Human Research Program
Space Human Factors Engineering

SHFE Mapping of IRP Rev B Risks to IRP Rev C Risks

April 7, 2011

J. Connolly/Habitability & Human Factors/JSC
281-483-2318

M. Kaiser, C. Green/Human System Integration/ARC
650-604-4448 650-604-0860
Organization of Presentation

• Overview of Rev B to Rev C Risk Restructuring, Gap Mapping
 – Includes Full Risk Titles
 – Includes recommended Short Risk Titles
• Detailed Gap Mapping of Gaps from Rev B (Old) to Rev C (New)
 – Clear identification of FROM/TO for each Gap
• Rationale for the Change
 – Cleaner Risk Statements, Less overlap among Risks
 – Alignment with DoD’s Human Factors Analysis Classification System (HFACS)
• Schedule for updating Evidence Reports
• Status/plans for RMAT vetting at HSRB
SHFE Rev B Risks

Risk of Error Due to Inadequate Information (10 Gaps)

Risk of Reduced Safety and Efficiency Due to an Inadequately Designed Vehicle, Environment, Tools, or Equipment (8 Gaps)

Risk of Error Due to Poor Task Design (5 Gaps)

SHFE Rev C Risks

SHFE-HAB
Risk of an Incompatible Vehicle/Habitat Design (6 Gaps)

SHFE-HARI
Risk of Inadequate Design of Human and Automation/Robotic Integration (4 Gaps)

SHFE-HCI
Risk of Inadequate Human-Computer Interaction (7 Gaps)

SHFE-TASK
Risk of Poor Critical Task Design (3 Gaps)

SHFE-TRAIN
Risk of Performance Errors Due to Training Deficiencies (3 Gaps)
SHFE Rev B Risks

- Risk of Error Due to Inadequate Information (11 Gaps)
- Risk of Reduced Safety and Efficiency Due to an Inadequately Designed Vehicle, Environment, Tools, or Equipment (8 Gaps)
- Risk of Error Due to Poor Task Design (5 Gaps)

SHFE Rev C Risks

- SHFE-HAB
 Risk of an Incompatible Vehicle/Habitat Design (6 Gaps)
- SHFE-HARI
 Risk of Inadequate Design of Human and Automation/Robotic Integration (4 Gaps)
- SHFE-HCI
 Risk of Inadequate Human-Computer Interaction (7 Gaps)
- SHFE-TASK
 Risk of Poor Critical Task Design (3 Gaps)
- SHFE-TRAIN
 Risk of Performance Errors Due to Training Deficiencies (3 Gaps)
SHFE Rev B Risks

- Risk of Error Due to Inadequate Information (11 Gaps)
- Risk of Reduced Safety and Efficiency Due to an Inadequately Designed Vehicle, Environment, Tools, or Equipment (8 Gaps)
- Risk of Error Due to Poor Task Design (5 Gaps)

SHFE Rev C Risks

- SHFE-HAB
 Risk of an Incompatible Vehicle/Habitat Design (6 Gaps)
- SHFE-HARI
 Risk of Inadequate Design of Human and Automation/Robotic Integration (4 Gaps)
- SHFE-HCI
 Risk of Inadequate Human-Computer Interaction (7 Gaps)
- SHFE-TASK
 Risk of Poor Critical Task Design (3 Gaps)
- SHFE-TRAIN
 Risk of Performance Errors Due to Training Deficiencies (3 Gaps)
SHFE Rev B Risks

- Risk of Error Due to Inadequate Information (10 Gaps)
- Risk of Reduced Safety and Efficiency Due to an Inadequately Designed Vehicle, Environment, Tools, or Equipment (8 Gaps)
- Risk of Error Due to Poor Task Design (5 Gaps)

SHFE Rev C Risks

- SHFE-HAB
 Risk of an Incompatible Vehicle/Habitat Design (6 Gaps)
- SHFE-HARI
 Risk of Inadequate Design of Human and Automation/Robotic Integration (4 Gaps)
- SHFE-HCI
 Risk of Inadequate Human-Computer Interaction (7 Gaps)
- SHFE-TASK
 Risk of Poor Critical Task Design (3 Gaps)
- SHFE-TRAIN
 Risk of Performance Errors Due to Training Deficiencies (3 Gaps)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate Information</td>
<td>HCI-5</td>
<td>HARI</td>
<td>SHFE-HARI-04</td>
<td>H5I-5: What are the effects of the delays typical of different mission regimes on teleoperation and how do we mitigate these effects?</td>
<td>SHFE-HARI-04: What are the effects of the delays typical of different mission regimes on teleoperation and how do we mitigate these effects?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>HCI-1</td>
<td>HCI</td>
<td>SHFE-HCI-01</td>
<td>H5I-1: What are the effects of vibration and acceleration on crew task performance and how can those effects be mitigated?</td>
<td>SHFE-HCI-01: What are the effects of vibration and acceleration on crew task performance and how can those effects be mitigated?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>HCI-3</td>
<td>HCI</td>
<td>SHFE-HCI-03</td>
<td>H5I-3: Given the design constraints for cockpit and workstations, what HCI guidelines (e.g., display configuration, screen navigation) will enable the crew to perform tasks in a timely manner with minimal ergonomics problems, even when fatigued or deconditioned?</td>
<td>SHFE-HCI-03: Given the design constraints for cockpit and workstations, what HCI guidelines (e.g., display configuration, screen navigation) will enable the crew to perform tasks in a timely manner with minimal ergonomics problems, even when fatigued or deconditioned?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>HCI-4</td>
<td>HCI</td>
<td>SHFE-HCI-04</td>
<td>H5I-4: What are recommended applications of multi-modal or other displays and controls based on new technologies, within nominal and off-nominal conditions of the spacecraft environment? (display modalities) (What's the best display for situations?)</td>
<td>SHFE-HCI-04: What are recommended applications of multi-modal or other displays and controls based on new technologies, within nominal and off-nominal conditions of the spacecraft environment? (display modalities) (What's the best display for situations?)</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.2.2.a</td>
<td>HCI</td>
<td>SHFE-HCI-06</td>
<td>SHFE 3.1.2.2.a: How do we ensure that the displays and control designs and technology developed for the operational environments of the [Program] will improve performance and reduce errors?</td>
<td>SHFE-HCI-06: How do we ensure that the displays and control designs and technology developed for the operational environments of the [Program] will improve performance and reduce errors?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.2.2.3.</td>
<td>HCI</td>
<td>SHFE-HCI-07</td>
<td>SHFE 3.1.2.2.3: (SM11): Can crewmember spatial motor abilities be more accurately predicted and countermeasures and training techniques developed to mitigate spatial disorientation during spaceflight?</td>
<td>SHFE-HCI-07: (SM11): Can crewmember spatial motor abilities be more accurately predicted and countermeasures and training techniques developed to mitigate spatial disorientation during spaceflight?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>3.1.2.a</td>
<td>TASK</td>
<td>SHFE-TASK-03</td>
<td>SHFE 3.1.2.a: How can a capability for semi-autonomous planning and dynamically replanning of crew schedules be developed?</td>
<td>SHFE-TASK-03: How can a capability for semi-autonomous planning and dynamically replanning of crew schedules be developed?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.1.a</td>
<td>TRAIN</td>
<td>SHFE-TRAIN-01</td>
<td>SHFE 3.1.1.a: How can we develop objective training measures to determine operator proficiency during and after ground training?</td>
<td>SHFE-TRAIN-01: How can we develop objective training measures to determine operator proficiency during and after ground training?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.1.b</td>
<td>TRAIN</td>
<td>SHFE-TRAIN-02</td>
<td>SHFE 3.1.1.b: How do we develop training methods and tools for space medical application if time is minimal?</td>
<td>SHFE-TRAIN-02: How do we develop training methods and tools for space medical application if time is minimal?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.1.e</td>
<td>TRAIN</td>
<td>SHFE-TRAIN-03</td>
<td>SHFE 3.1.1.e: How can onboard training systems be designed to address just in Time (JIT) and recurrent training needs for nominal and off nominal scenarios?</td>
<td>SHFE-TRAIN-03: How can onboard training systems be designed to address just in Time (JIT) and recurrent training needs for nominal and off nominal scenarios?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>PHYS-1</td>
<td>HAB</td>
<td>SHFE-HAB-01</td>
<td>PHYS-1: What validated acoustic model can predict the effects of structures, materials, crew and equipment on the acoustic environment of a spacecraft or habitat?</td>
<td>SHFE-HAB-01: What validated acoustic model can predict the effects of structures, materials, crew and equipment on the acoustic environment of a spacecraft or habitat?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>PHYS-2</td>
<td>HAB</td>
<td>SHFE-HAB-02</td>
<td>PHYS-2: What tools can be used to evaluate habitability concepts for on-orbit and planetary missions?</td>
<td>SHFE-HAB-02: What tools can be used to evaluate habitability concepts for on-orbit and planetary missions?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.1.8.i</td>
<td>HAB</td>
<td>SHFE-HAB-03</td>
<td>SHFE 2.1.8.i: How can we determine the effects of vibration and acceleration on task performance?</td>
<td>SHFE-HAB-03: How can we determine the effects of vibration and acceleration on task performance?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.3.b</td>
<td>HAB</td>
<td>SHFE-HAB-04</td>
<td>SHFE 2.3.b: How can existing models be modified to adequately represent the specified user population (e.g., field of view, visibility) in reduced gravity and be portable to other simulations environments?</td>
<td>SHFE-HAB-04: How can existing models be modified to adequately represent the specified user population (e.g., field of view, visibility) in reduced gravity and be portable to other simulations environments?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.3.1.1</td>
<td>HAB</td>
<td>SHFE-HAB-05</td>
<td>SHFE 2.3.1.1: What is the effect of microgravity on spinal elongation?</td>
<td>SHFE-HAB-05: What is the effect of microgravity on spinal elongation?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.3.a</td>
<td>HAB</td>
<td>SHFE-HAB-06</td>
<td>SHFE 2.3.a (SBIR): How can crews easily document human factors related issues that occur on orbit?</td>
<td>SHFE-HAB-06 (SBIR): How can crews easily document human factors related issues that occur on orbit?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>PCBM-1</td>
<td>HCI</td>
<td>SHFE-HCI-02</td>
<td>PCBM-1: HPH Campaign Integrated Gap: What aspects of cognitive function change during long duration missions and are they related to neural structural changes?</td>
<td>SHFE-HCI-02: HPH Campaign Integrated Gap: What aspects of cognitive function change during long duration missions and are they related to neural structural changes?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>HCI-2</td>
<td>TASK</td>
<td>SHFE-TASK-02</td>
<td>HCI-2: What model-based HF tools can assist with the design and evaluations of spacecraft systems and task procedures?</td>
<td>SHFE-TASK-02: What model-based HF tools can assist with the design and evaluations of spacecraft systems and task procedures?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>HRI-1</td>
<td>HARI</td>
<td>SHFE-HARI-03</td>
<td>HRI-1: What guidelines and tools can we develop to enable system designers and mission planners to conduct systematic tasks needs analyses at the appropriate level of detail to allocate work among appropriate agents (human and automation)?</td>
<td>SHFE-HARI-03: What guidelines and tools can we develop to enable system designers and mission planners to conduct systematic tasks needs analyses at the appropriate level of detail to allocate work among appropriate agents (human and automation)?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>HRI-2</td>
<td>HARI</td>
<td>SHFE-HARI-02</td>
<td>HRI-2: How can performance, efficiency, and safety guidelines be developed for effective information sharing between humans and automation, such that appropriate trust and situation awareness is maintained?</td>
<td>SHFE-HARI-02: How can performance, efficiency, and safety guidelines be developed for effective information sharing between humans and automation, such that appropriate trust and situation awareness is maintained?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>SHFE 1.1.2.1.1</td>
<td>HARI</td>
<td>SHFE-HARI-03</td>
<td>SHFE 1.1.2.1.1: How can performance, efficiency, and safety guidelines be developed for appropriate task automation and the effective allocation of tasks between humans and automation?</td>
<td>SHFE-HARI-03: How can performance, efficiency, and safety guidelines be developed for appropriate task automation and the effective allocation of tasks between humans and automation?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>SHFE 1.1.2.2.1</td>
<td>HCI</td>
<td>SHFE-HCI-05</td>
<td>SHFE 1.1.2.2.1: How can we develop standard measurement techniques and metrics for evaluating the quality of user interfaces with specific attention to the usability of an interface?</td>
<td>SHFE-HCI-05: How can we develop standard measurement techniques and metrics for evaluating the quality of user interfaces with specific attention to the usability of an interface?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>UWS-1</td>
<td>TASK</td>
<td>SHFE-TASK-01</td>
<td>UWS-1: How can workload measures and tools be developed to unobtrusively monitor and trend workload throughout the mission design and verification cycle in a consistent manner</td>
<td>SHFE-TASK-01: How can workload measures and tools be developed to unobtrusively monitor and trend workload throughout the mission design and verification cycle in a consistent manner</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>PHYS-1</td>
<td>HAB</td>
<td>SHFE-HAS-01</td>
<td>PHYS-1: What validated acoustic model can predict the effect of structures, materials, crew and equipment on the acoustic environment of a spacecraft or habitat?</td>
<td>SHFE-HAD-01: What validated acoustic model can predict the effect of structures, materials, crew and equipment on the acoustic environment of a spacecraft or habitat?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>PHYS-2</td>
<td>HAB</td>
<td>SHFE-HAS-02</td>
<td>PHYS-2: What tools can be used to evaluate habitability concepts for on-orbit and planetary missions?</td>
<td>SHFE-HAD-02: What tools can be used to evaluate habitability concepts for on-orbit and planetary missions?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.1.8.1</td>
<td>HAB</td>
<td>SHFE-HAS-03</td>
<td>SHFE 2.1.8.1: How can we determine the effects of combined vibration and acceleration on task performance?</td>
<td>SHFE-HAD-03: How can we determine the effects of combined vibration and acceleration on task performance?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.3.b</td>
<td>HAB</td>
<td>SHFE-HAS-04</td>
<td>SHFE 2.3.b: How can existing models be modified to adequately represent the specified user population (e.g. field of view, visibility) in reduced gravity and be portable to other simulations environments?</td>
<td>SHFE-HAD-04: How can existing models be modified to adequately represent the specified user population (e.g. field of view, visibility) in reduced gravity and be portable to other simulations environments?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.3.1.1</td>
<td>HAB</td>
<td>SHFE-HAS-05</td>
<td>SHFE 2.3.1.1: What is the effect of microgravity on spiral elongation?</td>
<td>SHFE-HAD-05: What is the effect of microgravity on spiral elongation?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>SHFE 2.3.a</td>
<td>HAB</td>
<td>SHFE-HAS-06</td>
<td>SHFE 2.3.a (6R): How can crews easily document human factors related issues that occur on orbit?</td>
<td>SHFE-HAD-06 (6R): How can crews easily document human factors related issues that occur on orbit?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>HRI-1</td>
<td>HARI</td>
<td>SHFE-HAR-01</td>
<td>HRI-1: What guidelines and tools can we develop to enable system designers and mission planners to conduct systematic task/needs analysis at the appropriate level of detail to allocate work among appropriate agents (human and automation)?</td>
<td>SHFE-HARI-01: What guidelines and tools can we develop to enable system designers and mission planners to conduct systematic task/needs analysis at the appropriate level of detail to allocate work among appropriate agents (human and automation)?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>HRI-2</td>
<td>HARI</td>
<td>SHFE-HAR-02</td>
<td>HRI-2: How can performance, efficiency, and safety guidelines be developed for effective information sharing between humans and automation, such that appropriate trust and situation awareness is maintained?</td>
<td>SHFE-HARI-02: How can performance, efficiency, and safety guidelines be developed for effective information sharing between humans and automation, such that appropriate trust and situation awareness is maintained?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>SHFE 1.1.2.1.1</td>
<td>HARI</td>
<td>SHFE-HAR-03</td>
<td>SHFE 1.1.2.1.1: How can performance, efficiency, and safety guidelines be developed for appropriate task automation and the effective allocation of tasks between humans and automation?</td>
<td>SHFE-HARI-03: How can performance, efficiency, and safety guidelines be developed for appropriate task automation and the effective allocation of tasks between humans and automation?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>HIO-5</td>
<td>HARI</td>
<td>SHFE-HIO-02</td>
<td>HIO-5: What are the effects of the delays typical of different mission regimes on teleoperations and how do we mitigate these effects?</td>
<td>SHFE-HARI-04: What are the effects of the delays typical of different mission regimes on teleoperations and how do we mitigate these effects?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>HIO-5</td>
<td>HCI</td>
<td>SHFE-HIO-03</td>
<td>HIO-5: What are the effects of vibration and acceleration on crew task performance and how can these effects be mitigated?</td>
<td>SHFE-HIO-05: What are the effects of vibration and acceleration on crew task performance and how can these effects be mitigated?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>PCBH-1</td>
<td>HARI</td>
<td>SHFE-PCH-01</td>
<td>PCBH-1: BHP Campaign Integrated Gap: What aspects of cognitive function change during long duration missions and are related to neural structural changes?</td>
<td>SHFE-HCI-02: BHP Campaign Integrated Gap: What aspects of cognitive function change during long duration missions and are they related to neural structural changes?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>HIO-3</td>
<td>HCI</td>
<td>SHFE-HIO-04</td>
<td>HIO-3: Given the design constraints for cockpits and workstations, what HCI guidelines (e.g., display configuration, screen-navigation) enable the crew to perform tasks in a timely manner with minimal ergonomic problems, even when fatigued or deconditioned?</td>
<td>SHFE-HIO-03: Given the design constraints for cockpits and workstations, what HCI guidelines (e.g., display configuration, screen-navigation) enable the crew to perform tasks in a timely manner with minimal ergonomic problems, even when fatigued or deconditioned?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>HIO-8</td>
<td>HCI</td>
<td>SHFE-HIO-06</td>
<td>HIO-8: What are recommended applications of multi-modal or other displays and controls based on new technologies, within nominal and off-nominal conditions of the spacecraft environment? (display modalities list) What’s the best display for situation?</td>
<td>SHFE-HIO-04: What are recommended applications of multi-modal or other displays and controls based on new technologies, within nominal and off-nominal conditions of the spacecraft environment? What’s the best display for situation?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>SHFE 1.1.2.2.1</td>
<td>HCI</td>
<td>SHFE-HIO-07</td>
<td>SHFE 1.1.2.2.1: How can we develop standard measurement techniques and metrics for evaluating the quality of user interfaces with specific attention to the usability of an interface?</td>
<td>SHFE-HIO-05: How can we develop standard measurement techniques and metrics for evaluating the quality of user interfaces with specific attention to the usability of an interface?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.2.2.a</td>
<td>HCI</td>
<td>SHFE-HIO-08</td>
<td>SHFE 3.1.2.2.a: How do we ensure that the displays and control designs and technology developed for the operational environments meet the program performance and reduce errors?</td>
<td>SHFE-HIO-06: How do we ensure that the displays and control designs and technology developed for the operational environments meet the program performance and reduce errors?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.2.2.2.1</td>
<td>HCI</td>
<td>SHFE-HIO-09</td>
<td>SHFE 3.1.2.2.2.1 (DM11): Can crewmember spatiotemporal abilities be more accurately predicted and countermeasures and training techniques developed to mitigate spatial disorientation during spaceflight?</td>
<td>SHFE-HIO-07 (DM11): Can crewmember spatiotemporal abilities be more accurately predicted and countermeasures and training techniques developed to mitigate spatial disorientation during spaceflight?</td>
<td></td>
</tr>
<tr>
<td>Task Design</td>
<td>UWS-1</td>
<td>TS&K</td>
<td>SHFE-TASK-01</td>
<td>UWS-1: How can workload measures and tools be developed to unobtrusively monitor and trend workload throughout the mission design and verification cycle in a consistent manner?</td>
<td>SHFE-TASK-01: How can workload measures and tools be developed to unobtrusively monitor and trend workload throughout the mission design and verification cycle in a consistent manner?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>HIO-2</td>
<td>TS&K</td>
<td>SHFE-TASK-02</td>
<td>HIO-2: What model-based HF tools can assist with the design and evaluations of spacecraft systems and task procedures?</td>
<td>SHFE-TASK-02: What model-based HF tools can assist with the design and evaluations of spacecraft systems and task procedures?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>3.1.2.a</td>
<td>TS&K</td>
<td>SHFE-TASK-03</td>
<td>3.1.2.a: How can we develop a capability for semi-autonomous planning and dynamically replanning of crew schedules be developed?</td>
<td>SHFE-TASK-03: How can we develop a capability for semi-autonomous planning and dynamically replanning of crew schedules be developed?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.1.a</td>
<td>TS&K</td>
<td>SHFE-TRAIN-01</td>
<td>SHFE 3.1.1.a: How can we develop objective training measures to determine operator proficiency during and after ground training?</td>
<td>SHFE-TRAIN-01: How can we develop objective training measures to determine operator proficiency during and after ground training?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.1.b</td>
<td>TRAIN</td>
<td>SHFE-TRAIN-02</td>
<td>SHFE 3.1.1.b: How do we develop training methods and tools for space medical application if time is minimal?</td>
<td>SHFE-TRAIN-02: How do we develop training methods and tools for space medical application if time is minimal?</td>
<td></td>
</tr>
<tr>
<td>Inadequate Information</td>
<td>SHFE 3.1.1.c</td>
<td>TRAIN</td>
<td>SHFE-TRAIN-03</td>
<td>SHFE 3.1.1.c: How can onboard training systems be designed to address just in time (JIT) and recurrent training needs for nominal and off nominal scenarios?</td>
<td>SHFE-TRAIN-03: How can onboard training systems be designed to address just in time (JIT) and recurrent training needs for nominal and off nominal scenarios?</td>
<td></td>
</tr>
</tbody>
</table>
DoD’s HFACS Based on Reason’s “Swiss Cheese Model of Human Error
SHFE Research and HFACS

• The primary focus of SHFE research is on Preconditions
 – minimize the likelihood of these preconditions through relevant research
• We have the knowledge to control some preconditions; further research is not required
 – This knowledge is captured in the Human System Integration Requirements and the Space Flight Human Systems Standards, vol 2
 – We don’t know enough about other preconditions to ensure they won’t occur, especially for long duration
• Two SHFE topics, workload and training, are captured at the Organizational Influences level
DOD HFACS

Risk of injury or inefficiency due to human error

Organizational Influences

Resource / Acquisition Mgmt
Organizational Climate
Organizational Process

Ops Tempo / Workload
Organizational Training Issues / Programs

Supervision

Inadequate Supervision
Planned Inappropriate Operations
Failure to Correct Known Problem
Supervisory Violation

Preconditions

Environmental Factors (Phys & Tech)
Condition of Individuals
Personnel Factors

Acts
Errors
Violations

SHFE research risks fall here.
The two highest HFACS tiers (Organizational Influences and Supervision) are generally policy level or organizational level factors
- These need to be addressed in order to implement a safety program or a risk reduction program
- These are generally beyond the current scope of the SHFE Project (and HRP)

Some categories are entirely within the domain of SHFE, while some categories are shared with other HRP Elements

Some of the HFACS categories are primarily the province of other HRP Elements
- Psycho-Behavioral Factors, Adverse Physiological States, Sensorimotor Adaptation, Self-Imposed Stress
Status of Evidence Reports and RMAT Vetting

• Draft Evidence Reports have been completed; Final versions scheduled for completion in May, to allow for Export Control processing prior to HRP’s NRA solicitation.

• All new Risks entered in the RMAT system
• CR presented to HSRB
 – RID resolution close to completion