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Abstract 

Many dynamic systems containing a large number of modes can benefit from adap-

tive control techniques, which are well suited to applications that have unknown pa-

rameters and poorly known operating conditions. In this paper, we focus on a direct 

adapti ve control approach that has been extended to handle adaptive rejection of per-

sistent disturbances. We extend this adaptive control theory to accommodate proble-

matic modal subsystems of a plant that inhibit the adaptive controller by causing the 

open-loop plant to be non-minimum phase. We will modify the adaptive controller 

with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, 

thereby allowing the system to satisfy the requirements for the adapti ve controller to 

have guaranteed convergence and bounded gains. This paper will be divided into two 

parts. Here in Part I we will review the basic adaptive control approach and introduce 

the primary ideas. In Part II, we will present the RMF methodology and complete the 

proofs of all our results. Also, we will apply the above theoretical results to a simple 

flexible structure example to illustrate the behavior with and without the residual 

mode filter. 

INTRODUCTION 

Applications of control theory to flexible aerospace structures have been many 

and varied. The survey [13] provides a foundation for structure control with many 

control approaches and examples. Th is was based upon a distributed parameter 

approach to control of flexib le structures and other very large-scale systems [14]. 

Later work created the idea of a Residual Mode Filter (RMF) to offset the destabi-

lizing effect of unmodeled modes in a feedback control environment [15]-[17]. 

This RMF-based structure control theory has been applied to the complex control 



2  

issues for large horizontal-axis utility-sized wind turbines [18]-[21], and is begin-
ning to be applied to aeronautic problems that currently use notch filters, eg for 

flutter, also we are applying the theory to aircraft control where there are flexi-
ble modes in the pilot bandwidth, e.g. large civil  tilt rotor. 

In this paper, we extend our adaptive control theory [1]-[4], [7] to accommo-

date modal subsystems of a plant that inhibit the adaptive controller, in particular 

those residual modes that interfere with the almost strict positive real condition. 

The systems we consider will be large dimensioned, linear time invariant ones 

which can be diagonalized or placed into modal form. This will include linear 

flexib le structures of many types. Our adaptive Control approach allows for large 

dimensioned systems through a foundational use of Ideal Trajectories so  that the 

adaptive controller is of much lower dimension than the plant. 

The modificat ion will use the idea of Residual Mode Filters (RMF) introduced 

for fixed gain controllers in [6]. In this paper the RMF will be used to eliminate 

the effect of modes that prevent the almost strict positive realness of the overall 

system by being non-minimum phase. This is a new use of the RMF idea; in pre-

vious non-adaptive work the purpose of the RMF was to eliminate or mitigate the 

destabilizing effect of modes unmodeled in the control system design, whereas 

here the RMF is applied to reinstate the minimum phase nature of the plant under 

adaptive control. 

Here in Part I we will rev iew the basic adaptive control approach and introduce 

the primary ideas. In Part II, we will present the RMF methodology and complete 

the proofs of all our results  using results from [8]. Also, we will apply the above 

theoretical results to a simple flexib le structure example to i llustrate the behavior 

with and without the residual mode filter. 

Rejection of Persistent Disturbances 

The Plant used in this theory section of the paper will be modeled by the linear, 

time-invariant, fin ite-dimensional system: 
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where the plant state )(tpx , is an Np-dimensional vector, the control input vec-

tor, )(tpu , is M-dimensional, and the sensor output vector, )(tpy , is P-

dimensional.  The disturbance input vector, )(tDu , is MD-dimensional and will 

be thought to come from the Disturbance Generator: 
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where the disturbance state, )(tDz , is ND-dimensional. A ll matrices in (1)-(2) 

will have the appropriate compatible dimensions. Such descriptions of persistent 

disturbances were first used in [5] to describe signals of known form but unknown 

amplitude. Equation (2) can be rewritten as in [3] in a form that is not a dynamical 

system, which is sometimes easier to use: 
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where 
D  is a vector composed of the known basis functions for the solution of 

DD zΘu  , i.e., 
D  are the basis functions which make up the known form of 

the disturbance, and L is a matrix of dimension ND x dim(
D ). For the analysis 

performed in this paper, the amplitude of the disturbance does not need to be 

known, so )( ΘL,  can be unknown. For a better understanding of the disturbance 

generator, consider the example of a disturbance generator for a step disturbance; 

in the form of equation (2), a step disturbance would have 1  and 0F , in 

the form of equation (3), a step disturbance would have 1D . 

In [5]-[6], as with much of the control literature, it is assumed that the plant and 

disturbance generator parameter matrices, ),,( FΘΓC,B,A, , are known. This 

knowledge of the plant and its disturbance generator allows the Separation Prin-

ciple of Linear Control Theory to be invoked to arrive at a State-Estimator based, 

linear controller which can suppress the persistent disturbances via feedback. In 

this paper, we will not assume that the plant and disturbance generator parameter 

matrices, ),( ΘΓC,B,A, , are known. But, we will assume that the disturbance 

generator parameter from (2), F, is known, i.e., the form of the disturbance func-

tions is known. In many cases, knowledge of F is not a severe restriction, since the 

disturbance function is often of known form but unknown a mplitude. 

Our control ob jective will be to cause the output of the plant, )(tpy , to 

asymptotically track the output of a known reference model, )(tmy . The Refer-

ence Model is given by 
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where the reference model state, )(tmx , is an Nm-dimensional vector. The refer-

ence model output, )(tmy , must have the same dimension as the plant output, 

)(tpy .  The excitation of the reference model is accomplished via the vector, 

)(tmu , wh ich is generated by 

 
m

mmmm 0)0(; uuuFu   (5) 

It is assumed that the reference model is stable and the model parameters, 

 mmmm FCBA ,,, ,  are known. 

As in [5]-[6], we define the Ideal Trajectories for the plant given by (1) as li-

near combinations of the plant states, the control inputs, and the disturbance in-

puts: 
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where )(* tx  is the ideal trajectory, )(* tu  is the  ideal control, )(* tu  and  
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Note that the ideal output, )(t*y , matches the reference model output, 

)(tmy . If such ideal trajectories exist, they will produce exact output tracking. 

By substituting the ideal trajectories given in (6) into (7) and by using the dis-

turbance generator given by (2), the ideal trajectories can be made to match the 

reference model (4)-(5) with the following Model Matching Conditions: 
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The model matching conditions given in (8) are necessary and sufficient condi-

tions for the existence of ideal trajectories. So lutions to these matching conditions 

must exist for later analysis, but explicit solutions need never be known for the 

adaptive controller design. Necessary and sufficient conditions for the existence 

and uniqueness of solutions to (8) are g iven in [9]. We repeat this result here for 

completeness and the proof is given in the Appendix found in Part II.  

Lemma 1: If CB is nonsingular, there exist unique solutions to the Linear 

Matching Conditions (8) when BAsICsT 1)()(   shares no transmission 

zeros with the eigenvalues of FFA mm or  ,, .  

The desired control objective is for the output of the plant to asymptotically 

track the output of the reference model. We define the output error vector as: 

 mpy yye   (9) 

To achieve the desired control objective, we want 0
tye . We define 

the state tracking error as follows: 

 ** xxe  p  (10) 

Using (7) and (10), we can write the output error vector as: 

 *** CeCxCxyyyye  ppmpy  (11) 

Furthermore, if we let *uuu  p , from (1) and (7) we have 

 uBAee  
  (12) 

For analysis purposes, we define a Fixed Gain Controller 

 yep eGuu
*

*   (13) 

If we use the fixed gain control law (13) in the plant given by (1), combined with 

the definition of *x  from (7) and the output error vector in the form of equation 

(11), we obtain:  

   



  eCBGAe e
  (14) 

We can summarize the above by the following: 
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Theorem 1:  If )( CB,A,  is output feedback stabilizable with a gain 
*

eG , 

i.e., the eigenvalues of CBGAA
*

eC   are all to the left of the jω-axis, then 

the fixed gain controller, (13), will produce asymptotic output tracking, i.e., 

0
tye . 

If all the plant parameters, ),,( FΘΓC,B,A, , are known, then the fixed gain 

controller given by (13) with a state estimator for 
Dz  would be adequate for 

asymptotic tracking. Note that output feedback stabilizat ion of )( CB,A,  can be 

accomplished when  

 pD NNPM   (15) 

and )( CB,A,  is controllable and observable [9]. In (13), detailed knowledge of 

the parameter matrices is not required, suggesting that an adaptive control scheme 

might be possible under our original assumptions that ),( ΘΓC,B,A,  are un-

known and F from (2) is known. 

Consider the plant given by (1) with the disturbance generator given by (3). 

Our control ob jective for this system will be accomplished by an Adaptive Control 

Law of the form: 

 DDyemummp GeGuGxGu   (16) 

where Deum GGGG  and ,,,  are matrices of the appropriate compatible dimen-

sions, whose definitions will be g iven later. We develop the gain adaptation laws 

to make asymptotic output tracking possible by first forming the following which 

are intended to simplify our notation:  
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The starred gains in (17) are for analysis and come from the ideal trajectory, 

*x , of equation (6) with Dz  in the form given in  (3), which is then substituted in-

to the fixed gain controller (13). Using (6), (7), and the adaptive control law (16), 

we can define: 
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Then, via (11), (12), and (18), with appropriate definit ions, we have:  
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where 
TT

D

T

y

T

m

T

m ][  exu is the vector of available information.  We com-

bine (12) and (19) to obtain the Tracking Error System: 
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Now we specify the Adaptive Gain Laws: 

 HeG
T

y  (21) 

where ][ iihH  , i=1,2,…,4 is an arbitrary, positive definite matrix (i.e., H > 0). 

This yields 
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Our Adaptive Controller is specified by (16) with the above adaptive gain laws 

(22). Note that none of the starred gains used in the earlier analysis appear in the 

realizable control law, (16) and (22). Next  we will analyze the stability of th is con-

troller. 

The closed-loop adaptive system consists of (1)-(5), (9), (16), and (22). Using 

(20) and (21), we have 
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where CBGAA
*

eC  .  We are able to obtain (23) from (21) because 

*GGG   where ] [ 2321

*

22* LSGSSG
**

e

*     is constant (although gen-

erally unknown). The stability of the nonlinear system (23) can be analyzed using 

Lyapunov Theory. We form the positive definite functions: 
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where 0P  is the solution of the following pair of equations: 
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These equations are usually known as the Kalman-Yacubovic Conditions. The 

existence of a symmetric positive definite solution of (25) is known to be equiv a-

lent to the following condition:  

   )( real positivestrictly  is  )(
1

SPRss CC BAICT


  (26) 

For a proof of this equivalence, see [12] App. B.  The strict positive realness of 

)(sCT  means that for some 0  and for all  real, 

 0)(Re   jCT  (27) 

If we calcu late the derivatives, iV , along the trajectories of (23), we have, us-

ing (25), that 
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and 
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We can form *21
2

1
Qee
T

* VVVV   with 0 V . Consequently, 

Lyapunov theory guarantees stability of the zero equilibrium point of (23) and all 

trajectories of (24) will remain bounded. This guarantees that both 
*e  and G  

are bounded. 

 We can summarize the above by the following Closed-Loop Stability Result: 

 

Theorem 2:  Suppose the following are true: 

(1) All )(tmu  are bounded (i.e., all eigenvalues of Fm are in the closed left-

half plane);  

(2) The reference model (4) is stable (i.e., all eigenvalues of Am are in the 

open left-half plane);  

(3) D  is bounded ( i.e., all eigenvalues of F are in the closed left-half plane 

and any eigenvalues on the imaginary axis are simple); 

(4) (A, B, C) is Almost Strict Positive Real (ASPR), i.e., 

  BAICT
1

)(


 CC ss  is strictly positive real. 

Then *e  and G are bounded and 0* 
t

e  and 

0* 
tmpy Ceyye . 

See the Appendix in Part II for a proof of Theorem 2.  

This stability analysis shows that asymptotic tracking occurs and the adaptive 

gains remain bounded. It does not prove that 0G 
t

. In fact, the gain 

adaptation laws (22) may not converge to the starred gains in (8); however, this is 

not required for the adaptive controller to achieve its goals. 
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Conclusions for Part I 

We have reviewed our adaptive control theory here. This theory accounts for 

adaptive model tracking and for leakage of the disturbance term into the Q modes. 

However, the results require that the error system be minimum phase. In Part II, 

we will show how to modify the adaptive control with residual mode filters to deal 

with non-minimum phase systems. 
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Abstract 

In Part II, we extend our adapti ve control theory to accommodate problematic 

modal subsystems of a plant that inhibit the adaptive  controller by causing the open-

loop plant to be non-minimum phase. We will modify the adaptive controller with a 

Residual Mode Filter (RMF) to compensate for problematic modal subsystems, there-

by allowing the system to satisfy the requirements for the adaptive controller to have 

guaranteed convergence and bounded gains. Also, we will apply the above theoretical 

results to a simple flexible structure example to illustrate the behavior with and with-

out the residual mode filter. 

INTRODUCTION 

In Part II, we continue the development of the adaptive control approach. We will 

keep the consecutive equation numbering from Part I as well as the same re ference 

list. We modify the adaptive control using the idea of Residual Mode Filters 

(RMF) introduced for fixed gain controllers in [6]. In this paper the RMF will be 

used to eliminate the effect of modes that prevent the almost strict positive real-

ness (ASPR) of the overall system by being non-min imum phase. We have main-

tained the same reference list here as in the previous paper to make both papers 

more readable. 
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Residual Mode Filter Augmentation of Adaptive Controller 

In some cases the plant in (1) does not satisfy the requirements of ASPR. Instead, 

there maybe be a modal subsystem that inhibits this property. This section will 

present new results for our adaptive control theory. We will modify the adaptive 

controller with a Residual Mode Filter (RMF) to compensate for the troublesome 

modal subsystem, or the Q modes, as was done in [6] for fixed gain non-adaptive 

controllers. Here we present the theory for adaptive controllers modified by 

RMFs. In a p revious paper, we examined the RMF with adaptive control, but as-

sumed that there was no leakage of the disturbance into the Q modes [7]. Here we 

will deal with the issue of disturbances propagating through these modes. 

Let us assume that (1) can be partit ioned into the following modal form:  
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Define
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or 



zD  LD  as before in (2)-(3).  

The Output Tracking Error and control objective remain as in (4)-(5), i.e. 



ey  yp  ym t
  0.  

However, now we will only assume that the subsystem 



A,B,C  is Almost 

Strict ly Positive Real, rather than the full un-part itioned plant



Ap ,Bp ,Cp , and 

the modal subsystem 



(AQ ,BQ ,CQ)
 
will be known and open-loop stable, i.e., 



AQ  
is stable. Also note that this subsystem is direct ly affected by the disturbance in-

put. Recall that ASPR means 



CB0  and 



P(s) C(sI A)
1

B  is minimum 

phase. So, in summary, the actual plant has an ASPR subsystem and a known 

modal subsystem that is stable but inhibits the property of ASPR for the full plant. 

Hence, this modal subsystem must be compensated or filtered away. 

We define the Residual Mode Filter (RMF): 
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And the compensated tracking error:  

 



˜ e y  ey  ˆ y Q  (30) 

Now we let 



eQ  ˆ x Q  xQ and obtain: 

 DQQQQ ueAe     (31) 

Consequently,  

 



˜ e y  ey  ˆ y Q Cx CQ xQ [CQ xQ CQeQ ]

Cx CQeQ

 (32) 

As in [1]-[2], we define the Ideal Trajectories, but only for the ASPR Subsys-

tem:  
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. This is equivalent to the Matching Conditions:  
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which are known to be uniquely solvable when CB is nonsingular. However, we 

do not need to know the actual solutions for this adaptive control approach. 

Let  
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because, from (33), 



y*  0. This system can be rewritten: 
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Now we have the following: 

Lemma: 
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A,B,C  is ASPR. 

Proof: 
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is min imum phase. End of proof. 

So there exists 



Ge
*
 such that 



(A C  A B Ge
*C ,B ,C )

 
is Strictly Positive Real 

(SPR) when 



(A,B,C)
 
is ASPR. Consequently, as is well known from the Ka l-

man-Yacubovic Theorem, there exists 



P ,Q 0  such that 
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We now write the modified adaptive control law with RMF: 
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with modified adaptive gains given by 
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Finally, we have the following stability result: 

 

Theorem 3: In (9), let 



(A,B,C)  ASPR, 



AQ  
stable, 



D  bounded. Then the Mod-

ified Adaptive Controller with RMF in (19)-(20) produces 



ey  yp  and 



eQ  ulti-

mately bounded into a ball of radius 
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rate and bounded adaptive gains 
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Proof: From (19), we have 
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with 
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 ,  w  G, A C  A B Ge

*C . 

From (20), we can see that 

 0
0

0
;~ 










D

eT

y
h

h
hheGG   (41) 
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Since 



(A,B,C)  is ASPR, and by the lemma, so is 



(A ,B ,C ) , we can we can 

use the following result from [8] where 



  QuD  is bounded because the distur-

bance 



uD  LD  is bounded. 

 

Result: Consider the nonlinear, coupled system of differential equations, 

 

 














 

)(~)(

~

 )(

T taGhetG

Ce

GtGBA

y

y

c











 (42) 

where 



G*
 is any constant matrix and h is any positive definite constant matrix, 

each of appropriate dimension. Assume the following: 

i) the triple



(A ,B ,C ) is SPR, 

ii) there exists MK > 0 such that 



G
 

T

G

 MK , using the trace norm, 

iii) there exists M > 0 such that 



sup
t0

(t)  M , 

iv) there exists a  > 0 such that 



a 
qmin

2pmax

, and 

v) h  satisfies 



h1

2


M

aMK











2

, where pmin, pmax are the minimum and maximum 

eigenvalues of 



P and qmin is the minimum eigenvalue of 



Q  in the system 



A C
T
P P A C  Q 

P B C T






. 

Then the matrix G(t) is bounded and the state 



 (t)  exponentially approaches the 

ball of radius  



R* 
1 pmax 

a pmin

M  with 



 0. 

From this result, we have 



  is ultimately bounded into the ball of radius   



R*, 

which leads to 



ey  yp  yp  y* C
 

and 



eQ  
ultimately bounded as well. 

Therefore 



G G* G  is bounded, as desired. #

 

Consequently, the radius of the error ball 



R* 
1 pmax 
a pmin

M  is deter-

mined by the size of ε, which is related to the amount of disturbance leakage into 
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the Q modes. It can be seen that, when there is no leakage of the disturbance into 

the Q modes (



 0), the convergence is asymptotic to zero.  

Also, when 



B and 



Q  BQ , it is possible to choose   



S1
*  0  and 



S2
*   

in (34). Then, even if 1 , the tracking error will asymptotically go to zero. 

Simulation Results with RMF 

In this section we will apply the above theoretical results to a very simple flexible 

structure example to illustrate the behavior with and without the Residual Mode 

Filter. The structure has a rig id body mode and two flexible modes given by: 



P(s) 
1 s

s2


3

s2  s1


1

s2  s2


s
5
 s

4
 3s

3
0s

2
 3s1

s6 2s5  4s4  3s3 2s2
. 

This example can obviously be extended to have many more flexib le modes. But 

we are only try ing to illustrate the value of the RMF approach. More seriously 

complex flexible structures are being addressed but will have to await future pa-

pers. 

This plant has two non-minimum phase zeros at 0.4220.9543j and thus does 

not meet the ASPR condition. However, when the middle mode 



PQ (s) 
s

s2  s1
 

 is removed, the plant becomes: 



P(s) 
1 s

s2


1

s2  s2


s
3
 3s

2
 3s2

s4  s3 2s2
 

which is min imum phase and has a state space realizat ion given by: 











pp

Dppp

Cxy

uuBAxx )(
 with 



A 

0 1 0 0

0 0 1 0

0 0 0 1

0 0 2 1



















, 



  B

0

0

0

1



















,  



CT 

2

3

3

1



















  

with 



CB1, so 



CB is  nonsingular. Therefore, 



(A,B,C)  is ASPR. 

The reference model to be tracked is  









mm

mmm

xy

uxx

)1(

)1()1(
 

which is excited by steps generated by mm uu )0( . The matching conditions are 

known to be solvable, but their solution is not needed to apply the theory. 
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The RMF generated by 



PQ (s) 
3

s2  s1
 is represented by



AQ 
0 1

1 1









,  



Q  BQ 
0

1








, 



CQ  3 0 . And we see that 



CQBQ  0 . 

The adaptive controller given by (38) - (39) is implemented with hu=10, hm=1, 

he=10, hD=100, and a=0. The disturbance is a nondimensional step of size 10. Set-

ting =1, we obtain figs. 1 and 2 from a MatLab/Simulink simulation. The output 

tracking erro r is shown to converge to zero in fig. 1. The adaptive gains also co n-

verge in fig. 2. This illustrates the behavior of the adaptive controller plus the 

second order RMF. Without the RMF, the plant and adaptive controller are imme-

diately unstable in closed-loop. 

Conclusions 

We have proposed a modified adaptive controller with a residual mode filter. The 

RMF is used to accommodate problematic modes in the system that inhibit the 

adaptive controller, in particu lar the ASPR condition. This new theory accounts 

for adaptive model tracking and for leakage of the disturbance term into the  Q 

modes. A simple three mode example shows that the RMF can restore stability to 

an otherwise unstable adaptively controlled system. This is done without seriously 

modifying the adaptive controller design. 
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Fig. 1. Nondimensional output tracking response with adaptive controller augmented with RMF. 
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Fig. 2. Adaptive gains, Ge=error gain, Gd=disturbance gain. 

Appendix 

Proof of Lemma 1 : The Linear Matching Conditions (8) can be rewritten: 



AS1 BS2  S1Lm H1

CS1  H2
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where 



S1  S11
* S12

* S13
* ,

 



S2  S21
* S22

* S23
* ,

 



Lm 

Am Bm 0

0 Fm 0

0 0 F

















,

  

and 



H1  0 0  

H2  Cm 0 0 






. 

Suppose CB is nonsingular. Use the coordinate transformat ion W from Lemma 

2 in [11] to put (A, B, C ) into normal form: 









222212

21211

zAyAz

CBuzAyAy




 

i.e., there exists  



W 
C

W2
T P2









 such that 



WAW 1  A 
A 11 A 12

A 21 A 22









, 

  



WB 
CB

0









 B , and 



CW 1  Im 0 C  which implies that 

  



S 1Lm WS1Lm WAW 1WS1 WBS2 WH1  A S 1 B S2 H 1

 A S 1 
CB

0









S2 H 1   

 and  an and 
  



H2 CW 1WS1 C S 1  I 0 S 1  S a    where 

  



 S 1 WS1 
S a

S b









. From 

this we have that 



H2

S b









Lm  A 

H2

S b











CB

0









S2 

H a

H b









 which implies that 

 



S2  (CB)1[H2Lm H a  (A 11H2  A 12S b )]

S bLm  A 22S b  (A 21H2 H b )





. 

Now, if 



(A 22,Lm)
 
share no eigenvalues, it is well known [5] that we can solve 

the above for a unique 



S b  
and conversely, then 

  



S 1 
H2

S b









 ,  



S2  (CB)1[H2Lm H a (A 11H2 A 12S b )] and 



A S b S bLm H b . Since 



(A 22,Lm)
 
share no eigenvalues, this is the same as 



A 22 sharing no eigenvalues 

with 



Am , 



Fm  or 



F .  But the eigenvalues of 



A 22 from its normal fo rm are known 

to be the transmission zeros of the open-loop system



(A,B,C) ; see e.g. [13]. Thus, 

we have proved the result. End of Proof. 

 

Proof of Theorem 2 
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It was already shown that 



e*  and 



G  are bounded. To prove that 



e* t
  0 , we must use the following version of Barbalat’s lemma; see [19] 

pp. 210-211: 

Lemma:  If  f(t) is a real, d ifferentiable function on (0,) with 



lim
t

f (t)  fin ite 

and 



df

dt
 uniformly continuous, then 



lim
t

df

dt
 0 . 

We have already seen that 



Ý V (t) 0; therefore  
t

dVVtV
0

0)()0()(   

or 



0V(t) V(0)  where 



V(0) . Hence 



lim
t

V(t)  is fin ite.  Also, )(tV  is 

bounded because 

 

 



GBeAQe

GBeAQe

eQeeQetV

C

C

T







**

**

****)( 

 

and 



e* and 



G  are bounded by the previous argument via Lyapunov theory. Also 



  is bounded since 



um  is bounded, 



Am  is stable, 



ey Ce*  is bounded, and 
D  is 

bounded.  Thus   dVtV
t

 0
)()(   is uniformly continuous and Barbalat’s 

Lemma may be applied to yield: 

 **lim)(lim0 QeetV
T

tt 
  . Since 



Q0 , we have 



e* t
  0 , as desired. 

End of Proof. 
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