STABLE CHLORINE ISOTOPE STUDY OF MARTIAN SHERGOTTITES AND NAKHLITES: WHOLE ROCK AND ACID LEACHATES AND RESIDUES.

N. Nakamura1,6, L. E. Nyquist1, Y. Reese2, C-Y Shih3, T. Fujitani4 and O. Okano5. 1NASA Johnson Space Center, ARES Mail Code KR, 2101 NASA Pkwy, Houston, TX 77058, USA (noboru.nakamura@nasa.gov); 2Mail Code JE-23, ESCG/Muniz Engineering, Houston, TX 77058. 3ESCG Jacobs-Sverdrup, Houston, TX 77058. 4Marine Tech. College, Ashiya 659, Japan; 5Okayama University, Okayama 700,Japan, 6Kobe University, Nada, Kobe 657, Japan (nakamuransjp@yahoo.co.jp).

Introduction: We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS technique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars.

Experimental: Whole rocks of Zagami (shergottite, basalt), Nakhla (nakhlite, basalt) and MIL 03346 (nakhlite, basalt) and 1N-HNO3 leachates and residues of Zagami and MIL samples were examined for chlorine contents by ion chromatography and isotopic composition by TIMS in this work. The 1N-HNO3 leaching was carried out at room temperature for 15-20 hrs. Bulk and residue samples were analyzed for chlorine isotopes after treatment by HF leaching, AgCl precipitation and Cs-form resin. Isotopic analyses of leachates were also carried out by a similar method without HF-treatment.

Results and Discussion: Leaching effect- The 2nd Zagami sample subjected to leaching experiments shows higher total Cl abundance (160 ppm) compared to the 1st sample (114 ppm) reported at 42th LPSC [1], but rather similar abundance to that of Dreibus et al. [5] (145 ppm). About 60% of total chlorine in the bulk sample was leached out in the 1N-HNO3 fraction, indicating that major parts of chlorine exist in soluble phases (for example, chlorapatite) in Zagami. On the other hand, only 20% of bulk MIL chlorine (221 ppm) was leached out in the acid fraction.

Chlorine isotopic composition- Our Orgueil (CI) results show significantly smaller δ^{37}ClSMOC compared to that of Sharp et al. (δ^{37}ClSMOC =-1.2‰) [4] but still within the range of δ^{37}ClSMOC values reported by the New Mexico Univ. group [6]. Bulk Zagami, shergottite, shows δ^{37}ClSMOC almost the same as seawater. On the other hand, Zagami leachate and two bulk nakhlites (Nakhla and MIL03346) show relatively similar δ^{37}ClSMOC values (1.5±0.5‰). In Martian meteorites, the acid leachates were considered to be derived from more leachable components such as fluids, suggesting that they might represent Martian crustal components [7].