. 
 
2.3.  Regression retrieval 
 
An improved regression algorithm has been introduced based on our previous version23.  In addition to the modifications 
made on the training database mentioned above, several modifications are made to the regression retrieval.  These 
modifications are made through retrieval analyses with simulations and real data retrievals.  The new scheme includes 
more regression channels in the window regions (i.e., near transparent regions of the spectrum).  Solar radiation has a 
small, but significant, impact on some of the selected channel radiances; solar radiation is calculated in the RTM using 
the solar zenith angle as a predictor.  A total of 5410 channels are currently used for regression, and the 1766 channels 
are used for the variational retrieval.  Standard EOF regression equations are expressed as 
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where A and ϕ  are radiance EOF amplitudes (i.e., PC scores) and radiance eigenvectors, respectively.  The eigenvectors 
are generated with a set of synthetic radiances R.  K is the regression coefficient generated with a set of synthetic 
radiances R in the EOF domain (i.e., A) and the associated state vector S (i.e., the training dataset), and Ps is surface 
pressure.  In our regression retrieval, a state vector includes atmospheric profiles (i.e., temperature, moisture, ozone, and 
carbon monoxide), cloud parameters (i.e., cloud top height Hc, optical depth τcld, particle size De, and cloud phase φ), 
surface skin temperature Ts, and surface SSE functional amplitudes AF. 
 
The regression coefficients are classified with respect to cloud-free, cloudy, and all combined (mixed) conditions.  A 
multi-step regression approach uses cloudy and clear coefficients for cloud and clear radiances.  Cloud detection criteria 
in the regression are re-investigated in order to provide accurate “cloud-free,” single field-of-view (SFOV) 
measurements.  The first-stage involves mixed (i.e., clear and cloudy) regression.  The second-stage will be either clear 
or cloudy regression depending on the cloud detection criteria that are based on first-stage retrieved cloud parameters.  



The second-stage will use clear regression coefficients when the first retrieval satisfies these two criteria: (1) φ ≤ 0.8 and 
(2) τcld ≤ 0.007, where φ = 0, 1, and 2 are for clear-sky conditions, ice clouds, and water clouds, respectively.  Otherwise, 
the second stage will use cloudy regression coefficients.  When the second stage uses cloudy regression, an additional 
clear regression will be performed if one of the two following criteria is met from the second-stage cloudy retrieval: (1) 
(Hc –Hs) ≤ 2.0 km with τcld ≤ 0.8, and (2) (Hc –Hs) > 2.0 km with τcld ≤ 0.2 (where Hs is surface height).  These criteria 
are chosen from empirical experience based on global retrieval analysis with this training database.  Actually, it should 
be explained that the so-called “clear-sky” cases from this analysis are “cloud-undetected.”  The sky can be either clear 
or containing a minimal cloud fraction barely interfering (and hence “undetected”) with the retrieval. 
 
When AF is retrieved from measured radiance as part of the state vector, the F(ε) are then computed with the 
eigenvectors covering the entire IASI spectral region.  Eqs. (7) and (8) can be re-written as 
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In other words, the SSE is derived for all IASI channels even though some channels are not selected for retrieval.  
However, the channel selection does affect the quality of the retrievals; therefore, a large set of representative channels 
covering a large portion of the spectral range is necessary to retrieve SSE. 
 
Detailed algorithm performance, analysis, emissivity evaluation and initial validation, as well as emissivity atlas with 
temporal variation can be found in Zhou et al.13 

 
 

3. EMISSIVITY DATASETS AND ANAYSIS 
 
The retrievals have gone through quality control (i.e., retrieval consistency check) based on a standard deviation of the 
difference between the measured and retrieval-simulated brightness temperature over the spectrum of physical retrieval 
channels’ spectral-radiance fitting residual. The retrieval fitting residual is strongly dependent on the accuracy of 
retrieval parameters.  IASI retrievals include effective cloud microphysical properties, surface parameters (under clear 
conditions), and atmospheric temperature and moisture profiles. Cloud microphysical parameters retrieved from the IR 
ultraspectral data are “effective” in the sense that they depend on instrument characteristics (e.g., FOV size) and spectral 
dependence of the infrared sensitivity of the cloud property. For instance, observed IR radiance has a limited sensitivity 
variation of cloud optical depth for large values, i.e., a retrieved “effective” optical depth of an opaque can be quite 
different from the real optical depth of the cloud. Although the cloud retrieval algorithm has been evaluated with aircraft 
data (e.g., dropsondes and Cloud Physics Lidar) from the THORPEX Atlantic Regional Campaign (ATReC)7, more 
validations for diverse cloud conditions are desired to give definitive conclusions regarding the retrieval accuracy.  
Retrieval evaluation and validation have been performed and found elsewhere13. 
 
Global IASI measurements since June 2007 are used to produce retrievals that are then used to generate emissivity 
climatology datasets.  Here in this study, we use July 2007 to 2010 (four years) data to make emissivity datasets under 
clear-sky conditions and cloudy conditions with three cloud categories, depending on retrieved effective cloud optical 
depth.  These three categories are (1) optical depth less than 0.5, (2) greater then 0.5 and less than 1.0, and (3) greater 
than 1. The emissivity spectra retrieved under cloudy conditions are affected by the clouds; their deviation from those 
retrieved from clear-sky measurements implies how well the information is obtained from the clouds and below.  We 
take advantage of the minimal temporal-variation of surface emissivity and use the statistical analysis on the emissivity 
retrieved from clear and cloudy conditions to reveal how well infrared sounders observe the atmosphere and surface 
through clouds.  For example, regional emissivity atlases at the selected wave numbers are plotted in figure 1 for clear-
sky and three categories of clouds.  As the retrieved cloud optical depth increases, the emissivity under cloudy conditions 
deviates further from that of clear-sky conditions.  The cloud effects on the emissivity retrievals can be used to estimate 
the error introduced to other retrieved geophysical parameters, such as surface temperature and atmospheric profiles of 
trace species.  Figure 1 shows the region of Asia, while figure 2 shows the region of Northern America for clarity.  Other 
regions or global atlas are also used for analysis with similar results but not shown here.  The degree of emissivity 



deviation due to the cloud effectiveness is not necessarily the same at different wavenumbers; somehow, the emissivity 
feature is there even if it is under opaque clouds where emissivity could not be physically retrieved because the 
regression retrieval uses a training database that constrains the results.  It is clear that when the cloud optical depth is 
greater than 1.0, the emissivity is not retrieved correctly as shown by its spatial variation and absolute values. 
 

 
Figure 1.  Asian regional atlas table shows emissivity at five selected wavenumbers (in column) versus clear and cloudy 

conditions (in row). As the retrieved cloud optical depth increases, the emissivity under cloudy conditions 
deviated more from that of clear conditions. 

 
 

 
Figure 2.  This is the same as figure 1, but in the region of Northern America. 

 
 



It is expected that clouds affect emissivity retrieval further in the short wave region than that in the long wave region 
because the nature of the cloud radiation and/or reflection is more sensitive in the short wave region.  Nevertheless, in 
order to see the error in the whole spectral domain associated with the data plotted in figure 1, figure 3 shows the mean 
emissivity and their standard deviation (indicating spatial variation) under clear and cloudy conditions, as well as the 
difference between clear and cloudy results.  It is difficult to tell an exact error of an individual retrieval from this 
regional statistical result, but it indicates the relative error on each spectral channel.  It is noted that some channels seem 
unaffected by the clouds because they are opaque channels that are not sensitive to the surface.  Similar results from the 
region of Northern America are also shown in figure 4. 
 
In response to our question, “how well can infrared sounders observe the atmosphere and surface through clouds,” we 
believe it depends on the accuracy we need.  To obtain the retrieval accuracy for geophysical parameters very similar to 
that from the clear-sky conditions, effective cloud optical depth needs to be less than 0.5.  When cloud optical depth the 
between 0.5 and 1.0, the retrieval error is clearly noticeable.  However, when the cloud optical depth is greater than 1.0, 
the retrieval is not acceptable as it gives wrong information, as shown in figures 1 and 2. 
 
 

 
Figure 3.  Asian regional statistical results associated with figure 1 show the mean (curve) and standard deviation (vertical 

bars).  The top panels are from the clear conditions, the middle panels are from the cloudy conditions with three cloud 
categories, and the bottom panels are the difference between clear and cloudy. 

 
 

 
Figure 4.  As same as figure 3 but in the region of Northern America associated with figure 2. 

 
 

4. SUMMARY 
 
A state-of-the-art retrieval algorithm with the ability to account for all-weather conditions has been developed and 
applied to IASI radiance measurements.  SSE is retrieved from satellite IR ultraspectral data to capture different land, 
surface-type properties that contain useful information on the state of the terrestrial ecosystem and reflect on the 
biosphere’s response to proximal climatic factors (such as temperature and rainfall) and human activities.  Operational, 
global, satellite data such as observations from IASI and CrIS are, and will be, available for deriving these kinds of 
products. Based on our analysis, in order to obtain the retrieval accuracy for geophysical parameters very similar to that 
from the clear-sky conditions, effective cloud optical depth needs to be less than 0.5.  When cloud optical depth is 



between 0.5 and 1.0, the retrieval error is clearly noticeable.  However, then the cloud optical depth is greater than 1.0, 
the retrieval will not be not acceptable as it gives wrong information.  This can apply to other retrieved geophysical 
parameters since they are strongly connected to the surface emissivity accuracy. 
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