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ABSTRACT 
 
The objective of this study is to examine the effect of flight, at off-design conditions, on 
the propagated sonic boom pressure signatures of a small “low-boom” supersonic 
aircraft. The amplification, or focusing, of the low magnitude “shaped” signatures 
produced by maneuvers such as the accelerations from transonic to supersonic speeds, 
climbs, turns, pull-up and pushovers is the concern.  To analyze these effects, new and/or 
improved theoretical tools have been developed, in addition to the use of existing 
methodology.  Several shaped signatures are considered in the application of these tools 
to the study of selected maneuvers and off-design conditions.  The results of these 
applications are reported in this paper as well as the details of the new analytical tools.  
Finally, the magnitude of the focused boom problem for “low boom” supersonic aircraft 
designs has been more accurately quantified and potential “mitigations” suggested.  In 
general, “shaped boom” signatures, designed for cruise flight, such as asymmetric and 
symmetric flat-top and initial-shock ramp waveforms retain their basic shape during 
transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms 
provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric 
flat-top signatures. 
 

STUDY STRUCTURE 
 
The present study involved six (6) tasks that are listed below: 

Task 1 - Identify Aircraft and Maneuvers 

Task 2 - Parametric Representation of F-function 

Task 3 - Sonic Boom Analysis Tool Update 

Task 4 - Focus Condition Study 

Task 5 - Improved Focal Zone Signature Analysis 

Task 6 - Operational Approaches for Focus Mitigation 

 

                             2 



                                                                                                                                                                                       3

    OVERVIEW

A low-boom supersonic cruise aircraft is optimized for cruise conditions. Off-design conditions will hap-
pen during climb to cruise altitude and descent. Particularly loud booms can occur under focus conditions.
Focus will occur during initial transition to supersonic flight and can also occur as a result of turns, accel-
eration or pushover maneuvers during supersonic flight. The conditions that cause focus booms depend
only on the atmosphere and the kinematics of the aircraft’s trajectory. However, the signature at focus
depends on the aircraft configuration and the characteristics of the shaped signature it produces entering
the focus region. Focus signatures for supersonic turns during cruise conditions are expected to be similar
to the cruise design shape. For the transition focus, the signature is not expected to have aged to the steady
state carpet boom condition but still may contain many of the same characteristics as the carpet boom.

PCBoom41 currently computes the propagation of a sonic boom through the atmosphere, including the
signatures at focus for arbitrary maneuvers. Focus signatures are computed by applying the Gill and
Seebass2 numeric focus solution for a step function shock to each shock in the signature entering the focal
zone using Guiraud’s3 scaling criteria. This is reasonable for N-waves, where the shocks are virtually
steps. Its applicability to complex minimized “shaped” signatures is questionable. A new numeric method
by Auger and Coulouvrat4 agreed with the PCBoom41 method for N-waves, but showed that two closely
spaced shocks in a non-N-wave boom interacted and were not amplified as much as the PCBoom41

method predicts. Consequently, one would expect that non-N-wave signatures would also deviate from
the PCBoom41 results.

PCBoom41 has been updated to include the six(6) parameter George-Seebass5 model to facilitate the
computation of the optimum design area distribution. A computer code based in part on the method of ref-
erence 4 has been produced and the focusing of a number of “shaped” signatures analyzed. In addition,
methodology has been formulated for determining the effective area distributions and F-functions at off-
design Mach numbers. 

The objective of the present study is to examine the influence of shaped sonic boom signatures on maneu-
ver focus booms with particular emphasis on the transition phase of flight from subsonic to supersonic
speeds.

APPROACH

In order to address the study objective, six(6) tasks were defined as follows:

Task 1 - Identify aircraft and maneuvers. A low-boom aircraft configuration will be selected. A
prime choice will be the supersonic business jet being studied by NASA Langley Research Center.
The aircraft’s flight envelope and nominal mission profile and range of in-flight maneuvers will be
obtained.

Task 2 - Parametric representation of F-function. The cruise F-function for the selected aircraft
will be defined such that it can be modeled by the six parameters of the George-Seebass5 model. The
parameters will be adjusted such that they are related to the cruise flight conditions of the aircraft.
With the calculation of the design lift distribution and thus the volume contribution, the F-function at
other conditions can be estimated with the new analysis tools developed. This task is presented in
Appendix A: “The Calculation of Design and Off-Design Effective area Distributions and F-Function
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for Minimum Boom Supersonic Cruise Aircraft” by Percy J. Bobbitt and Steven J. Massey,
Eagle Aeronutics, Inc.

Task 3 - Sonic boom analysis tool update. The source input/generation routines in Wyle Laborato-
ries Sonic Boom Prediction computer Program (PCBoom4)1 will be updated to accept the six
parameter F-function model as an input.  This task is presented in Appendix B:  “Incorporation of
George Seebass Signature into PC BOOM4” by Kenneth J. Plotkin, Wyle Laboratories.

Task 4 - Focus condition study. PCBoom41 will be run for the following cases. 
- Full Nominal Mission
- Focal Analysis For Variations of Transonic Acceleration.
- Climb, turns at cruise and descent-deceleration at end of cruise. 
This task is presented in Appendix C:  “Focus Condition Study” by Kenneth J. Plotkin, Wyle

Laboratories.

Task 5 - Improved focal zone signature analysis. A new computer code similar to that of Auger
and Coulouvrat4 will be formulated and applied to a variety of signature shapes to determine their
effect on the focus factor.  This task is presented in Appendix D:  “Development and Application
of a Transition Flight Sonic Boom Focusing Computer Code” by Osama Kandil and Xudong
Zheng, Old Dominion University.

Task 6 - Operational approaches for focus mitigation. Investigate operational methods to mini-
mize focus booms during transition from subsonic to supersonic speeds (e.g., varying acceleration
rates, climb angle and a caustic-elimination maneuver). Display sample “focus avoidance” opera-
tional charts for normal supersonic flight operations, for standard turns and descent-deceleration to
subsonic speeds.

Results and discussion of each of the above six(6) tasks will be provided in the following sections of this
report.
 
TASK 1 -   IDENTIFY AIRCRAFT AND MANEUVERS
The low-boom supersonic business jet (SBJ) configuration described by Mack6 has been selected for
this study. A three-view of the configuration along with a listing of some of its characteristics including
the cruise design low boom asymmetric initial-shock ramp type “shaped” signature is given in figure 1.
The aircraft is a highly swept arrow-wing configuration with two aft-mounted engines. It is 132.5 feet
long with a 55 foot wing span, 1560.25 square foot wing area, and has a gross takeoff weight of 99,435
pounds and an empty weight of 41,434 pounds. Design range with 10 passengers and crew of 2 is 4000
n.mi. at a design cruise Mach number of 2.0. Details of the airplane geometry, airplane flight envelope
and nominal mission profile were also obtained.

The SBJ initiates transition from subsonic to supersonic speeds (0.95-1.4) at constant altitude of 32,850
feet and with an acceleration rate of about 0.2 m/sec2. It continues to accelerate in a slight climb to M =
2 at about 41,000 feet, the start of cruise. From there it flies a constant Mach number and and at constant
 CL to 60,000 feet, the end of cruise. No maneuvers (i.e., turns) are included in the design mission. At 
the end of cruise, the SBJ decelerates from M = 2.0 to M = 1.0 at a nearly constant altitude of about
60,000 feet in order to avoid boom focusing. 
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With regards to in-flight maneuvers, three will be considered in this study: (1) accelerations from sub-
sonic to supersonic flight; (2) Mach 2 turns at cruise altitude; and (3) descent and deceleration at the end
of cruise flight. For the transition from subsonic to supersonic flight, values of acceleration rates from
0.2 m/sec2, through 2.5 m/sec2 are analyzed and three flight path angles, -1o, 0o, and +3o will be exam-
ined.   

 TASK 2 - PARAMETRIC REPRESENTATION OF F-FUNCTION
For this task, the cruise F-function for the selected aircraft was approximated so that it could be modeled
by the six parameter George-Seebass5 model. The parameters were adjusted so that they are related to the
cruise flight equivalent area distribution of the aircraft. This provided basic lift and volume contributions
such that the F-function at other flight-Mach number conditions can be estimated.

In the process of developing Task 2, which is described in detail in Appendix A,  an improvement  to
the Darden7 and Mack8 method for designing vehicles to have minimum boom shaped signatures at
cruise is made through simplification of the basic equation. In addition, a simple method for calculating
the lift distribution allows the effective area distribution due to volume at the design Mach number to be
rapidly evaluated.   A code that permits calculation of the equivalent volume at other Mach numbers
using the design Mach number volume distribution plus the “lift distribution” methodology allow the
total effective area distributions, and thus F-functions, for Mach numbers from the cruise value down to
the normal M = 1.0 cuts (actual geometry). To demonstrate this capability the design F-function (F) and
effective area (Ae) for an asymmetric flattop and initial-shock ramp configuration at M = 2.0 is shown in
figure 2 along with the same quantities calculated for M = 1.4. It can be seen that although the F-func-
tions for both M = 2.0 and M = 1.4 are quite similar. The influence of small inflections in the volume and
lift distributions, and thus the effective area distribution at M = 1.4, result in significant fluctuations in
the aft portions of the flattop and ramp F-functions.

TASK 3 - SONIC BOOM ANALYSIS TOOL UPDATE
As previously mentioned, the current focus signature technology implemented in PCBoom41 code is the
Gill and Seebass2 solution. It is applied as an incident step function to each shock in a signature entering
the focal zone using Guiraud’s3 scaling criteria. This has been successful for N-waves and thus, one
would believe it should be even more successful for the bow-shock of a flat-top, since that is closer to the
original step solution. It is not, however, clear how successful it would be for a minimum-shock ramp
signature. Auger and Coulouvrat4 recently examined both an N-wave and a Concorde type three-shock
sawtooth boom shape as input signature using a numeric code (see fig. 3). They showed that focusing of
the N-wave bow-shock is well represented by Gill-Seebass2 and Guiraud3. Amplification of the Con-
corde initial shocks are, however, considerably less than would be predicted by that method. Marchiano
and Coulouvrat9 also showed that for symmetrical multi-shock signatures, the focus factor is strongly
influenced by shock spacing (see fig. 4)

The thrust of this task is to update the source input/generation routines in the PCBoom41 computer pro-
gram to accept the six-parameter George-Seebass5 F-function model as an input. The details of this mod-
ification are given in Appendix B.  Parameters are in the form established by Darden7 and  George-
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Seebass5. Input is via a parameter file read in line with the main input data file. It is processed via
a subroutine, so this option is independent of future PCBoom updates. 

The updated code was used to compute the aging of the cruise designed asymmetric flattop and
ramp type signature developed under Task 2 “Parametric Representation of F-Functions.” Results
for the two shaped signatures are given in figure 5 for the steady-flight start of cruise condition of
M = 2 at 41,000 feet. It can be seen that the George-Seebass5 near-field F-function waveforms do
age as they propagate to the ground to become the designed asymmetric flattop and initial-shock
ramp signatures.
 
TASK 4 - FOCUS CONDITION STUDY
The updated PCBoom41 prediction code was used to obtain the boom signatures at ground level
for a standard atmosphere with no winds and for three specified airplane operating conditions or
maneuvers encountered during the nominal mission of the SBJ, (1) focal analysis for variations in
acceleration rates and climb angle during transition from subsonic to supersonic speeds, (2) turns
during cruise and (3) descent-deceleration to subsonic speeds. For the nominal mission, the air-
craft conducts transition flight at 32,850 feet accelerating to M = 1.4 at a rate of about 0.2 m/sec2,
then continues climb-acceleration to M = 2.0 at 41,000 feet, the start of cruise.   Cruise flight is
conducted at M = 2.0 and the airplane flies at a constant lift coefficient concluding at 60,000 feet,
the end of cruise. No turns are initiated during cruise flight. To preclude focus booms at the end of
cruise, the aircraft decelerates at 60,000 feet to M = 1.0 and then descends to landing. Analysis of
the sonic boom associated with transition flight are provided in Appendix C. 

Transonic acceleration was initiated at 32,850 feet for acceleration rates that varied from 0.2 m/
sec2 through 2.0 m/sec2 and for three climb angles of -1.0o, 0o, and 3o at acceleration rates of from
0.6 m/sec2 to 1.0 m/sec2. Two sample cases are given in figure 6 for transition flight at a constant
altitude of 32,850 feet and an acceleration rate of 0.6 m/sec2. Predicted ground signatures for the
asymmetric flat-top and initial-shock ramp designs, using PCBoom4, are shown at maximum
focus and for the carpet boom. It can be seen that both focus signatures show strong initial spikes.
The carpet boom signatures have essentially developed into an asymmetric flat-top and initial-
shock ramp shape. It should be noted that the strong initial spikes displayed at the maximum focus
are not a result of the initial spike designed into the near-field F-function but are associated with
the Gill-Seebass2 solution for an incident step function to each shock in the signature entering the
focal zone using Guiraud’s3 scaling criteria. 

Further examination of the influence of acceleration rate and climb angle will be presented later in
this study under Task 6 “Operational Approaches for Focus Mitigation” along with focus avoid-
ance operational charts regarding turns during cruise and descent-deceleration to subsonic speeds.

TASK 5 - IMPROVED FOCAL ZONE SIGNATURE ANALYSIS
Sonic boom focusing of N-wave type signatures has been addressed by several investigators.
Lansing10 applied acoustic theory through a graphical ray-tracing procedure to show the effects of
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supersonic flight maneuvers, such as sideslip, turns, dive and linear acceleration on the ground shock pat-
terns. Barger11 has studied the sonic boom wave shapes and caustic lines, which are generated by a
supersonic aircraft performing general turning and accelerating maneuvers, using a graphical method.
Hayes12 suggested the transition focus boom may be eliminated incorporating a push-over pull-up
maneuver (vertical acceleration) to cancel out the focusing caused by the forward acceleration. The cur-
rent focus signature methodology, implemented in PCBoom41, is to apply the Gill and Seebass2 solution
for an incident step function to each shock entering the focal zone using Guiraud’s3 scaling criteria. This
method has been successful for N-waves and should be even more successful for the bow-shock of an
asymmetric or symmetric flattop shaped signature since it is closer to the original step solution. It is not
clear how successful it would be for an asymmetric or symmetric initial-shock ramp signature.

Rosales13 and Tabak14 studied the focusing and caustics of weak shock waves using the method of
matched asymptotic expansions. They have concluded that the nonlinear Tricomi equation, which
describes the behavior of the shock fronts near caustics, does not appear to admit the triple shock inter-
sections, which have been observed experimentally. Coulouvrat15 has shown that the focusing of a weak
shock wave at a caustic is essentially a nonlinear phenomenon. He has shown that the nonlinear wave
equation is reduced to the Kusnetsov16 equation for the potential function so that the problem is numeri-
cally tractable.

Recently Auger and Coulouvrat4 have presented a numerical method to simulate the focusing of sonic
booms by solving the nonlinear Tricomi equation using an iterative algorithm, which is based on an
unsteady version of the equation with an artificial time variable. The numerical algorithm is a modifica-
tion of a pseudo spectral method. Their numerical scheme has been validated and has been applied to the
focusing of the Concorde aircraft sonic boom during acceleration from Mach 1 to Mach 2. Results using
their numerical method clearly demonstrate (see fig. 3) that other existing predictive methods, which
serve well when the incoming signature is assumed to be an N-wave or step function cannot handle the
multi-shock signature associated with Concorde transition flight. Marchiano and Coulouvrat9 further
illustrate the significance of spacing between the bow and second shock and signature symmetry on the
focus boom overpressure (see fig. 4).

The utility of the Auger-Coulouvrat4 and Marchiano-Coulouvrat9 nonlinear analyses for the focusing of
non N-wave signatures is clear. Therefore, this task was undertaken to develop a numerical code based
upon the Auger-Coulouvrat4 method for simulating shock wave focusing. A computational solver which
uses a two-step pseudospectral method was developed to solve the unsteady version of the nonlinear Tri-
comi equation. Algorithms, coding and testing of the schemes for the numerical solution of the unsteady
linear Tricomi equation in the time and frequency domain and the nonlinear Burgers’ equation using
shock capturing and shock fitting scheme have been programmed and checked. Details of the ODU com-
putational solver developed under this task is given in Appendix D along with applications to six
incoming shock wave signatures shown in figure 7 and include an N-wave, the Concorde three-shock and
four low-boom shaped signatures, an asymmetric and symmetric flat-top and an asymmetric and sym-
metric initial shock-ramp.
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The ODU developed numerical code was tested to confirm that it replicates the results obtained
by Auger-Coulouvrat4 for transition focus for an incoming N-wave signature and a Concorde type
multi-shock saw-tooth signature. The results are presented in figure 8. Signatures are shown for
four dimensionless distances in the region of the focus; post-focus of Z = 1.5 and Z = 0.5, at focus
of Zmax and at pre-focus of Z = -0.5. Figure 8(a) is for the incoming N-wave and figure 8(b) is for
the incoming Concorde type multi-shock saw-tooth waveform. Examination of the signatures of
figure 8 with those presented in figure 3 indicate consistency between the ODU developed numer-
ical code and Auger-Coulouvrat4. Both show that the multi-shock incoming signature results in
significantly reduced amplification of the bow shock focus overpressure as compared to the
incoming N-wave.

Next, the ODU numerical code was used to predict the signatures in the vicinity of the transition
focus boom for four low-boom shaped cruise signatures that included the asymmetrical and
symmetrical flat-top and asymmetrical and symmetrical initial-shock ramp type. Results are pre-
sented in figure 9 for both symmetrical signatures at the focus (Zmax) and post-focus (Z = 1.5),
(see also Appendix D).  Examination of figure 9 indicates that at the focus the  symmetrical
flat-top signature results in a bow-shock focus factor (defined herein as the ratio of the bow shock
overpressure at the focus location to the bow shock overpressure of the incoming signature) of
4.2. This value, which is nearly the same as would be realized for an incoming N-wave (see fig. 8)
was expected since the flat-top signature is essentially the Guiraud’s step function input. The
symmetrical initial-shock ramp signature, however, results in a bow shock focus factor of about
two-thirds of the flat-top or N-wave. This is due to the ramp delay time assigned to the shaped sig-
nature. Similar results were realized for the cases of asymmetric initial-shock flat-top and ramp
signatures (see Appendix D). 

A summary of the focus overpressures and focus factors for both the bow and tail shocks for all
six incoming signatures that were examined is given in figure 10. Figure 10(a) presents the pre-
dicted bow and tail focus overpressures resulting from the six incoming signatures having bow
and tail shock overpressures values shown in figure 7 and also by the signature sketches at the top
of the figure. The focus boom levels range from a maximum of about 9.6 psf for the N-wave tail
shock to a minimum of about 2.2 psf for the flat-top signatures. Note also that the overpressure
levels for the incoming signatures also ranged from a high of 2.56 psf for the N-wave tail shock to
the lowest of 0.5 psf for the flat-top signatures.

When the maximum positive shock of all six incoming signatures is normalized to 1.0 psf, the
resulting focus overpressures for bow and tail shocks is shown in figure 10(b). Here it can be seen
that the highest focus level of about 8.5 psf is associated with the asymmetric flat-top signature
and the lowest about 2.4 psf with the Concorde 3-shock waveform and the asymmetric and sym-
metric initial shock-ramp signatures at about 2.8 psf.

Focus factors for all six signatures are presented in figure 10(c) and are obtained by ratioing the
maximum bow and tail focus overpressures (shown in figure 10(a)) to the maximum bow and tail
overpressures of the incoming signatures (shown in fig. 7).     
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It can be seen from figure 10(c) that the lowest focus factors of the bow shock are associated with the
Concorde type multi-shock and asymmetric and symmetric initial shock ramp signatures. Note also that
the tail shock focus factors (defined herein as the ratio of the tail shock focus to the tail shock of the
incoming signature) are greater than the bow shock focus factors for all the incoming signatures with a
maximum of about 5.7 for the symmetric flat-top incoming signature. 

Some interesting features regarding the “post focus” region refracted signatures can be illustrated with
figure 11. Shown on the figure are the post-focus signatures (Z = 1.5) for all six incoming waveforms
considered in this study. Note that for all six incoming signatures, which includes an N-wave, the Con-
corde three-shock, and both the asymmetrical and symmetrical flat-top and initial-shock ramp signatures
remain essentially “U” shaped. In addition, the initial double shock of the Concorde incoming signature
is also evident on the refracted waveform (fig. 11(b)) and the larger tail shock of the asymmetric flattop
signature (see fig. 11(c)) is obvious on the refracted waveform. In fact, the refracted signature tail shock
is equal to, or larger than, the refracted bow shock in all six cases. Although not included in the present
report, the predicted refracted waveform for an incoming symmetrical ramp signature of 0.5 psf over-
pressure, 150 ms period and 30 ms rise times, is also “U” shaped.

TASK 6 - OPERATIONAL APPROACHES FOR FOCUS MITIGATION
The thrust of this task is to investigate operational methods to avoid focus booms reaching the ground
during the entire supersonic portion of flight of the small supersonic business jet. Any rapid deviation of
a vehicle from steady level flight conditions can produce considerable modifications in the location,
number and intensity of the ground shock wave patterns. For example, focus booms may result from a
supersonic climb-pushover maneuver, sideslips and turns during supersonic cruise and improper descent
deceleration schedules. Questions regarding focus booms range from, can they be avoided and con-
trolled to the size of the focus area and magnitude of the focus factor. 

For military operations, all of the above mentioned maneuvers may not be unavoidable. A comprehen-
sive study of maneuvers typical of a large SST-type airplane by Haglund and Kane17 showed that it is
possible to perform normal SST flight operations without producing focus booms except during the tran-
sonic acceleration phase of flight. Thus, for a commercially operated supersonic business jet, maneuvers
such as pull-ups, pushovers, sideslips and abrupt turns at supersonic speeds would be avoided and the
proper deceleration-descent schedule would be employed through the use of operational charts for focus
boom avoidance such as illustrated in figure 12 taken from Wanner, et al,18 and the work of Ribner19 for
turn maneuvers and Haglund and Kane17 for deceleration-descent.

Transition flight from subsonic to supersonic speeds, however, cannot be avoided and thus the focus
boom associated with this phase of flight can only be minimized, not eliminated. Considerable knowl-
edge has been acquired regarding the nature, prediction and measurement of transition focus booms for
N-wave design aircraft. These booms are very localized, affect relatively small regions on the ground
and unlike carpet booms from steady flight, are not “dragged” along behind the aircraft. Focus factors
ranging from 2 to 5 times the nominal carpet boom overpressure have been observed. 
 It has been demonstrated in flight tests that this transition focus region can be placed to within plus or
minus 1000 feet of the desired location if the vehicle performance and atmospheric conditions are known
(ref. 20). It should also be kept in mind that to have the continuously propagated shocks coalesce in an
orderly fashion to create a focus boom, the atmosphere must be quiescent. Atmospheric turbulence,
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especially in the lower layers, has been shown in flight tests to minimize focusing, and even
appeared to eliminate it in some cases (refs. 21 and 22).

Haglund and Kane23 have examined flight test data involving acceleration rates of 0.04 g to 0.10
g that suggests that a method to alleviate the transonic accelerating caustic is to accelerate rather
slowly. They concluded, however, that based upon current prediction methods at that time, there
was no method available for calculating the variation of caustic intensity with acceleration magni-
tude even though the limited experimental data did suggest a pronounced effect on caustic inten-
sity. Recently, Auger and Coulouvrat4 concluded that acceleration rate and altitude have very little
influence on ground track focusing (see Table 1, Pa

-max column) for the range of accelerations and
Mach numbers that they examined.

Another obvious method of reducing the intensity of the focus boom during transition flight is to
climb while accelerating. Such a maneuver increases the Mach number and altitude at which the
focus boom is generated and increases the length of the ray path along which the focus travels
resulting in a decrease of the pressure level of the incoming carpet boom signature. In a number of
past studies regarding supersonic vehicle concepts, the transition phase of flight usually dictated
engine size in terms of engine thrust. Transonic climb-accelerations were usually limited to less
than one-degree due to engine thrust limitations. In the present study, transition flight was exam-
ined for the four incoming signatures including an N-wave, double peaked N-wave, flat top and
ramp for climb angles of -1o, 0o (level flight) and + 3o and for acceleration rates that varied from
0.6 m/sec2 through 1.0 m/sec2. The effect of acceleration rate, flight path angle and altitude on
boom focussing is shown in figures 13 and 14, respectively, text and figures from a data set in
Appendix C.  The aircraft initiates transition flight at 32,850 feet altitude at an accelerate rate  of
0.6 m/sec2 for climb angles of -1o, 0o, (level flight) and + 3.0o. As such, the focus for the -1 and
+3 degree profiles occur at altitudes other than 32,850 feet. 

As stated in Appendix C,  each figure has two parts.  Part “a” shows the bow-shock overpressure
as a function of acceleration for level flight, three-degree climb, and one degree dive. The results
are shown as curves for each flight path angle. Part “b” shows the bow shock overpressure as a
function of altitude. Results in that part are shown as points, without regard to acceleration rate of
flight path angle.

Note that in Part “a” of each figure, the bow-shock overpressures for level flight and one degree
dive do not vary substantially with acceleration while the bow-shock overpressures for the three
degree climb increases with increasing acceleration. The trend for the three degree climb is not,
however, an acceleration effect. It is an altitude effect: for lower acceleration rates the aircraft
reaches higher altitudes before the focus occurs. Part “b” of each figure shows that the strongest
parameter is altitude. There is some variation in the cluster of results around each altitude, but the
biggest effect is that amplitudes are smaller at higher altitudes.
 In 1971, Hayes12 suggested the transition focus boom may be eliminated incorporating a push-
over pull-up maneuver (vertical acceleration) to cancel out the focusing caused by the forward
acceleration. Haglund and Kane23 examined the maneuver and concluded that the maneuver as
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envisioned by Hayes12 should be reversed, that the maneuver should be a pull-up followed by a push-
over in order to eliminate the caustic at the ground. In their study they described the mechanism of caus-
tic elimination and gave an indication of its feasibility for commercial SST operation. They identified
several problems which included the excessive thrust required to perform the transition maneuver for a
commercial SST and noted that the caustic elimination maneuver they examined was not optimized for
maneuver thrust margin. They noted that the most crucial problem is the “suddenness” of the pull-up and
pushover maneuver that must be initiated to terminate focusing. This must be accomplished just before
threshold (cut-off) Mach number is reached, which can vary from 1.0 to over 1.3 depending upon the
atmospheric conditions between the airplane and the ground. They concluded that more study is required
to assess the feasibility of the maneuver.

Since SBJ’s may incorporate a greater level of excess thrust, and given that significant advancements
have been made on flight control-operational systems and rapid access to meteorological information, it
was decided to re-examine the Hayes12 caustic-elimination maneuver using PCBoom41. The results of
this effort,  described in Appendix C,  offer little encouragement that such a maneuver is realistic for
commercial operations and for the same reasons cited previously. 

Some thought has been given to incorporating a slow and mild roll-oscillation maneuver during transi-
tion flight to disburse/diffuse/smear the focus boom over a wider swath to each side of the ground track.
It is recommended that considerably more thought and effort go into examining such maneuvers.

 
 CONCLUDING REMARKS

A study has been undertaken to determine the influence of shaped sonic boom signatures from a small
supersonic business jet on maneuver focus booms with particular emphasis on the transition phase of
flight from subsonic to supersonic speeds. Six incoming boom waveforms were utilized in the study
including an N-wave, a saw-tooth three-shock signature, an asymmetric flat-top and initial-shock ramp
signatures and a symmetrical flat-top and minimum-shock ramp signatures. Aircraft maneuvers included
variations of transition rates of accelerations, climb-to-cruise, turns at cruise and descent-deceleration to
subsonic speed. Focus booms were predicted using the sonic boom prediction computer program,
PCBoom41, which was updated for this study to accept the six-parameter Seebass/George5 F-function
model as an input (see Appendix B) and now allows inclusion of non-N-wave shaped signatures.
 
In addition, a numerical code has been developed by ODU (see Appendix D) with the objective of
simulating the transition focus boom results of the Auger-Coulouvrat4 numeric method for an incoming
N-wave and three-shock sawtooth signatures. Comparison of the two numeric methods show that similar
results were obtained with the ODU code with respect to the nature of the signatures in the pre-, post-,
and focus-regions and the resulting magnitudes of the focus boom. Lower values are observed for the
non N-wave Concorde sawtooth type input signature. The ODU code was then applied to the asymmetri-
cal and symmetrical flat-top and initial-shock ramp “shaped” signatures to investigate the nonlinear
focusing associated with these four incoming shaped signatures. Both the symmetric and asymmetric
flat-top signatures, as expected, exhibited similar focus factor of an incoming N-wave. For the cases of
symmetrical and asymmetrical initial-shock ramp signatures, a bow shape focus-factor of about two-
thirds of that of an N-wave or flat-top were observed. In all cases, the tail shock focus-factor was always
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greater. In the post focus region all six of the incoming signatures considered show that the
refracted waveforms are still “U” shape. Although not included in the present report, the predicted
refracted waveform for an incoming symmetrical ramp signature of 0.5 psf overpressure, 150 ms
period and 30 ms rise times, is also “U” shaped.

The various sections of Appendix A  collectively provide a method of determining  F-function
and  area  distributions,  at off design Mach numbers,  for  configurations that  have  optimum
flat-top and ramp-type signatures, as well as other shapes, at the design Mach number. When
these methods were applied, at lower off-design Mach numbers, it was found that the overall char-
acter of the off-design signature is similar to that at the design cruise Mach numbers. Many have
thought that at these low off-design Mach numbers that the signature would degenerate to N-
waves but that is not the case. This would seem to have positive implications for reducing the
magnitude of focussed booms at low Mach numbers. Also,  in Appendix A,  an equation is devel-
oped that allows one to determine the actual maximum cross-sectional area (normal cuts) from the
volume contribution (fuselage) to maximum effective cross-sectional area at the design Mach
number. In other words, a simple way is provided to determine if an optimum design has enough
volume in the cabin for people.

A number of operational approaches for focus mitigation were also examined with regards to the
operation of small supersonic business jets (see Appendix C). It is obvious that with the excep-
tion of transition flight, such a vehicle can and should operate in such a manner as to completely
avoid generating focus booms throughout its flight profile. Minimization, and even elimination,
of transition focus booms have been examined in the past and re-examined in this study using
PCBoom41. It is found that the focus boom can be minimized by initiating transition at higher
altitudes and increasing climb angle. Acceleration rates have been found to have little influence.
A revisiting of the Hayes12 caustic-eliminating maneuver involving a pushover-pull-up maneuver
is still considered impractical based upon current aircraft performance capabilities. There may be
a possibility of minimizing the focus during transition by means of a maneuver involving a mild
oscillating roll. 

      REFERENCES

1. Plotkin, K. J.; and Grandi, F.: Computer Models for Sonic Boom Analysis: PCBoom4,
CABoom, BooMap, CORBoom.   Wyle Rept. WR 02-11, June 2002.

2. Gill, P. M. and Seebass, A. R.: Nonlinear Acoustic Behavior at a Caustic: An Approximate
Analytical Solution. Aeroacoustics: Fan, STOL, and Boundary Layer Noise; Sonic Boom;
Aeroacoustic Instrumentation, Henry T. Nagamatsu, ed., American Inst. of Aeronautics and
Astronautics, c. 1975, pp. 353-386 (also AIAA Paper 73-1037, 1973).

3. Guiraud, J. P.: Acoustique Geoemtrique, Bruit Balistique Des Avions Supersoniques et Focal-
ization. J. Mech., vol. 4, no. 2, June 1965, pp. 215-267.

4. Auger T. and Coulouvrat, F.: Numerical Simulation of Sonic Boom Focusing. AIAA Jour.
Vol. 40, No. 9, Sept. 2002, pp. 1726-1734.

5. George, A. R., and Seebass, A. R.: Sonic Boom Minimization Including Both Front and Rear
Shocks. AIAA Journal, 9(10), pp, 2091-2093. Oct. 1971.

6. Mack, Robert J.: A Supersonic Business-Jet Concept Designed for Low Sonic Boom. NASA
TM-2003-212435, Oct. 2003



                                                                                                                                                                                       13

7. Darden, Christine A.:Sonic Boom Minimization with Nose-Bluntness Relaxation. NASA TP
1348, 1979. 

8. Mack, R. J. and Darden, C. M.: A Wind-Tunnel Investigation of the Validity of a Sonic
Boom Minimization Concept. NASA TP-1421, 1979.

9. Marchiano, R. and Coulouvrat, F.: Numerical Simulation of Shock Wave Focusing at Fold
Caustics with Application to Sonic Boom. J. Acoust. Soc. Am. 114(4), Pt. 1, Oct. 2003, pp.
1758-1771.

10. Lansing, D. L.: Application of Acoustic Theory to Prediction of Sonic-Boom Ground Pat-
terns from Maneuvering Aircraft. NASA TN-D-1860. Oct. 1964.

11. Barger, R. L.: Sonic-Boom Wave-Front Shapes and Curvatures Associated With Maneuver-
ing Flight. NASA TP 1511, Dec. 1979.

12. Hayes, Wallace D.: Sonic boom. Annual Review of Fluid Mechanics. Vol. III, M. Van Dyke
et al, Eds. Annual Review, Inc. (Palo Alto, CA), 1971, pp. 269-290.

13. Rosales, R. R. and Tabak, E. G.: Caustics of Weak Shock Waves. Phys. of Flds., Vol. 10,
1998, pp. 206-222, Jan. 1998.

14. Tabak, E. G.; and Rosales, R. R.: Focusing of Weak Shock Waves and the von Neumann Par-
adox of Oblique Shock Reflection. Phys. of Flds., Vol. 6, May 1994, pp. 1874-1892.

15. Coulouvrat, F.: Focusing of Weak Acoustic Shock Waves at a Caustic Cusp. Wave Motion.
Vol. 32, 2000, pp. 233-245.

16. Kuznetsov, V. P.: Equations of Nonlinear Acoustics. Soviet Physical Acoustics. Vol. 16,
1970, pp. 467-470.

17. Haglund, G. T. and Kane, E. J.: Effect of SST Operational Maneuvers on Sonic Boom. J. Air-
craft, Aug. 1972, pp. 563-568.

18. Wanner, J.C.L.; Vallee, J.; Vivier, C.; and Thery, C.: Theoretical and Experimental Studies of
the Focus of Sonic Boom. Proceedings of the Second Sonic Boom Symposium (1970), J.
Acous. Soc. Am., Vol. 52, No. 1, 1972, pp. 52-71.

19. Ribner, H. S.: Supersonic Turns Without Superbooms. UTIAS Technical Note No. 174, also
AFOSR-TR-0239, Jan. 1972.

20. Downing, J. M.; Zamot, N.; Moss, C.; Morin, D.; Wolski, E.; Chung, S.; Plotkin, K.; and
Maglieri D. J.: Measurement of Controlled Focused Sonic Booms From Maneuvering Air-
craft. J. Acoust. Soc. Am., 104(1), 112-121, July 1998.

21. Maglieri, D. J.; Hilton, D. A.; and McLeod, N. J.:   Further Experiments of Atmospheric
Retraction and Aircraft Accelerations on Sonic Boom Ground Pressure Patterns. NASA TN-
D-3520, July 1966.

22. Downing, Micah; Zamot, Noel; Moss, Chris; Moran, Daniel; Wolski, E.; Chung, Sukhway;
Plotkin, Kenneth; and Maglieri, Domenic J.: USAF Flight Investigation of Focused Sonic
Booms. Project “Have Bears,” NASA CP-3335, pp. 259-277, July, 1996.

23. Haglund, George T. and Kane, Edward J.: Analysis of Sonic Boom Measurements Near
Shock Wave Extremities for Flight Near Mach 1.0 and For Airplane Accelerations. NASA
CR 2417, July 1974.



                                                                                                                                                                                       14

 

Symbols:
   = measurements of nonlinear effects relative to diffraction

        = maximum amplitude of dimensionless acoustic pressure
p0    = ambient pressure at rest
z    = dimensionless distance to the caustic

Table 1: Influence of acceleration rate and altitude on focusing during transition flight in 
standard atmosphere. Concorde sawtooth type incoming signature (from ref. 4).

Acceleration
 Mach  P0,Pa pmax,Pa

Boundary-layer 
thickness, m

11.500 m

0.2
0.4
0.6
0.8
1.0

1.161
1.1742
1.1881
1.2018
1.2149

0.0751
0.0746
0.0772
0.0793
0.0799

2.9047
2.8053
2.8635
2.8794
2.9219

51.5933
51.9724
52.0731
51.8124
52.9147

149.8631
145.7982
149.1113
149.1886
154.6115

0.1026
0.1037
0.1043
0.1009
0.1037

500.3414
484.4704
479.8086
479.1981
462.7679

12.000 m

0.2
0.4
0.6
0.8
1.0

1.1611
1.1745
1.1887
1.2026
1.2160

0.0689
0.0738
0.0750
0.0764
0.0773

2.8343
2.9534
2.8371
2.7920
2.8671

49.4604
48.8129
49.2570
49.9749
50.4399

140.1856
144.1640
139.7470
139.5299
144.6162

0.0980
0.1020
0.1032
0.1066
0.1026

489.1740
498.4926
487.3308
474.4114
465.8065

12.500 m

0.2
0.4
0.6
0.8
1.0

1.1611
1.1747
1.1892
1.2034
1.2172

0.0728
0.0725
0.0759
0.7490
0.0730

2.9222
2.9063
2.9127
2.7785
2.8975

46.1063
47.4471
46.8411
47.0229
47.9370

134.7318
137.8955
136.4341
130.6531
138.8975

0.0992
0.1009
0.1026
0.0997
0.9970

523.8691
494.0023
501.0383
488.0990
465.1803

m s 2–
Pa

max
z Pa

max
 

Pa
max
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(a) Three-view of low boom SBJ concept.

 (b) Airplane characteristics.
  

(c) Design ground signature.

Figure 1. - Low boom supersonic business jet concept selected for study (from ref. 6).

Length 132.5 ft.

Span 55 ft.

Wing Area 1560.25 ft.2

TOGW 99,435 lbs.

OEW 41,434 lbs.

Range 4000 n. mi.

Cruise Mach 2.0
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 (a)  Asymmetric flat-top configuration.
 

(b) Asymmetric initial-shock ramp configuration.

 Figure 2. - Comparison of F-functions and equivalent area distributions for two
                 configurations at M = 1.4 and M = 2.0

Mach = 1.4 Mach = 2.0

Mach = 1.4 Mach = 2.0
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dimensionless phase variable
Comparison between analytical (---) and numerical (__) solutions in the linear case at z = 1.5, 1, 0 (caustic), 

and -0.5 (shadow) for incoming N-wave..
 

dimensionless phase variable
Numerical simulation of Concorde sonic boom ground track focusing due to constant acceleration (0.6 ms-2) and 

horizontal flight (altitude 12 km) in standard atmosphere: incoming signal and dimensionless simulations
        at three different distances.

Figure 3. - Influence of incoming sonic boom signature on focus boom during transition 
flight (from ref. 4).
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 (dimensionless time)
“Optimized” signal where the nose and leading edge shocks have not yet merged.

 Interval between the two shocks, T (dimensionless time).

Maximal overpressure as a function of the time interval between the nose  and the leading edge shocks.

Figure 4. - Effect of shock-spacing on focus boom overpressure for a symmetrical multi-sonic boom
                      incoming signature during transition flights (from ref. 9).
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(a) F-functions.
                   

                                 Time, msec                                                        Time, msec
(b) Ground signatures

Figure 5. - Aging of F-functions for two shaped configurations using PCBoom4 for
                               M = 2.0 and 41,000 ft. altitude.

Asymmetric flat-top Asymmetric initial-shock ramp
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                                    Time, milliseconds                                           Time, milliseconds
 

                        (a) Asymmetric flat-top                                                    (b)    Asymmetric initial-shock ramp

Figure 6. - Predicted focus and carpet boom signatures during transition flight using
                              PCBoom4. Level flight at 32,850 ft. altitude and an acceleration rate of 0.6 m/sec2.
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Figure 7. - Descriptions of six incoming signatures examined using 
                  Old Dominion numerical code.

Symmetric N-wave. Concorde three shock.

Asymmetric  flat-top. Symmetric  ramp.

Asymmetric initial shock ramp. Symmetric initial shock ramp.
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(a) N-wave incoming signature. 

 (b) Concorde three-shock saw-tooth incoming signature.

 Figure 8. - Predicted signatures for level transition flight for an N-wave and Concorde 3-shock incoming signatures 
using Old Dominion University numerical code.

z=1.5            zmax

Z=0.5 Z= -0.5

z=max

z=0.5 z = -0.5

z=1.5
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(a) Symmetrical flat-top incoming signature.

(b) Symmetrical initial-shock ramp incoming signature.

Figure 9. - Predicted signatures at maximum focus and post-focus during transition
                               using the Old Dominion University (ODU) code.
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Figure 10. - Summary of predicted bow and tail shock focus overpressures and focus factor associated with six sonic 
boom signatures. Horizontal flight at 12 km altitude and constant acceleration rate of 0.6 ms. 
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Figure 11. - Pressure variation for various incoming signatures in the post-focus region (Z=1.5)
 and nf = 20,000 steps.

(a)  N-wave. (b) Concorde 3-shock.

(c) Asymmetric  flat-top. (d) Asymmetric initial-shock ramp.

(e) Symmetric flat-top.  (f) Symmetric initial-shock ramp.
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(a) Maximum authorized bank angle in order to avoid focus during turn maneuvers (ref. 18).

(b) Pushover requirements for caustic formation on the ground (ref. 17).

Figure 12. - Examples of focus boom avoidance operational charts.

 

relation between bank angle  and

above 11 km (36,000 ft.)

rate of change of heading versus
Mach number for standard atm
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(a) Effect of acceleration on overpressure for three flight path angles.

(b) Effect of altitude on overpressure.

Figure 13. - Effect of acceleration, flight path angle and altitude on overpressure for
                             a double peak N-wave signature.
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Acceleration, m/sec2

(a) Effect of acceleration on overpressure for three flight path angles.
 

Altitude, kft
(b) Effect of altitude on overpressure

Figure 14. - Effect of acceleration, flight path angle and altitude on overpressure
                                   for a ramp signature.

One degree descent
Level flight

Three degree climb

Ramp
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 Appendix A

The Calculation of Design and Off-Design Effective Area
Distributions and F-Function for Minimum Boom Supersonic-Cruise Aircraft

     by Percy J. Bobbitt and Steven J. Massey
                         Eagle Aeronautics, Inc.

The aerodynamic design of low-boom supersonic cruise aircraft can be carried out in a number
of ways. An aircraft’s lines can be laid out using “common sense” principals with the knowl-
edge that a long slender, lightly loaded design is more likely to have a lower boom than a heav-
ily loaded design with a “modestly” swept wing. It is also known that being slender is not a
guarantee of a low boom. The “right” longitudinal distribution of the combined volume and lift
is critical, independent of how it is achieved. Different levels of technology can also be used
singularly or in combination.   The whole job can be done using Euler and Navier Stokes CFD
codes coupled with the appropriate grid software and optimization schemes. It can also be done
using a combination of CFD and “Mach-plane-cut” technology where the overall effective vol-
ume (Mach cuts) and lift distributions are driven toward a theoretically defined optimum distri-
bution. The latter being one that yields a flat-top, ramp-type, or a combination of these two,
sonic booms with low initial and tail shock strengths. It also should be one permitting a realistic
diameter fuselage and lift distribution necessary for the anticipated start-of-cruise-weight. The
simple equation

allows one to estimate the effective area due to lift at the design point at the downstream end of
the configuration. Since W = lift, the angle of attack required to produce the necessary lift can
also be determined from a variation of lift with angle of attack. The latter can be obtained using
a CFD code or,  in preliminary design,  linear methodology.  In Section B of this appendix, a
linear method for determining the longitudinal accumulation of lift for highly swept wings is
described.

The optimum total effective area distribution required for a “starting point”, when the first-cut
configuration lay-out and weight estimates have been made, can be calculated using Darden’s
equations and program contained in reference 1  of Section A of this appendix.  An F-function
and associated total effective area distribution must be defined iteratively to insure that once the
effective area distribution due to lift has been determined and subtracted from the total optimum
area distribution that the volume distribution remaining is sufficient for both the wing and fuse-
lage.

It must be remembered that the optimum design is at the design Mach number and the combined
wing and fuselage volume contribution is a result of taking Mach-plane cuts at that Mach num-
ber and/or from the use of methodology like that of Darden in Reference 1 of Section A. If the
Mach-plane cuts of a pre-defined fuselage and wing, plus the effective area distribution due to
lift do not match the optimum, then modifications must be made or the optimum redefined.

W
2q


---------Ae =
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Another and simpler approach is to leave the fuselage lines undefined initially and determined
them by successively redefining the optimum and subtracting out the lift distribution until a real-
istic volume distribution is achieved. This latter step, however, requires that the design-Mach
effective area distribution can somehow be used to determine the normal or Mach 1.0 cuts (the
actual geometry). In section C a method is presented to accomplish this.

Once volume and lift distributions are achieved that are adequate (realistic) and conform to the
optimum, then the effective distributions of volume and lift, and hence total effective area, for
other Mach numbers can be determined.   These effective area distributions can be used in turn to
determine the F-function for these off design Mach numbers. 

The equations for these tasks are defined in subsequent sections where in some cases existing
methodology is refined and in others new derivations are offered.

There are five subsequent sections that treat the following subjects:
A. Effective Area Distribution and Design Parameters for a Supersonic Executive Jet.
B. Effective Area Distribution due to Lift for a Slender Wing With Subsonic Leading

Edges.
C. Determination of Basic (M = 1) Axisymmetric Geometry

From the Design Effective Volume Distribution.
D. Method of Determining F-Function at Off-Design Mach Numbers.
E. Effective Area and F-Function Distribution for Executive Jet at Off-Design

Mach Numbers.

Section E uses the methodology of Sections A, B. C. and D to calculate the total Ae and the asso-
ciated F functions for Mach numbers of 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, and 2.0.

There is no attempt in this appendix to design an optimum,  low boom aircraft.  However, the
quantities used in the F-function analyses do yield an aircraft of usable dimensions. The various
sections, collectively, provide a method of determining the F-function and area distributions, at
off design Mach numbers, for configurations that have optimum flat-top and ramp-type signa-
tures, as well as other shapes, at the design Mach number. When these methods were applied, at
lower off design Mach numbers, they showed that the “optimum” configurations still maintained
their basic flat-top and ramp-type F-function signature shapes. This capability could be useful in
determining the acceleration focused booms of configurations which have flat-top or ramp-type
F-function signatures at the design Mach number

Finally, a simple equation is developed in Section C that allows one to determine the actual maxi-
mum cross-sectional area (normal cuts) from the maximum effective cross-sectional area at the
design Mach number.
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A.  Effective area Distribution and Design Parameters for a Supersonic Executive Jet 

The definition of an optimum flat-top or ramp signature begins with the effective area-distribution 
equation of Darden (ref. 1).  

 (Note in subsequent equations the y coordinate in equation (A1) has been changed to x.)

where  is the Heaviside unit step function. Equation (A1) derives from the integral equa-
tion for Ae(r) based on the F-function defined initially by Seebass and George in reference 2 and 
further developed by Darden in reference 1. This integral equation is given below.

with the F-function defined as
Fx = 2xH/xf 0 < x < xf/2                              ( A3a)
Fx = C(2x/xf - 1) - H(2x/xf - 2) xf/2 < x < xf                             (A3b)
Fx = B(x - xf) + C xf < x <                                    (A3c)
Fx = B(x - xf) - D     < x < l                                (A3d)

A typical form of the resulting area distribution Ae is seen in figure A1 from reference 1.  A dis-
cussion of the original formulation of the F-function and associated code is given in Appendix B. 
 

The equation above can be simplified to

which, because of its compactness, enables better insight into the effect of the various parameters 
on the distribution Ae and the value at x = l. The latter is particularly important since the distribu-
tion of Ae due to lift (a component of the total  Ae) is usually known and its maximum value 
which is at the wing trailing edge is maintained downstream (see sketch).

(A1)

1 x x– 

Ae x  A F
o

x

   1 – 1 2 d= (A2)

Ae x  32
15
------Hx5 2

xf
--------------- 1 x

xf
2
----– 

  16
15
------ x

xf
2
----– 

 
5 2 2H C–

xf 2
----------------- 
 –= (A4)

1+ x xr– 16
15
------ x xf– 5 2 2H 2C–

xf
--------------------- B+ 
  1 x – 8

3
--- x – 3 2 C D+ –
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Another aspect of the compact form of Ae is that it shows that the area on the compression side of
the signature, controlled by the first three terms, varies as the five halves power of x.

Thus the maximum of the effective volume contribution (Ae,v = Ae - Ae,l) as well as the length of 
the configuration can be controlled. This is aided by the following equation which relates the 
maximum cross-sectional area of the basic configuration to the maximum effective volume at the 
design Mach number (derived in Section C entitled “Determination of Basic (M=1) Axisymmetric 
Geometry from the Design Effective Volume Distribution”).
 

This equation can also be used to insure that the basic configuration has the required size. Note
that   includes  all configuration components. 

To illustrate the use of these equations, the optimum Ae distribution, yielding a flat-top sonic
boom, for a supersonic executive jet at M = 2.0 is plotted in figure A2 along with the associated F-
function. The F-function parameters that yield the effective area distribution of figure A2 are
given in the table A1 below.  See figure A1 for the relationship of the parameters H, xf, , C, D,
B, and l to the F-function.

Aev
 

M 1=

Aev
 DesignMach

M
-----------------------------------------------= (A5)

Aev
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  Table A1. - Values of quantities required to define F-function for 
flat-top signature case.

The weight of this aircraft at the start of cruise is 90,500 pounds and the start-of-cruise altitude is 
41,000 feet. A plot of the propagated flat-top pressure signature on the ground (sonic boom) for 
this aircraft is shown in figure A3.

A similar analysis was carried out for an aircraft with the ramp-type signature where the F-func-
tion had the following input parameters and values listed in table A2.

Table A2. - Values of quantities required to define F-function for first ramp 
signature case.  

F-Function 
Parameters

H = 0.2
yf = 8

C = 0.03
D = 0.13969
B = 0
 = 102
l = 132

F-function at x = 132 and 
beyond

x F
132 0.130
134 0.130
135 0.109
136 0.0945
137 0.0845
138 0.07716
139 0.07143
140 0.06682
141 0.06300
142 0.05976

F-Function Parameters

H = 0.2
yf = 4

C = 0.02
D = 0.128076312
B = 0.00022
 = 102
l = 132

F-Function at x = 132 
and beyond

x F

132 0.142

134 0.142

135 0.11406

136 0.9878

137 0.08835

138 0.08065

139 0.07467

140 0.06985

141 0.06585

142 0.06247
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The weight, altitude and Mach number are the same as the “flat-top” case. A plot of the total Ae
and the associated F-function for the ramp case is given in figure A4. The propagated signature on
the ground, yielded by the above F-function, is shown in figure A5. The maximum Ae for this
case is approximately 95. When the effective area due to lift is subtracted, the remaining area dis-
tribution due to volume was determined, using equation  (A5),  to be too small for a realistic exec-
utive aircraft. When using an optimum area distribution, such as that provided by equation (A4),
this is one of the checks that must be made. Consequently, a “second” ramp type configuration
and F-function were defined with the following higher B, C, and D Values.

B = 0.00025
C = 0.025
D = 0.181196935

With respect to  the first ramp-signature case the value of D was adjusted to yield a more negative
value of F at x = 132 of -0.15. A plot of the Ae and associated F- function for the second ramp-sig-
nature case is given in figure A6. Note that the maximum Ae value has increased to 110 which is
comparable to the flat- top signature case (Figure A2). The propagated signature on the ground for
this case is shown in figure A7. It is evident from figure A7, with the increase in volume over the
first ramp-case, that the initial shock strength, the maximum pressure, and the trailing shock
strength have all increased. However, the initial shock strength is still substantially lower than that
of the flat top (Figure A3).

Reference 1:  Darden, Christine A.: Sonic Boom Minimization with Noise Blunted Relaxation.
NASA TP-1348, 1979.
Reference 2:  Seebass R.; and George, A. R.:  Sonic Boom Minimization, Jour. Acous. Soc. of
America, Vol. 51, No. 2 (Part 3), 1972

Figure A1. - Illustration of the theoretical concepts of near-field sonic boom (ref. 1).

xr

xf
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Figure A2. - Variation of the total effective area (Ae) and the associated F-function with x for the flat-top 
configuration for the parameters of Table A1.  M = 2.0, W =90,500 lbs., h = 41,000 feet.  

Figure A3. - Flat-top pressure signature on the ground for a supersonic executive jet for the start of cruise conditions 
and optimum F-function. M = 2.0, W =90,500 lbs., h = 41,000 feet.
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.

 Figure A4. - Variation of the total effective area (Ae) and associated ramp F-function with x for the parameters of 
Table A2.  M = 2.0, W = 90,500 lbs., and h = 41,000 ft.   

  .

Figure A5. - Ramp-type signature on the ground for a supersonic executive jet for the start of cruise 
conditions and optimum F-function.  M = 2.0, W = 90,500 lbs., and h = 41,000 feet.
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Figure A6. - Variation of the total effective area (Ae) and associated F-function with x
for the second ramp-type signature.  M = 2., W = 90,500 lbs, and h = 41,000 ft.

 

Figure A7. - “Second” ramp-type signature on the ground for a  supersonic executive jet for the start of cruise 
conditions and optimum f-function.  M = 2.0, W =90,500 lbs., h = 41,000 feet.
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B. Effective Area Distribution Due to Lift for a Slender Wing With Subsonic Leading
Edges.
 
The lifting pressure on a triangular wing with subsonic leading edges is from C. E. Brown in
NACA TN 1183 (1946). 

 where

and E (1-2c2) is an elliptic integral of the second kind and plotted in figure B1. A convenient
curve fit to the variation of  E(1-2c2) with  c  is

The total lift in coefficient form, on the wing is given by

or

p
q
------- 4c2

c2 h2– 
1 2

E 1 2c2– 
----------------------------------------------------------= (B1)

c s
x
-- 

h y
x
--=

tan= =

y

x

s



C

E 1 2c2–  1 0.2452 c 0.3496 c 2++=

CL
1
S
---

o

C


P
q
-------

x tan–

x tan

 dxdy= (B2)
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 with  and C is the wing chord.

Carrying out the integration yields

However, if one is interested in the accumulation of lift force itself as required for the equivalent
effective area distribution due to lift, then one requires the variation of lift with longitudinal dis-
tance, i.e., 

where the apex is at x = 0. The equivalent effective area due to lift required for determining the F-
function is given by

with L(x) given by equation (5).

Carrying out the integration yields

If instead of a triangular wing a cranked delta or a swept wing with a “segmented” leading edge is
selected, such as in the bottom of figure B2., then equations for L(x) and  must account for
this segmentation. Note that the wing at the bottom of figure B2 is an approximation, i.e., a three
segment leading edge, of the wing with the smoothly varying leading edge sweep at the top of fig-
ure B2.   An approximate method is utilized which assumes that this pressure distribution is coni-
cal downstream of each segment with a virtual apex on the root chord, i.e, at x6 and x7 in figure
B3. Furthermore, in the present calculations the wing tip is assumed to go to a point (see fig. B3).
While this yields a trivial increase in area for the wing under consideration it allows a simplifica-
tion of the methodology. 

With the aforementioned assumption the following equations are obtained for the effective area
distribution due to lift

CL
4 tan

C2E 1 2c2– 
------------------------------------

o

C


x tan–

x tan

= xdxdy

x2 tan 2 y2–
---------------------------------- (B3)

S C tan=

CL
2 tan

E 1 2c2– 
-----------------------------= (B4)

L x  4 tan 2x
E 1 2c2– 
-----------------------------q= o x C  (B5)

Ae l


2q
--------- L

o

x

 x dx= (B6)

Ae l
 tan 2x2

E 1 2c2– 
------------------------------= (B7)

Ae l
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.

  

where E(cn) is the “short form” for E(1-2cn
2).

Equation 10 includes the lift in the trailing edge notch from x4 to x5. Consequently, it must be sub-
tracted by use of the following equation.

Ae l
 2 x x1– 2tan

E c1 
----------------------------------------------= x1 x x2  (B8)

Ae l 
x2 x1– 2 2tan

E Bc1 
-------------------------------------

x x2–  x x2 2x6–+  2tan 2
E c2 

------------------------------------------------------------------------

+=

(B9)x2< x < x3

Ae l 
x2 x1– 2 tan 21

E c1 2  
------------------------------------------- +=

x3 x2–  x3 x2 2x6–+  2 2tan
E c2 

-----------------------------------------------------------------------------

x x3–  x x3 2x7–+  23tan
E c3 

------------------------------------------------------------------------+ x3 x x5  (B10)

Ae l 2– 
23tan

E c3 
------------------- ---





x x7–  2 1–sin
x x7 c1–– k1

x x7–
-----------------------------------= +

c1k1
x x7– 2– k1

2 1–  2 x x7– c1k1
2 c1

2 k1
2–+

k1
2 1– 

-----------------------------------------------------------------------------------------------------------------

c1k1
2

k1
2 1– 

3 2
----------------------------- 1–sin

x x7–  k1
2 1–  c1k1

2– 
c1k1

--------------------------------------------------------------–

 



                                                                                                                                                                 A-13

where  and  .                                          

The angle of attack in equations (B8) to (B11) is unknown so the calculation is made of 

and the angle of attack determined from the values of      at x5, using the following equations

 

so

The value of  is determined from the sum of equations (B10) and (B11) at x = x5.

The wing lift calculations do not include the fuselage. However, there is some compensation that
occurs that make the longitudinal distribution of lift calculated using the wing-alone equations
still reasonably accurate. When the wing span is small with respect to fuselage diameter, the body
acts like an infinite reflection plane and the wing lift distribution is essentially like that of the
wing alone (see tip of figure B4).

When the wing span is large relative to the fuselage diameter, more lift is lost on the wing near the
fuselage relative to the large body case, however, the lift on the body is higher,  as illustrated in
figure B4 and the longitudinal distribution of lift is not much different from the wing alone. The
level of the distribution is dictated by the angle-of-attack which is adjusted to make the total lift
equal to the weight of the aircraft. Consequently, the longitudinal distribution of lift calculated for
the wing alone, for both large and small body diameters, is a reasonable approximation of that for
the wing on a fuselage even though the spanwise details may vary. 

Figure B5 gives the variation of the Mach 2.0 effective area due to lift with longitudinal distance.
At x2 = 65 where there is an abrupt change in slope of the leading edge, there is a corresponding
change in slope of the variation of Ae,l with x. The equations for the F-function, however, assume
a continuously varying Ae,l. Thus, it is convenient to “fillet” this discontinuity in slope of the Ae,l
variation, as illustrated in figure B6. This implies that there is also a small geometrical fillet

c1

k1
2 1– 

---------------------
c1k1

2

k1
2 1– 

3 2
-----------------------------– 1–sin 1
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----- ---
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

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
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2q
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Ae l

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 
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----------------------------------------=
(B12)

Ae l


--------- 
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employed in the area of the change in slope of the leading edge. A similar change occurs at x3 but
it is much less severe.

Figure B1. -The value of the function of  versus c.

Figure B2. - Supersonic executive transport wing with continuously varying sweep and its
 “approximation” with a “segmented” leading edge.

1 2c2– 
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Figure B3. - Schematic of wing/body defining symbols, angles and dimensions.

Table of Dimensions and Angles

x1 = 32.5 1  = 6o

x2 = 65.0 


x3 = 83.5 


x4 = 102.0 


x5 = 118.5

x6 = 52.5

x7 = 64.225
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 Figure B4.- Schematic comparing pressures for wing alone and wing body for small and large bodies. 
p in the figure is Pupper-Plower.  

Figure B5. - Variation of effective area due to lift with longitudinal distance for M = 2.0. 
 W = 90,500 lbs, h = 41,000 feet.



                                                                                                                                                                 A-17

Figure B6. - Plot showing the “filleting” of the slope discontinuity in the variation of Ae with x

 
Section C. Determination of Basic (M = 1) Axisymmetric Geometry From the Design Effec-
tive Volume Distribution.

Assume that over a small streamwise distance the geometry of a section of the effective circular 
body can be approximated by a linear frustum

 

With this local linear approximation of r(x) we obtain

x

rn x  An Bn x xn– += (C1)
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Note that A is the difference approximation of rn and B of .  With the cross-section of the 

body defined by

and with the Mach plane cutting the body defined by
 

the equation for the boundary of the area cut by the Mach plane is

Solving for  y we obtain

Defining x - xn =      and factoring equation (C6), we get

An
rn 1+ xn xn 1––  rn 1– xn 1+ xn– +

xn 1+ xn 1––
--------------------------------------------------------------------------------------= (C2)

Bn
rn 1+ rn 1––
xn 1+ xn 1––
------------------------------= (C3 )

drn
dx
--------

y2 z2 r2 x =+ (C4)

z
x xn– 


------------------

and  M2 1–=

=

y2 An Bn x xn– + 2 x xn– 2

2
---------------------–= (C5)

y An
2 2AnBn x xn–  Bn

2 1
2
-----– 

  x xn– 2++
1 2

= (C6)

x
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which indicates that  y  goes to zero at .

The cross-sectional area of the ellipse cut by the Mach plane is
 

where the integration over the half plane (see crossed-hatched area in sketch) is doubled.

 With ds =  .  The Ae equation becomes

 

 where  y  is given by equation (C6).

Carrying out the integration of equation (C8) yields, after a lot of simplification

We note that    and    so that equation (C9) can also be written

y An
1

--- Bn– 
  x– An

1

--- Bn+ 
  x+= (C7)

x A
1

--- B+
-------------–= and A

1

--- B–
-------------

Ae 2 y ds=

Mdx


-----------

Ae
2M


-------- y
An

1

--- Bn+
-------------------–

An
1

--- Bn–
---------------

 dx= (C8)

Ae
MAn

2

1 2Bn
2– 

3 2
------------------------------------= (C9)

An rn Bn
drn
dx
-------
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where rn is the unknown radius of the basic body of revolution, i.e., the Mach = 1.0, or normal cut. 
The variation of Ae with x   for the design Mach number is known.

For any  x  location, the value of  rn+1, required in equations (C2) and (C3), is not known. 
However, we can solve for rn+1 using equation (C9) where we know rn-1, i.e., at x = 0.

With n = 2 we find xn-1 = x1 = 0 and rn-1 = rl = 0 (see sketch).  
and xn+1 = x3 and rn+1 = r3.

Equation (C2) for A2 (i.e. is for n = 2) becomes

and equation (C3) for B2

 
With x1 = r1 = 0, equations (C11) and (C12) for A2 and B2 reduce to 

Ae
Mrn

2

1 2 drn
dx
------- 
 

2
–

3 2
-------------------------------------------= (C10)

A2
r1 x3 x2–  r3 x2 x1– +

x3 x1–
-----------------------------------------------------------= (C11)

B2
r3 r– 1
x3 x1–
----------------= (C12)

A2
r3x2
x3

----------= (C13)
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and

Substituting  A2 and B2 from equations (C13) and (C14) into equation (C19) yields

Equation (C15) can be solved directly or iteratively for r3, however, a more exact solution is possi-
ble by taking advantage of the fact that Ae varies as x5/2, from x = 0 to x = yf /2. Consequently,
one would expect the basic area distribution (Mach = 1.0 cuts) to have the same type of depen-
dency. 

If we assume

and

Then equation (C10) becomes

By defining  

B2
r3
x3
-----= (C14)

Ae2


r3x2
x3

---------- 
  2

M

1 2 r3
x3
----- 
  2

–
3 2

-----------------------------------------= (C15)

rn Knx5 4= (C16)

drn
dx
------- 5

4
---Knx1 4= (C17)

Aen

MKn
2 x5 2

1 5
4
---x1 4
 
  2

Kn
2–

3 2
---------------------------------------------------------= (C18)

k1 Aen Mx5 2= (C19)
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and 

then the solution of equation (C8) for Kn can be written as
 

with 

Substituting Kn back into equation (C16) yields the value for rn.  Equations (C16) and (C21)
should be useful for x values up to xf/2  i.e.,  for xf = 8, x values up to 4.0.

Beyond this point one must revert to solving equation (C9) for rn+1 using an iterative technique
where successive guesses for rn+1 are made until equation (C9) is satisfied.  Actually, since the cal-
culation of rn+1 is a “bootstrap” calculation with each step depending on the last, it is more accu-
rate to use a slightly different  form of equation (C9), i.e.,

Equation (C2) and (C3) are  required for An  and Bn while for unequal x values, the following
equation for Bn is preferable to equation (C3).

It has been found that the iterative “bootstrap” calculation (starting at x = 0) for rn+1 beyond the
maximum value of rn+1 tends to become unstable. Consequently, the calculation for rn+1 beyond
the maximum value is made starting at x = 1 and working back to the maximum value of rn+1.  In
this case, it is assumed that the variation  of  with x near x = 1 is linear thus the value of

 required to start the calculation is determined in an iterative  fashion from 

k2
5
4
---x1 4
 
  2

= (C20)
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1 2Bn
2– 
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------------------------------------= (C22)
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rn 1+ rn–  xn xn 1–– 2 rn rn 1––  xn 1+ xn– 2+

xn 1+ xn 1––  xn 1+ xn–  xn xn 1–– 
--------------------------------------------------------------------------------------------------------------------------= (C23)

Ae

rnmax 2–
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which is a simple variation of equation (C15).  

Once the basic (M = 1.0 cuts) body of revolution is determined one can determine the effective
area distribution for other Mach numbers by simply substituting the appropriate Mach number
and basic body  r  values in equation (C9) with An and Bn given by equations (C2) and (C23).

Finally, it should be noted that when rn is a maximum and  that equation (C10) reduced to 

or

 

D. Method of Determining F-function at Off-Design Mach Numbers 

The basic F function is determined by 

Integration of equation (D1) in this section is done primarily using a simple numerical scheme,
however, the first three x stations i.e., with xm equal to x1 to x, take advantage of the functional
character of Ae and are done analytically.    

Ae
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 
 
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 Consistent with the first term of equation (A1) of Section A, it is assumed that

thus

Substituting this equation for in equation (D1) and integrating yields

in non-dimensional form, equation (D4) becomes

where

Note that in equation (D4) k has the units of .

Equation (D5) will be used for the first three intervals of and the length of each interval 

is specified as 0.01. The actual center points of each interval are then  = 0.005,  = 0.015  
and  = 0.025  with m = 1, 2, 3 and the normalized overall length being 1.0. 

Ae k55 2= (D2)
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Thus, 

and the value of  at    for use in the subsequent  equation for values of 
is 

It is important to note that choosing that choosing  implies that    is 0.06 (see equa-

tions (A3) in Section A) so that an  of  0.03 covers the initial half of the spike from 0 to 
 at the start of the F-function distribution (see fig. A1).  Furthermore, this  value of 

0.06 was chosen because higher values of  do not yield any additional drag benefit (see fig. 8 

of ref. 1). Obviously other values of   can be used but the interval from 0 to  should 
be divided into equal segments.

To determine values of beyond values of 3 the equation for F(x) ( in non-dimensional 
form) has been integrated by parts to yield 

                                                                                                                                
 The integration in equation (D7) is carried out numerically so that equation (D7) can be recast, 
with  as 
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or with from equation (D3) 

                                                                                                                             
                                                                                                                             
Values of  for 4 < n < nmax -1 are determined from

For  for n = nmax - 1 and n = nmax use 

 The numerical integration has the following features:

• Numerical integration scheme uses values of    at points x4, x5, x6...xn, etc. at middle  of 
increments (see sketch below)

• Points are equally spaced apart

• Equations for of   result from cubic spline curve fits 

• Values of        for nmax and n max - 1 are evaluated by a different equation. 
• Integration for each station m starts at n = 4 and ends at n=m 
• Contribution of integral from x = 0 to 0.03 added as a separate term.
• mmax = nmax at .
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While the integration above was for  and x increments of 0.01 in regions where there is large cur-
vature, higher resolution may be required.    calculations, using equations (D12) and 
(D13) should be made using smaller increments than 0.01 to make this determination.   Inade-
quate resolution can result in unrealistic spikes in the F-function that often are mistaken for 
shocks.

E. Effective Area and F-Function Distribution for Executive Jet at Off Design
Mach Numbers. 

The analytical equations of the previous section have been utilized to determine the basic geome-
try (M = 1 Mach cuts) of the flat-top and ramp configurations whose F-functions and associated
effective area distributions (Ae) were described in Section A. Using the equations of Section C,
the basic geometry (M = 1.0 normal cuts) and effective volume distributions for Mach numbers of
1.2, 1.3, 1.4, 1.5, 1.6, 1.8 and 2.0 were obtained. To these were added the effective lift distribution
determined using the equations of Section B. The sum of these two effective area distributions are
then used in the F-function equations of Section D. The flight conditions and associated parame-
ters used for, and determined from, the lift calculations are given in Table E1.

Results for the flat top configuration will be examined first. Figure E1 shows the variation with x
of the equivalent area and its lift and volume components for the M = 2.0 flat-top configuration.
Figure E2 shows the radius of the basic (M = 1 normal cuts) axisymmetric body determined from
the Mach 2.0 volume distribution. Is also shows the associated area distribution. Included in these
distributions are the contributions of both the wing and fuselage. The effective volume and lift
distribution and associated totals for Mach numbers of 1.2 to 1.8 are given in figures E3a through
E3f. The total Ae distribution for these Mach numbers have been substituted in the equations of
Section D to determine the F-function for the same array of Mach numbers. Plots of these F-func-
tions are given in figures E4a through E4g for Mach 1.2 through 2.0. It is interesting to note that
the character of the F-functions for all of the Mach numbers is similar from x = 0 to around x =
60. Beyond x = 60 the signatures become irregular and around x = 100 change sign from positive
to negative. Beyond x  they are also irregular (oscillatory). There are several reasons for
these "bumps and dips". One is the inflections in the basic body caused by inflections in the M = 2
effective volume distribution which, in turn, was caused by the M = 2 lift distribution and its
inflections when it was subtracted from the total to obtain the volume component.   Included in
these inflections are those due to the peak lift, the end of lift (at x and the breaks in leading
edge slope.

These inflections in the effective body at the off design Mach numbers do not line up with those in
the lift distribution calculated for those same Mach numbers when the two components are added.
Since the F-function is dependent on the third derivative of the total Ae curve, it is not possible to
look at the plots of Ae and see all of the “bumps and dips.” It is clear, however, that the overall
character of the off-design F-functions for the flat-top design is similar to that at the design Mach
numbers. Many have thought that at these low off design Mach numbers that the signature would
degenerate to N-waves, but that is not the case. This would seem to have positive implications for
reducing the magnitude of the transition focus booms at low Mach numbers.

Ae n 
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The F-function for the flat-top design was slightly modified to produce a ramp signature on the
ground.   The parameters used for the design are given in Section A. Of particular interest is the
value of C  which was reduced from 0.03 for the flat top signature to 0.02 with the thought that the
resulting increase in slope of the F-function from yf to would move the maximum volume fur-
ther toward the rear. Unfortunately, the resulting reduction in the magnitude of the F-function for
xf to  had the effect of reducing its magnitude of  Ae over the whole length.  Figure E5,  which
gives the total Ae and its lift and volume components for the ramp design, shows this effect when
compared to figure E1 for a flat-top. When the basic volume distribution (M = 1 normal cuts) is
calculated from the M = 2 effective volume distribution, it shows (see figure E6) that it is really
too small to be a viable concept. 

As noted in Section A, a “second” ramp type Ae and associated ground signature were “designed”
to make the volume component comparable to that of the flat-top configuration. Figure E7 shows
variation of Ae with x (see also  figure A6) as well as the effective lift and volume components for
this second ramp type configuration at M = 2.0. It is clear that if one compares this effective vol-
ume distribution to that of the flat-top configuration (figure E1) it is nearly the same in magnitude.
Consequently, the actual geometries are also similar as evidenced by comparing figures E8 and
E2.

The off-design lift and volume components, for Mach numbers from 1.2 to 1.8, for the “second”
ramp-type configuration are given in figure E9a to E9f. F-function distributions for the off- design
conditions for M from Mach numbers 1.2 through 2.0 are given in Figures E10a to E10g.

   Table E1. - Flight and Lift-Coefficient Parameters

M h w  , deg. CL
CL,

per deg.

1.2 32850 94300 556.00 2.924 0.1087 0.0372
1.3 32850 93750 652.55 2.5767 0.0921 0.0357
1.4 32850 93270 756.81 2.2974 0.0790 0.0344
1.5 32850 92900 868.79 2.055 0.0685 0.0333
1.6 32850 92570 980.51 1.891 0.0605 0.0320
1.8 37230 91593 1015.25 1.90836 0.0578 0.0303
2.0 41000 90500 1045.60 1.9518 0.0555 0.0284

Sref = 1560.25 ft.2

q
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 Figure E1. - Variation of Ae and its lift and volume components for the
flat-top configuration M = 2.0, W = 90,500 lbs. and h = 41,000 feet

 

Figure E2. - Variation of the basic body (M = 1) radius and area with x 
for the flat-top configuration.

Ae

X

Ae Total, Volume and Lift versus X for Mach 2.0

Ae

Ae r versus X for Mach = 1.0 Body

Ae(r)
r

r

 



                                                                                                                                                                 A-30

 

Figure E3. - Variations of the total effective area and its lift and volume components with
x for a range of off design Mach numbers from 1.2 to 1.8 for the flat-top configuration.

Figure E3. - Continued.

Ae

Ae
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Figure E3. - Continued.

 Figure E3. - Continued.

Ae

Ae Total Volume and Lift vs x for Mach = 1.5
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Figure E3. - Continued.

Figure E3. - Concluded.
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Figure E4. - Variations of the total effective area (Ae) distributions with x and the resulting
F-functions for Mach numbers from 1.2 to 2.0 for the flat-top configuration.

Figure E4. - Continued.
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Figure E4. - Continued.

Figure E4. - Continued.
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Figure E4. - Continued.

Figure E4. - Continued.

Ae.F vs x for Mach = 1.8.
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Figure E4. -Concluded.

 Figure E5. - Variations of the total effective area distribution and its lift and volume
components, with x for the ramp configuration at the design Mach number of 2.0

W = 90,500 lbs. and h = 41,000 ft.

Ae Total, Volume and Lift vs x for Mach 2.0.
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Figure E6. - Variation of the basic body (M = 1 cuts) radius and area with x for the ramp configuration.
 
    

Figure E7. - Variation of Ae and its lift and volume components for the second ramp-type
configuration, M = 2.0, W = 90,500 lbs. and h = 41,000 ft.

      Ae Total, Volume and Lift vs x for Mach = 2.0
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Figure E8. - Variation of the basic-body (M = 1) radius and area with x for the
second ramp-type configuration.

Figure E9. - Variations of the total effective area and its lift and volume components with x for a range 
of design Mach numbers from 1.2 to 1.8 for the second ramp-type configuration.

     Ae, r vs x for Mach = 1.0 Body

      Ae Total, Volume and Lift vs x for Mach = 1.2
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 Figure E9. - Continued.

Figure E9. - Continued.

    Ae total, Volume and Lift vs x for Mach = 1.3
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Figure E9. - Continued.

Figure E9. - Continued.
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Figure E9. - Concluded.

Figure E10. - Variations of the total effective area (Ae) distributions with x and the 
resulting F-functions for Mach numbers from 1.2 to 2.0 for the “second” ramp-type configuration.
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 Figure E10. - Continued.

Figure E10. - Continued.
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Figure E10. - Continued.

Figure E10. - Continued.
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Figure E10. - Continued.
 

Figure E10. - Concluded.
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 Appendix B

Incorporaton of George-Seebass Signature into PCBOOM4

By Kenneth J. Plotkin, Wyle Laboratories
   
George and Seebass1,2 define a parameterized F-function, sketched in Figure 1, that 
evolves into an optimal minimized flat-top or minimum-shock sonic boom signature.  The 
F-function up to aircraft length l is given by

(1)

The signature is defined by six parameters:

 A – the area of the initial nose spike
 B – the slope of the compression or (if zero) plateau regions
 C – F-intercept of the compression/plateau forward of 
 D – F-intercept of the compression/plateau aft of 
  – position of transition from forward positive to rear negative regions
 l  – vehicle length

For practical design applications, the nose delta function is generally represented as a
triangle, as sketched in Figure 1, with length yf and height H, such that A = 2H/yf  The
quantity yf is important in defining the initial shape of the aircraft nose, and is a key nose

bluntness parameter in Darden’s minimization studies3,4 (also see Appendix A).

The signature for y > l is defined, in closed form, by Equation (3) of Reference 1.  This is
based on the assumption of a constant area wake, and is also contained in References 5
and 6.

The slope B is the same for both the forward and aft compression/plateau regions, and is
selected such that the compression at the ground will be inaudible.  There is a maximum
value of B , which we denote here as B max, for which the compression regions will steepen
to vertical at the design point.  The actual slope B must be less than this, and the parameter
 is used to define the actual slope:  B  = B max.  The relation between  and the
audibility of the boom is not linear, so there is no particular criterion value for .  It is,
however, a useful parameter because the minimization analysis developed in References 1

   
                 ,

0    ,
lDB
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and 2 rely on limits involving  B max.  B max is related in a simple way to the age parameter
at the ground for the design condition.
 Figure 1, which replicates Figure 3 of Reference 2, includes dashed lines that appear to be
extensions of the slope B.  Those dashed lines are used as construction references in the
design point area balancing, and are always at slope B max.  The slope-B compressions in
Figure 1 happen to be drawn at  = 1.  Reference 3 contains a similar sketch, but with B at
a value corresponding to  < 1.  The quantity we denote B max is denoted s in Reference 1.

The quantity t shown in Figure 1 is the point where the tail wave intersects the B max slope
after l.  It is not an independent parameter, but is derived from the quantities defined
above.  Similarly, use of nose length H and yf instead of delta-function factor  does not
add another parameter, since A = Hyf/2 and optimization requires that yf is small enough
that the results are equivalent to those computed for a true delta function.

B.2. PCBoom4

PCBoom47 is a sonic boom program that has its roots in the NASA program originally
written by Thomas8 in 1972.  It has a number of extensions, including calculation of focus
signatures, automatic calculation of footprints from complete maneuvers and missions,
default F-functions for current supersonic aircraft, effects of rocket exhaust plumes,
multiple atmosphere input formats, multiple F-function input formats, and a modern
graphical user interface.  Executables run on a 32-bit Windows PC.

Application of the George-Seebass form of the F-function is via an F-function signature
input file in the normal stream of input data.

The main GUI interface to PCBoom4 is directed toward designers and planners dealing
with conventional N-wave aircraft, and operates the boom calculation in "simple" mode.
F-function input is not accessible through the GUI, but can be accessed in full mode from
the command line.  The GUI is reviewed here as background for general operation of the
program.  The GUI also provides a convenient method of generating trajectories.  The
GUI can be used to generate trajectories that can be used in command-line full mode runs.

The openly released version of PCBoom4 consists of the following programs:

PCB4win.exe - the main GUI
Maneuve.exe - maneuver generator
FOBoomw.exe - boom calculation program (Version 4.0)
PCBFootw.exe - post processor: organizes footprints and signatures
Wcon.exe - contour and signature display program
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These programs, together with samples, help files, and an electronic copy of Reference 7,
are in the PCB40 directory of the supplied PCBoom archive.  That directory is the current,
publicly available,  version of PCBoom4.

Operation of the program though the main GUI (PCB4win) is described in Reference 7.  A
PCB4win user will set up a case via various dialogs and menus.  If a trajectory is to be
created, PCB4win will invoke MANEUVE, which allows definition of trajectories via
dialogs and menus.  Once a case is set and the run is ordered, PCB4win will cause
FOBoomw and PCBFootw to run.  Those two programs are pure command-line batch-
mode executables, with no Windows API functions.  After they run, PCB4win will invoke
Wcon, which interactively displays footprints and signatures.  Wcon can output footprints
and signatures to a printer, as cgm (computer graphics metafile) graphic files, or as ASCII
tables.  Signatures may be viewed (and output) as time series or in spectral form.  Wcon
can generate and display signatures that have penetrated below the surface of a body of
water.

PCB4win operates FOBoomw by writing a file, type ".DAT", that is the input to
FOBoomw.  PCBfootw operates on a file output from FOBoomw, and Wcon operates on
files written by PCBFootw.  Because of its intended use by planners (not researchers),
PCB4win accesses only a fraction of FOBoomw's capabilities.  Full capability may be
accessed by manually writing the DAT file, then running PCBooomw, PCBfootw and
Wcon from the command line:

foboomw case.dat m
pcbfootw case.out n
wcon case.qwk

where "case.dat" is the manually-created DAT file and m, n are options that control the
outputs of pcboomw and pcbfootw.  Options and summary use instructions may be
obtained by running each of those programs with no arguments.  If wcon is run with no
arguments, it will prompt for a ".QWK" file to display - there are no options.

Note that these programs are manually run from a Windows command prompt.  While the
Windows command prompt looks very much like the old MS-DOS command prompt, and
has versions of almost all the MS-DOS utilities, it is a 32 bit environment, and not actually
MS-DOS.  Some versions of Windows include a true 16 bit MS-DOS mode.  This
software will not run under MS-DOS, nor under Windows 3.x.

B.3. PCBoom4 Version 4.11

Directory PCB411 of the supplied archive contains the following, all limited distribution:
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FOBoomw.exe - foboomw Version 4.11.  This has George-Seebass six-parameter F-
function input, plus support for "u28" evolution files, described below.
PCBfootw.exe - a slightly updated version of pcbfootw
Sigw.exe - a viewer for "u28" files, described below
INFILE.TXT  - a full description of all possible inputs in the FOBoomw ".DAT" file.
Samples and supporting files

The updated (limited distribution) versions of FOBoomw and PCBFootw can be put into
the installation directory for PCBoom 4.0, replacing the older versions.  File INFILE.TXT
describes all possible inputs to PCBoom 4.11.  Three sample DAT files are included.
These illustrate the use of direct F-function input vs George-Seebass six parameter input,
and single-point steady flight analysis versus full maneuver analysis.  It is recommended
that these be used as templates for preparing other cases.

The sample cases are:

 Ramp04.dat - a single point case using a directly specified F-function
 Ramp04g.dat - a single point case using George-Seebass F-function
 Ramp04a.dat - a full maneuver case (transonic acceleration) using a George-

Seebass F-function

These three input files are presented in Figures 2, 3 and 4.  Text that follows a ";" is not 
part of the data, but a comment to the right of numeric inputs.  Referring to Figure 2, the 
lines in a DAT file are:

1. Title
2. Ambient pressure at the ground and local value of g.  If 0 or a negative value is entered 
for pressure, then data are to be read from a file named in the next line.  Several file 
formats are allowed, and defined in INFILE.TXT and WR 02-11.  0. 0. in this case means 
an ".ATT" format file.
3. The name of the ".ATT" atmosphere file.
4. Number of output altitudes.  Descending order, all below the aircraft flight altitude 
minus the starting radius.
5. The output altitudes
6. Parameters organizing focal zone analysis relative to the ground.  0 0 0 directs the 
program to use default values, which is generally the best choice.
7. Ground reflection factor.  1.9 is traditional.
8. R/L for starting signature.  Ray tracing will begin R/L aircraft lengths from the flight 
path.  Use a value appropriate to how the starting signature was obtained.
9. Signature input mode.  2 denotes F-function at one Mach number and azimuth.
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10. Number of points in signature, if it is in-line in the DAT file.  0 means it is in a 
separate file
11. Name of the starting signature file.   This is  a table of F vs x, and is presented in
Figure 5.
12. Aircraft length (feet), weight (kilopounds), Mach number at which F-function is
defined, and ambient pressure at which F-function is defined.  This function was defined
at Mach 2, and at 41000 feet where the ambient pressure is 377.16 psf.
13. Shape factor curve to be used when scaling to other Mach numbers and pressures.
Shape factor curves are taken from Carlson (ref. 9).  There are curves for several
categories of military aircraft, for the Space Shuttle, and for commercial SST’s. The
number 7 is the curve for commercial SSTs.
14. Numeric parameters.  See WR 02-11 and INFILE.TXT for their meaning.  Otherwise
leave them alone.
15. Number of azimuthal (phi) values at which to compute the boom.  In this case, one.
16. The phi value.  In this case, 0 degrees, straight down.
17. Comment line with names of trajectory parameters.  This line has been truncated to fit
the page.  See WR 02-11 and INFILE.TXT for a full definition.
18. Trajectory data.  In this case, there is only one point, at a steady condition of Mach 2.0,
41000 feet.
19. End-of-file marker.

Sample file ramp04g.dat, shown in Figure 3, is identical to ramp04.dat except that it 
specifies signature ramp04.gsf, a George-Seebass form.

Sample file ramp04a.dat, shown in Figure 4, is identical to ramp04g.dat except for the
final few lines.  Line 15, instead of having a positive value, has 0.  That means that, at each
time step, the program is to compute booms across the carpet from cutoff to cutoff.  Line
16 contains a value of 5, indicating this is to be done at 5-degree increments.

Line 17 of ramp04a.dat contains "file" (left justified, lower case) followed by the name of
a trajectory file.  The format of lines in the trajectory file is identical to that which may
appear in-line as in ramp04.dat and ramp04g.dat.  There is no "END" line in this DAT file.
When trajectory input is from a separate file, the END marker is in the trajectory file.  The
trajectory file is defined field-by-field in INFILE.TXT.  A file may be used that has been
generated from the PCB4win GUI or by running MANEUVE directly.  It may also be
generated manually in a text editor.

Figure 5 shows a directly specified F-function file.  The first line is a title.  The second is 
the number of x, F pairs.  A table of values follows this.

Figure 6 shows a George-Seebass six parameter F-function file.  The lines in this file are:
1. Keyword "seeb".  This must be lower case, left justified.
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2. Title line.
3-9.  The six parameters, as defined earlier.  The text to the right is informational, and not 
read.  Note that there are seven values: H and yf represent A, and logically count as one.

B.4. Running PCBoom4 Version 4.11

As noted in A.1, boom calculations can be run from the command line via the sequence

foboomw case.dat m
pcbfootw case.out n
wcon case.qwk

This sequence, with m = 1 and n = 5, is appropriate for cases such as the sample DAT file
in Figure 4, where the last few lines specify computing boom at azimuths across the width
of carpet and there is a trajectory file with at least two time steps where the boom will
reach the ground.  The result is a plot of the footprint, displayed via WCON.  Signatures at
any point in the footprint are accessed interactively from the WCON interface.

Note that the boom for a full footprint case will be strictly correct only at one point: the
flight condition and azimuth at which the F-function is defined.  The F-function at other
points is adjusted via simple scaling rules that are applicable to N-wave booms but may
not be appropriate for complex shaped booms. 

An original function of the Thomas program8 was to examine the evolution of a shaped
signature as it propagated to the ground at one flight condition.  That mode is available by
using a single-point DAT file such as shown in Figures 2 and 3, and invoking from the
command line:

Foboom case.dat m
sigw case.u28

where m = 3.  Setting m = 3 specifies that foboomw will generate file case.u28 that
includes the signatures at the output altitudes shown in line 5 of Figures 2 and 3.  This
output is at zero azimuth and time = 0, so the trajectory data in the DAT file (the final five
lines in Figure 2) must specify those values.  There can be up to 49 output altitudes.

The u28 file is ASCII, and is self-explanatory.  Program sigw displays the signatures in
stacked format.  If there are more than will fit on the screen, cursor up/down scrolls the
display.  ESC ends the program.  F11 will generate a PCX file of the current screen.  The
PCX file has a name of the form casen.pcx, where "n" is a sequential letter from a through
z.  The program tests for existing casen.pcx files, and uses the next unused letter.  Up to 26
PCX files of a given case name can be generated before old ones are overwritten.
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Figure 1. George-Seebass six-parameter F-function

Mach 2.0, 41000 ft ramp, SIG input
     0.    0.                    ;0 0 means read atmosphere from file
usstd.att
   7                             ;7 output altitudes, including ground
 30000. 25000.  20000.  15000.  10000.   5000.      0.
 0. 0. 0.                        ;See infile.txt - usually keep this as 0 0 0
 1.9                             ;Reflection coefficient
 1.00                            ;roverl
 2                               ;2=F-function
 0                               ;0 indicates read signature from file
ramp04.sig
100.    100.   2.0  377.16       ;al, weight, Mach, ref pressure
7                                ;Shape factor curve
 .5  500.  .5                    ;dphi, dstraj, tstep
 1                               ;One phi value
 0.                              ;The phi value
 keyword        tstart      xplane      yplane      fltalt        mach ...

        Figure 2. Sample input file ramp04.dat
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Mach 2.0, 41000 ft ramp, GSF input
     0.    0.                    ;0 0 means read atmosphere from file
usstd.att
   7                             ;7 output altitudes, including ground
 30000. 25000.  20000.  15000.  10000.   5000.      0.
 0. 0. 0.                        ;See infile.txt - usually keep this as 0 0 0
 1.9                             ;Reflection coefficient
 1.00                            ;roverl
 2                               ;2=F-function
 0                               ;0 indicates read signature from file
ramp04.gsf
100.    100.   2.0  377.16       ;al, weight, Mach, ref pressure
7                                ;Shape factor curve
 .5  500.  .5                    ;dphi, dstraj, tstep
 1                               ;One phi value
 0.                              ;The phi value
 keyword        tstart      xplane      yplane      fltalt        mach ...
                  0.00        0.00        3.00      41000.    .200D+01 ...

Figure 3. Sample input file ramp04g.dat

Transonic acceleration, ramp04.gsf source
     0.    0.                    ;0 0 means read atmosphere from file
usstd.att
   7                             ;7 output altitudes, including ground
 30000. 25000.  20000.  15000.  10000.   5000.      0.
 0. 0. 0.                        ;See infile.txt - usually keep this as 0 0 0
 1.9                             ;Reflection coefficient
 1.00                            ;roverl
 2                               ;2=F-function
 0                               ;0 indicates read signature from file
ramp04.gsf
100.    100.   2.0  377.16       ;al, weight, Mach, ref pressure
7                                ;Shape factor curve
 .5  500.  .5                    ;dphi, dstraj, tstep
 0                               ;All phis from cutoff to cutoff
 5.                              ;5 degree increments

file 06-00.trj

Figure 4. Sample input file ramp04a.dat
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Mach 2.0, 41000 ft ramp November 04, Yf = 4
   16
     0.000    0.000000
     2.000    0.200000
     4.000    0.020880
   102.000    0.042440
   102.200   -0.132960
   132.000   -0.126360
   133.000   -0.135000
   134.000   -0.135000
   135.000   -0.109000
   136.000   -0.094500
   137.000   -0.084500
   138.000   -0.077160
   139.000   -0.071430
   140.000   -0.066820

Figure 5. Sample  F-function file ramp04.sig

seeb
Mach 2.0, 41000 ft ramp November 04, Yf = 4
0.2             H - height of spike
4.0             yf - duration of spike
0.02            C - height of start of ramp
0.1554          D - constant defining start of negative part
0.00022         B - slope of isentropic compression
102.0           lamda - length of positive portion
132.0           l - length to rear spike

Figure 6. Sample George-Seebass six parameter F-function file ramp04.gsf
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    Appendix C

FOCUS CONDITION STUDY
 by

Kenneth J. Plotkin 
Wyle Laboratories

A number of possible airplane maneuvers and off-design conditions were examined using
PCBoom4 to assess the potential for generating focus booms at the ground. These included the
following:

- Full nominal mission
- Focal analysis for variations of transonic acceleration
- Climb, turns at cruise and descent-deceleration at end of cruise. 

This analysis yields focus signatures via the current PCBoom4 method. Data generated includes
the pre-focus signature entering the focal zone, plus ray and caustic curvatures.   The PCBoom41

method consists of using Guiraud’s2 scaling law to apply the Gill-Seebass3 step focus solution to
each shock in the pre-focus signature.

The SSBJ initiates transition from subsonic to supersonic speeds (Mach 0.95 through Mach 1.4)
at constant altitude of 32,850 feet and with an acceleration rate of about 0.2 m/sec2. It continues to
accelerate in a slight climb to M = 2 at about 41,000 feet, the start of cruise. From there it flies a
constant Mach and at constant CL to 60,000 feet, the end of cruise. No maneuvers (i.e., turns) are
included. At end of cruise, the SSBJ decelerates from M = 2.0 to M = 1.0 at a nearly constant alti-
tude of about 60,000 feet in order to avoid boom focusing.

Three types of maneuvers were considered in this study:
1. Acceleration from subsonic to supersonic flight.
2. Mach 2 turns at cruise altitude.
3. Descent and deceleration at the end of cruise.

At Mach 2, the turn rate necessary to cause a focus is well above that which would be acceptable
in a passenger aircraft, so Maneuver 2 did not cause focusing. Similarly, a focus-generating push-
over at the start of descent would be beyond the envelope of a passenger aircraft. In principle,
there is a caustic associated with the final deceleration to subsonic speeds - this is the boundary of
the limiting rays. This final deceleration caustic, however, slopes upward. Upward-curving rays
forming the caustic would intercept the ground before they reached the a geometric focus point on
the caustic. Thus, there is no ground focus for final deceleration.   Maneuver 3 is, therefore, not a
focus condition, either from start of descent or final transition to subsonic speed.   

Initial acceleration, Maneuver 1, is thus the only focusing maneuver. Values of acceleration from
0.2 m/sec2 through 2.0 m/sec2 were analyzed. In addition to the nominal case of level acceleration
at 32,850 feet, descent and climb at - 1 degree and +3 degrees, respectively, were also examined.
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The -1 and +3 degree profiles begin at Mach 1 at 32,850 feet, so that focus for these cases occur at
altitudes other than 32,850 feet. 

Results of the focus analysis are shown in figure 1 through figure 4 for the flat-top, ramp, N-wave
and double-peak N-wave, respectively. Each figure has two parts. Part “a” shows the peak focus
overpressure as a function of acceleration for level flight, three-degree climb, and one-degree
dive. The results are shown as curves for each flight path angle. Part “b” shows the peak focus
pressure as a function of altitude. Results in part “b” are shown as points, without regard to accel-
eration rate or flight path angle. Acceleration rate and flight path angle are not significant factors
for focus amplification:

• In Part “a” of each figure, the peak pressures for level flight, and one degree dive vary very lit-
tle, if at all, with acceleration.

• Peak focus pressure for the three-degree climb increases with increasing acceleration. This 
trend is not, however, an acceleration effect. It is an altitude effect. At lower acceleration 
rates, the aircraft reaches higher altitudes before the focus occurs.

Part “b” of each figure shows the dependence on altitude: amplitudes are smaller at higher alti-
tudes. There is some variation in the cluster of results around each altitude, but those variation are
comparable to those associated with the numeric quality of the focus calculation.
 
Quality of Focus Prediction

The focus results presented in this Appendix C contain irregularities: there is not always a
smooth transition from one condition to another. This is due to numeric issues in implementation
of focus theory. PCBoom41 calculates the focused signatures by applying the Gill-Seebass3 step
function solution to each shock in an incoming signature, scaling according to Guiraud’s
similitude2. The code, which numerically integrates along rays in finite steps, must determine the
edge of the focal zone. The edge it finds is not necessarily exactly at the focal zone boundary: it is
usually slightly outside of it. That kind of irregularity, together with numeric precision in obtain-
ing ray/caustic curvature, is considered to be the cause of most of the irregularities.

Recommendations for Software Update:

The focus process in PCBoom41 other than the numeric issues noted above, is rigorously correct
for a flat-top signature, and has proven to be acceptable for N-wave signatures. In normal applica-
tion of PCBoom41 to practical aircraft maneuver situations, the numeric issues have not been a
problem. One might consider improving PCBoom4’s implementation so as to yield smooth
results in research applications such as the current study. Before embarking on such a develop-
ment, however, it is prudent to consider the age of the focus technology in PCBoom41 (the Gill-
Seebass3 numeric solution is over 30 years old) and the assumption that a single shock solution
can be independently applied to complex signatures. 
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Auger and Coulouvrat4 have recently published a new numeric solution for a focused boom - the
first since Gill and Seebass3. This solution, applicable to complex booms, shows that the
PCBoom41 procedure is not applicable to a double-shock boom where the shocks are close
enough to interact. The interaction causes the focus factor to be less than that predicted by the
simple PCBoom41 superposition. Kandil and Zheng have replicated Auger and Coulouvrat’s
result (see Appendix D of this report) confirming that a complex multiple-shock boom will
have a smaller focus factor than an N-wave or flat-top.

The focus pushover events in the Shaped Sonic Boom Experiment5 (SSBE) demonstrated that
focus booms from a shaped aircraft do not occur at the shape design condition. In the case of
SSBE, the pushover maneuver, while at the design Mach number, involved a much lower lift
coefficient than the design condition. Transonic acceleration - the one unavoidable focus maneu-
ver - occurs at a Mach number much lower than cruise design. This opens the possibility of a
dual-mode signature, where the signature at the focus condition is sufficiently complex that its
focus factor is reduced. However, the findings of Appendix A of this report shows that shaped
signatures designed for cruise flight retained their basic shape during transition flight.

Analysis of focal signatures for a mission requires incorporation of the modern numeric focus cal-
culation into PCBoom41. PCBoom41 calculates the signature entering the focal zone, plus the ray
and caustic curvatures. These provide the boundary conditions for the program prepared by
Kandil and Zheng. PCBoom41 currently outputs data necessary for H. K. Cheng’s6 wavy surface
underwater boom propagation program, so the infrastructure is currently in place to link
PCBoom41 to a more sophisticated analysis model. It would be straightforward to perform that
kind of linkage from PCBoom41 to the Kandil-Zheng numeric focus software.

Focus Avoidance Maneuvers:
In 1971, Hayes7 suggested the transition focus boom may be eliminated incorporating pushover
pull-up maneuver (vertical acceleration) to cancel out the focusing caused by the forward acceler-
ation. Haglund and Kane8 examined the maneuver based on a physically realistic principle: accel-
eration caused rays to converge, while pitch-up caused them to diverge, and they concluded that
the maneuver, as envisioned by Hayes, should be reversed, and that the maneuver should be a
pull-up followed by a pushover in order to eliminate the caustic at the ground.  In their study they
described the mechanism of caustic elimination and noted that the pull-up portion of the maneu-
ver would require thrust in excess of that available in a commercial SST. They also pointed out
that the suddenness of the pushover needed to be defined. The concept of a sudden pushover is
fatal to this concept. The pushover has two physically realistic problems. First, any maneuver that
approximates a discontinuity is likely to be unacceptable for a passenger carrying aircraft. Sec-
ond, and even more definitive, is that at some point the boom will reach the ground. There will be
a region where there is no boom at the ground and a region where there is.   The division between
those regions, from the ground upward, will be an envelope of rays -- a caustic. That follows from
the continuity of rays, and is inevitable when an aircraft transitions from subsonic speeds to
boom-generating supersonic speeds. A transient maneuver to eliminate the caustic is topologi-
cally impossible.
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The analysis presented in this report, particularly part “b” of Figure 1 through Figure 4, shows
that increased altitude reduces the magnitude of the focus boom. The recent Auger-Coulouvrat
focus solution has shown that complex boom signatures are amplified less than simple N-waves
that had been considered in the past. These two effects provide a physically realistic path to allevi-
ate focus issues from a future supersonic business jet.
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 Figure 1. - Effect of acceleration, flight path angle and altitude on                                          
 overpressure for a flat-top signature.

a. Effect of acceleration on overpressure for three flight path angles.

 b.  Effect of altitude on overpressure.
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 Figure 2. - Effect of acceleration flight path angle and altitude on

                                            overpressure for a ramp signature.
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Figure 3. - Effect of acceleration, flight path angle and altitude on 
                                           overpressure for an N-wave signature.

a.  Effect of acceleration on overpressure for three flight path angles.

  b.  Effect of altitude on overpressure.
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Figure 4. - Effect of acceleration, flight path angle and altitude on   

                                                overpressure for double-peak N-wave signature.

 a.  Effect of acceleration on overpressure for three flight path angles.

 b.  Effect of altitude on overpressure.
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Appendix D 
 

Development and Application 
Of a Transition Flight Sonic Boom Focusing Computer Code 

 
 Osama Kandil and 

  Xudong Zheng 
Aerospace Engineering Department, Old Dominion University 

Norfolk, VA 23529 
 

I. Overview and Summary: 
 
The sonic-boom focusing problem has been shown to be governed by the nonlinear Tricomi 
equation. The Tricomi equation changes its character from a hyperbolic partial differential 
equation (PDE) (in illumination zone) to an elliptic PDE (in the shadow zone). At the caustic 
surface between the illumination zone and shadow zone, the equation is parabolic. The 
computational solution of this equation can be obtained by marching in pseudo time. This is 
achieved by adding a pseudo time term to the equation, marching in pseudo time, and 
reducing the pseudo-time term to a very small value (a standard CFD approach). Since the 
equation is a hyperbolic/elliptic type equation, the pseudo time term converts the equation to 
a parabolic equation in time, which allows the time marching. 
  
The solution to this equation can be obtained, as will be shown as consisting of two parts: a 
part corresponding to a linear unsteady Tricomi equation, and another part as the nonlinear 
unsteady Burgers equation. The solution of the unsteady linear Tricomi equation is followed 
by the solution of the nonlinear unsteady Burgers equation to obtain the solution of the total 
nonlinear equation.  
 
At any time step, the linear unsteady Tricomi equation is solved either in frequency domain 
using a fast Fourier transform (FFT) and its inverse, or in time domain using a finite-
difference scheme. This is followed by solving the nonlinear unsteady Burgers equation 
either by using a finite-difference scheme or by using a closed form analytical solution. At 
each time step, the total computational cycle is iterated between the linear Tricomi equation 
and the nonlinear Burgers equation until convergence. Next, the time step is advanced and 
the computational cycle is repeated.  
 
The boundary conditions for the rectangular computational domain are taken as zero pressure 
on the left and right boundaries and on the lower boundary as well. On the upper boundary, 
the incoming wave is specified as an N wave, a Concorde aircraft incoming wave or any 
other specified incoming wave. 

 
In the next sections, the numerical solution algorithms, flow charts and samples of test cases 
are presented.  The computer programs developed for each part of the splitted nonlinear 
Tricomi equation are integrated in one program, which includes all the options to solve the 
sonic boom-focusing problem under consideration. The solutions for a N incoming wave, a 
Concorde aircraft incoming wave, a flat-top case and a ramp-top case are presented. The 
solutions conclusively show the capability to predict the sonic boom focusing (superboom). 
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     II.  Background 
 
The most intense sonic boom is the focused sonic boom due to aircraft transonic acceleration 
from Mach 1 to cruise speed. It leads to amplification of ground pressures up to two or three 
times the carpet boom shock strength. Therefore, accurate prediction of focused sonic booms 
around the caustic at ground level is very important. Sonic boom focusing has been also 
known as sonic superboom.    
 
Weak shock waves arise in sonic boom of supersonic aircraft. Focusing of shock waves 
occurs at surfaces called caustics. The simplest caustic surface cases are the smooth caustic 
case and the cusp caustic case. Caustics are regions of wave amplification and geometrical 
ones. Shock wave focusing is fundamentally a nonlinear process. Here the emphasis is 
directed to the smooth caustic surface case. 
 
Analysis of weak shock focusing at a smooth caustic surface has been introduced in 1965 by 
Guiraud 1.  He developed a theory, which includes both diffraction and nonlinear effects up 
to first order, which leads to the nonlinear Tricomi equation. This result was confirmed by 
Hayes 2, Hunter 3, and Rosales and Tabak 4 ,5 . 
 
Auger and Coulouvrat 6  have presented an algorithm to solve the nonlinear  Tricomi 
equation, which was expressed in terms of the dimensionless acoustic pressure. Recently, 
Marchiano and Coulouvrat 7 have solved the nonlinear Tricomi equation in terms of the 
potential field instead of the pressure field. The nonlinear effects were treated using an 
“exact” solver that removed the artificial numerical dissipation and avoided instability 
conditions.  The latter scheme was 40 times faster than the former one and convergence of 
the maximum peak amplitude with mesh refinement was reached. 
 

III. Numerical Algorithms for Solution of the Non-Linear Tricomi 
Equation for Sonic Boom Focusing 

       
III. a. Unsteady Nonlinear Tricomi Equation and Boundary Conditions: 

 
The steady nonlinear Tricomi equation is modified as an unsteady equation by adding a 
pseudo unsteady term t  /2 , which will tend to zero when the pseudo time marching 
scheme reaches the steady solution of ),,( zt   . The modified equation is given by 
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   Where 
 
     Acoustical potential 
 
     t       = pseudo time variable 
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      dimensionless phase variable = [t – x (1-z / R sec ) / c0] / T ac 

 

       x      = dimensionless axial variable along the tangent to the caustic surface at the origin O 
        
     z      = dimensionless normal distance to the caustic from O = [2/ (c0

2 T ac
2 R cau)] 1/3  z* 

            =     z*    /     
     
          = 1/ [2/ (c0

2 T ac
2 R cau)] 1/3  = characteristic thickness of diffraction boundary layer  

                 around the caustic    
   
     z*    = normal distance to the caustic from O 
 
     R sec = radius of curvature of the intersection of the caustic surface with the Oxz plane 
 
     R cau = relative radius = 1/ (1/ R sec – 1/ R ray) 
 
     R ray  = radius of curvature of the projection in the plane (Oxz) of the ray tangent to the caustic 
 
     c0     = ambient speed of sound at stagnation conditions 
 
     T ac   = characteristic duration of incoming signal near point O 
 
      2   M ac [R cau / (2 c0 T ac)] 2/3

 = measurement of nonlinear effects relative to   
                diffraction effects 
 
         = (1+ ) / 2 = nonlinearity parameter 
 
    Mac   = Pac / 0 c0

2 = acoustical Mach number 
 
    Pac    = signal maximum overpressure 
 
    0  = ambient stagnation density 
 
    The unsteady nonlinear Tricomi equation in terms of the acoustical potential is a  
    hyperbolic/elliptic  equation.  
 
   The boundary conditions to be satisfied are: 
 

1. no disturbance before or after acoustic waved has passed 
 
     0),(  z                                                                                                              (2) 
 or for a periodic signal with period T 
 

           ),(),(  zTz   
 

2. away from the caustic surface in the shadow zone the acoustic pressure decreases 
exponentially: 
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0),(   z                                                                                                             (3) 

 
3. a radiation condition is imposed (away from the caustic on the illuminated side the field 

matches the geometrical acoustic approximation) 
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III. b. Numerical Solution of the Unsteady Nonlinear Tricomi Equation: 

 
The unsteady nonlinear equation is split into two simpler equations. The first one includes 
the linear diffraction effects and the second one includes the nonlinear effects. Thus, the 
equation is split into the following two equations 
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     The first, Eq. (5), is the unsteady linear Tricomi equation, and the second, Eq. (6) is the  
      inviscid nonlinear Burgers’ equation. 

 
Equation (5) can be solved in time-domain integration8 or in frequency-domain integration 6. 
Equation (6) can be solved using a shock-capturing finite-differencing scheme 9 or by an 
exact shock fitting scheme 10. The integrated code includes the four sub-programs to solve 
equation (5) and equation (6). To solve for the nonlinear Tricomi equation, one can choose 
one from the two sub-programs of equation (5) which is followed by one from the two sub-
programs of equation (6). The solution is obtained by iterating between the chosen sub-
programs at each time step for each altitude z until convergence.  

 
In the next sections, the algorithms for the four sub-programs are developed, the flow charts 
are presented, and the codes have been developed and   tested. 
 

III. c. Numerical Solution of the Linear Unsteady Tricomi Equation in Time  
    Domain: 
 

The linear unsteady Tricomi equation is solved using the ADI Scheme. 
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The details of the algorithm are given below. 
 
Computational Algorithm: 
 

1. Step (1): Sweep  in Z direction. The difference scheme is given by 
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Where
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 uses up-wind differencing given by 
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The recurrence form of the equation is given by 
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 Next, SLOR is applied 
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and the equation  becomes 
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The recurrence form of the z-sweep difference equation is given by 
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So the equation is written in the matrix form as 
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 These  equations are solved using the Thomas algorithm.  
 
 2. Step (2): Sweep in  direction. The difference equation is given by 
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And the equation  becomes  
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 The recurrence form of the equation in the   sweep is given by 
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So the equation is written in the matrix form as 
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These equations are also solved using the Thomas algorithm. 
 
3. The boundary conditions are given by 
 
(1) 0),(  z  
   0max, ji                                                                                                                                  (9) 
(2) 0),(   z  
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   0min, ji                                                                                                                                  (10) 
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The flow chart of the program for the unsteady linear Tricomi equation is given in Fig 1. 
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Equation in Time Domain 
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Marching Subroutine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Flow chart of the Program for the unsteady linear Tricomi equation in time domain. 
 

III. d. Numerical Solution of the Unsteady Linear Tricomi Equation in  
    Frequency Domain: 
 

       In this scheme the solution is obtained in the frequency domain using a fast Fourier  
       transform (FFT) algorithm and an inverse fast Fourier transform (IFFT).  
 
       Starting with the unsteady linear Tricomi equation,  
 

Yes 

Z sweep 

J < Jmax 

No 

Yes 

Tau sweep 

I < Imax 

No 

n < Nmax 

No 

Yes 
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       the solution is expressed as   
 

        ie~                                                                                                    (13) 
               
       and the equation reduces to 
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                                                                                                   (14) 

 
         For each frequency n , the derivatives with respect to z are approximated with a second-  
         order central differencing and the time derivative is obtained using a first-order forward    
         differencing. The equation is solved using an alternating implicit scheme (ADI). 
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          Boundary Conditions: 
 
          0~

max j  

    Once  2
1

~ n

j  is obtained, an inverse FFT is applied to obtain  
 

     


2
1n

j FFT -1 [ 2
1

~ n

j ] 
 
     This result is used in the nonlinear Burgers’ equation (step II.e or II.f) to obtain 1n

j    
 

FFT and IFFT for p () 
 

  The continuous form of the Fourier transform is  

dtetpp ti




  )()(                                                                                                                   (15) 

 
If  the continuous )(tp  is discretized, then   )()()( nptnptp  , which in turn gives us: 

tfnt   2 , but since 
)(

1
tN

f


  then 

   
N
nkt 


2

  
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What we have now is equivalent to a discrete time signal )(np . Substituting into the continuous 
form of the Fourier transform gives  
 







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1

0

2

)()(
N

n

N
nki

enpkp


                                                                                                              (16) 

 
In the equation above, the integral form has been replaced by a summation. As N (the number of 
samples) increases the result goes to infinity, so to eliminate this from happening the equation is 
multiplied by N1 . 
 







1

0
)(1)(

N

n

nk
NWnp

N
kp                                                                                                                (17) 

 

where  N
nkink

N eW
2


                                                                                                                   (18) 

 

The FFT is a fairly easy algorithm to implement, and it is shown step by step in the list below:  

1. Pad input sequence of N samples with zero's until the number of samples is the nearest 
power of two.  

2. Reverse the input sequence.  
3. Compute (N / 2) two sample DFT's from the shuffled inputs.  
4. Compute (N / 4) four sample DFT's from the two sample DFT's.  
5. Compute (N / 2) eight sample DFT's from the four sample DFT's.  
6. Until the all the samples combine into one N-sample DFT  

Notice here that one is working with p instead of . However, once p is acquired, then   can be 
found. The flow chart for the unsteady linear Tricomi equation in frequency domain is given in 
Fig. 2. 
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Check the boundary at z = zmax 
and update the boundary value 

Error< epsilon 

Output 

NO 

Yes 

IFFT 

Thomas 
Algorithm 

FFT 

Calculate   

Program for Linear Unsteady Tricomi Equation in 
Frequency Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Flow chart of the Program for the linear unsteady Tricomi equation in 

                              frequency domain. 

Computational Test  

The computational test is that of the fast Fourier transform (FFT) and the inverse fast Fourier 
transform (IFFT) using a square signal.  Figure 3 shows the results after FFT, the IFFT is used 
back for the time domain, which produces Fig. 4. It is observed that the IFFT produces the same 
signal as that of the original square signal. 
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Figure 3.  FFT in the frequency domain 
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Figure 4.  IFFT in the time domain 

 
III. e. Numerical Solution of the Nonlinear Burgers Equation using shock  

    Capturing Scheme and Application: 
 

The computational algorithm of the nonlinear Burgers is given below. Two schemes are 
developed; the first is a First-order scheme and the second is a second-order scheme. This is 
followed by a computational application of the two schemes.  
 

       0)
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( 2 
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
t

                                                                                                      (19) 
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Computational Algorithm: 
 
1. First-Order Scheme 

2121
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n
i ff                                                                                                     (20) 

 
Where the superscript gives the time-step number. Quantities lacking a superscript are 
evaluated at the time-step n. The numerical fluxes are 
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where ii )
2

( 2   

 The direction variable w  is in principle the characteristic speed. However it is convenient to 
define w  as a quantity with the same sign as the characteristic speed. Namely, 
   

 ))(( 1121 iiiiiw                                                                                             (22) 
 
2. Expansion Shock Correction 
 

According the second law of thermodynamics, the expansion shock is forbidden. This means 
that a shock discontinuity in an expansion of the flow must cease to be a shock by 
unsteepening at a rate determined by the expansion. To eliminate expansion shocks, replace a 
single flux as follows: 

)))(((
2
1

11212321 iiiiiii uutfff   

                                                             (23) 

 
3. Higher-Order Scheme 
 

A stable second-order upwind scheme involving the point i and two points to the left or right 
(depending on the sign of the characteristic) may be defined as follows: 
                    

a. Predictor step defines fluxes at time level 21n  according to the following. We use 
the first-order fluxes including the expansion correction to define  
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i ffu                                                                        (24) 

b. Corrector step uses second-order up-wind differences on 21n , In flux conservative 
form, they are defined as:  
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4.  Hybrid Scheme 
 

We construct the provisional quantities 
 

2121
*

  ii
n
ii ff                                                                                                         (27) 

212121   iii fFf                                                                                                             (28) 
 

The quantities *  represent a first-order update in which monotonicity has been preserved. 
The second-order scheme above does not preserve monotonicity so we must filter the flux-
corrections by using a local algorithm called a flux-limiter. This filter, which forbids the 
enhancement of extrema, is the heart of the FCT technique. 
  

      )]})((),)((,min[,0max{)( *
1

*
21

*
1

*
221212121   iiiiiiiii fSgnfSgnffSgnf    (29) 

 
The hybrid scheme is now completed as follows 
 

2121
*1


  iii

n
i ff                                                                                                       (30) 

 

In summary, n , nu and n  are taken to be known and 1n is obtained by execution of the 
following steps in order: Eqs. (22), (21), (23), (24), (25), and (23) with F for f, and Eqs. (27)- 
(30) 

 

Computational Application: 
 
In the nonlinear Burgers’ Equation 
 

0)
2

( 2 





 



t

 
 
let   as the speed of sound, a, and solve for resulting equation 
 

0)
2

( 2 





 


 a
t

 

 
      Where a = 340. 
 
     Next, let the initial conditions be 
 

  ))(,0max()( 00   bx ;    0   
 )()( 00   ;                   0  
     Where b = 3 and  1200    (see Fig. 5 for the initial function shape). 
 

 A grid of 302 points is used with periodic boundary conditions. Keeping 4
1

max 
tu   and 

40
0   , we get the solutions given below for the first-order scheme (first column, Figs 6.b- 

6.d) and the second-order scheme (second column Figs. 6.e- 6.g). 
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Figure 5.  Initial function shape to be solved with the first-order and second-order schemes 

 

 

 
 Figure 6.  Symmetric N-wave shock development using first-order scheme (Figs. 6.b-6.d) and  
                  Second-order scheme (Figs. 6.e-6.g) 
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The solutions are in good agreement with each other and with the results of Ref. 8. The flux 
limiter should be adjusted to eliminate the little overshoot and undershoot in the second-order 
solution.        
 
III. f.    Analytical Solution of the Nonlinear Burgers Equation using shock  

       Fitting Scheme: 
 

0)
2

( 2 





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

t

                                                                                                                 (31) 

 
Let  )(u , According to the method of characteristics, Eq. (31) demands constancy of 

u  along the trajectory 
 
           )( ut                                                                                                                            (32) 

 
So the value of   at ( , t  ) may be found by following the trajectory backward to the initial 
condition; that is, 
 
   ))((),( 0  tut                                                                              (33) 
 
This equation will be valid before the shock is formed. After the shock formation,   becomes 
multi-valued in   and, thus, physically meaningless. The actual signal contains one or more 
shock waves, and a proper treatment of the shocks eliminates the multivaluedness. A shock wave 
moves faster than the acoustic propagation speed in front of it and slower than the propagation 
speed behind it. Thereby, parts of the signal are propagated into the shock and this phenomenon 
permits the remaining part of the signal to be single-valued. 
 
In order to do this, we introduce the function ),( t  (for the specific t, we drop the notation and 
write simply )( ), defined as follows: 

0
0

00 )()()( 

 d

d
dd 



                                                                                             (34) 

 
Where  
 

)()(0   ttu                                                                                                         (35) 
 
 is the initial coordinate of signal. 
 
 The derivative with respect of  0  is taken to get 
 

00

)(1






d
dt

d
d

                                                                                                                    (36) 

 
Substituting Eq. (36) into Eq. 3(4), we obtain 
 



 D-18

2
000 )()(
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1)()(  td  



                                                                                           (37) 

 
According to Eq. (35), one can write  
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Substituting this result into Eq. (37), we get 
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                                                                                                    (38) 

 
Now the function )( is obtained (see fig. 7), and the single-valued function sup )(  can be 
identified.  
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Then ),( t only keeps the segments of  which appear in sup )(  
 

 

 

 
Figure 7.  Distortion of signal. 
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 Computational Application: 
 
In order to compare the results of the shock capturing scheme of the previous section, Sec. III.e. , 
we use the same application case of the previous Section in the current analytical solution of the 
nonlinear Burgers’ equation.  
 
Starting with the nonlinear Burgers’ equation 
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( 2 
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
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

t

 

 
We let   as a, speed of sound, and solve the equation in the form 
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      Where a = 340. 
 
   Next, we let the initial condition be 
 
  ))(,0max()( 00   bx ;    0   
 )()( 00   ;                   0  
     Where b = 3  1200   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dr
Underline
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The analytical solution produces the following results. 

 

 

 

 
Figure 8.  Analytical solution  
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It is obviously clear that the analytical solution given by Fig 8 above is exactly the same as the 
numerical solution obtained in Sec. III.e., Figs. 6.b and 6.g.  This application validates the 
numerical solution of the nonlinear Burgers equation. 
 
III. g. Integrated Computer Program: 
 
The integrated computer program consists of four main sub-programs and a Driver main 
program. Two of sub-program are for the two schemes to solve the linear Tricomi equation, and 
the other two sub-programs are for the two schemes to solve the nonlinear Burgers equation. 
 
The two schemes to solve the linear Tricomi equation use either the frequency-domain scheme or 
the time-domain scheme. The other two schemes are developed to solve the nonlinear Burgers 
equation using either a finite-difference scheme or a closed-form analytical scheme. 
 
To choose a combination of two sub-programs to solve for the nonlinear Tricomi equation, we 
introduced an input flag called “Mode” in the Driver main program. Depending of the value 
chosen for Mode from the list below, the driver will direct the solution to different combinations 
of two of the sub-programs, as given below: 
 
   1.  Mode 00 is for frequency domain and for numerical Burgers equation 
   2.  Mode 01 is for frequency domain and for closed form Burgers equation 
   3.  Mode 10 is for time domain and for numerical Burgers’ equation 
   4.  Mode 11 is for time domain and for Closed Form Burgers’ equation 
 
IV Validation of Computer Code: 

 
Here, the numerical scheme and code given below is tested for validation. The test cases are 
those of Ref. 6, with an incoming N-wave or an incoming Concorde aircraft case. Another four 
tests are solved, which include two flat-top and two  ramp-top cases. The computational domain, 
boundary conditions, illumination and shadow zones, caustic surface and incoming and outgoing 
waves are shown in Fig. 9. The illumination zone is governed by a hyperbolic Tricomi equation, 
and the shadow zone is governed by an elliptic Tricomi equation. At the caustic surface, the 
equation is parabolic. Since the outgoing wave is unknown, the incoming wave is specified only. 
The incoming wave could be an N-wave, a wave corresponding to a Concorde aircraft, or any 
other incoming wave such as those shown on figure 10.   
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Figure 9.  Computational domain, boundary conditions, illumination and shadow zones, caustic 
surface and incoming and outgoing waves 
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Figure 10.  Different shapes of incoming sonic boom signatures. 

 
Solution for an Incoming N-wave (Fig.10-1 Case): 
 
Computational domain and grid:  
 
We choose a rectangular domain with .]2.,2[z and ]67.3,67.2[ dimensionless units, and 
the number of grid points in the Z direction is 1000 and in the  direction is 2048 points when 
using the time-domain scheme, or frequencies when using the frequency-domain scheme. It 
should be noticed that the higher the frequencies  are or the points in  the better the solutions 
are. 
  
The F- function of Eq. (11) on the upper boundary z = 2.0 is used as an incoming N-wave (see 
Fig 10.1)., which extends from  = -1.386 to  = – 2.836 (duration of 1) with pmax = 1.0 and pmin 
= -1 ( and p are dimensionless).   With these dimensionless pressure and duration, p = 1 is 
equivalent to 2.25 psf and  = 1 is equivalent to 230 ms.  The dimensionless time step for the 
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pseudo time integration is taken as 0.001. The case has been run for 20,000 time steps until the 
total error of the pseudo unsteady time term was reduced to 10-7. 
 
Results and Discussion: 
 
Figure 11 shows the pressure contours of the incoming wave as it progresses in the domain 
toward the caustic surface at z = 0 and outgoing wave as it originates from the caustic surface. In 
Fig. 12, it is noticed that the predicted wave at the caustic surface shows pressure peaks of 2.8, 
1.8 and -1.35 (equivalent to 6.3 psf, 4.05 psf and –3.04 psf, respectively). These results 
conclusively show that the superboom response from the dimensionless pressure peaks of  1 is 
predicted. It is also consistent with the results of Ref. 6. Figure 13 shows pmax of 3.9 which is 
equivalent to  8.775 at Z = 0.0845.  Figures  14 and 15 show the interaction of the incoming 
wave with the outgoing wave at z = 0.5 and 1.5. The figure shows the growth of the pressure 
peaks as it proceeds toward the caustic surface. Figure 16 shows the pressure wave in the shadow 
zone, which is fading away. 
 
The small-amplitude high-frequency waves shown on the pressure curves are due to the 
frequency domain resolution. It can be removed using an additive numerical dissipation in the 
computational scheme. However, care must be used since too much numerical dissipation can 
wipe out small shocks. 
 

Figure 11. Pressure contours for an incoming N-wave at (fig. 10-1 case) nt = 20,000 time steps. 
The outgoing wave is clearly predicted. 

nz = 1,000 
ω =  2,024 
nt = 20,000 
dt = 1e-3 
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Figure 12. Pressure variation for an incoming N-wave (fig. 10-1 case) at the caustic surface  

(z = 0) and nt = 20,000 steps. 
  

 
 

Figure 13. – Pressure variation for an incoming N-wave (fig. 10-1 case) at z of maximum 
pressure, z = 0.0845 and nt = 20,000 steps. 
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Figure 14. Pressure variation for an incoming N-wave (fig. 10-1 case) at z = 0.5  
and nt = 20,000 steps. 

 
 

 

 
Figure 15. Pressure variation for an incoming N-wave (fig. 10-1 case) at z = 1.5  

and nt = 20,000 steps. 
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Figure 16.  Pressure variation for an incoming N-wave (fig. 10-1 case) at z = -0.5  (shadow zone) 

and nt = 20,000 steps 
 
Solution for an Incoming Concorde Aircraft Wave (Fig. 10-2 case): 
 
Computational domain and grid:  
 
We choose a rectangular domain with .]2.,2[z and ]67.3,67.2[ dimensionless units, and 
the number of grid points in the Z direction is 1000 and in the  direction is 02048 points when 
using the time-domain scheme, or frequencies when using the frequency-domain scheme. 
  
The F- function of Eq. (11) on the upper boundary z = 2.0 is used as an incoming Concorde 
aircraft wave (see Figure 10-2) which extends from  = -1.386 to  = – 2.836 (duration of 1) with 
pmax = 0.689 and 1.0, and pmin = -1.1378 ( and p are dimensionless).  With these dimensionless 
pressure and duration, p = 1 is equivalent to 2.25 psf and  = 1 is equivalent to 230 ms. The 
dimensionless time step for the pseudo time integration is taken as 0.001. The case has been run 
for 20,000 time steps until the total error of the pseudo unsteady time term was reduced to 10-7. 
 
Results and Discussion: 
 
Figure 17 shows the pressure contours of the incoming wave as it progresses in the domain 
toward the caustic surface at z = 0 and the outgoing wave as it originates from the caustic 
surface. In Fig. 18, it is noticed that the predicted wave at the caustic surface shows pressure 
peaks of 1.85, 2.0 and -1.4(equivalent to 4.1625 psf, 4.5 psf  and – 3.15 psf, respectively). These 
results conclusively show that the superboom response from dimensionless pressure peaks of 
0.689, and -1.1378  is predicted. It is also consistent with the results of Ref. 6. Figure 19 shows a 
dimensionless pressure peak, pmax of 2.8 which is equivalent to 6.3 psf at z = 0.07.   Figures 20 
and 21 show the interaction of the incoming wave with the outgoing wave at z = 0.5 and 0.7. 
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Figure 22 shows the pressure at z = 1.5, before the interaction starts. These figures show the 
growth of the pressure peaks as it proceeds toward the caustic surface. Figure 23 shows the 
pressure wave in the shadow zone, which is fading away. 
   
Again, the small-amplitude high-frequency waves shown on the pressure curves are due to the 
frequency domain resolution and it can be removed using an additive numerical dissipation in the 
computational scheme. 
 
 

 
 

Figure 17. Pressure contours for an incoming Concorde aircraft wave (fig. 10-2 case)  
at nt = 20,000 time steps. The outgoing wave is clearly predicted. 

 
 
 
 

nz = 1,000 
ω =  2,024 
nt = 20,000 
dt = 1e-3 
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Figure 18.  Pressure variation for an incoming Concorde aircraft wave (fig. 10-2 case)  
at the caustic surface (z = 0) and nt = 20,000 steps 

 
 

 
Figure 19. Pressure variation for an incoming Concorde aircraft wave(fig. 10-2 case) 

 at z of maximum pressure, z = 0.07,  and nt = 20,000 steps 
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Figure 20. Pressure variation for an incoming Concorde aircraft wave (fig. 10-2 case)  
at z = 0.5 and nt = 20,000 steps. 

 
 

Figure 21. Pressure variation for an incoming Concorde aircraft wave (fig. 10-2 case)  
at z = 0.7 and nt = 20,000 steps. 
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Figure 22.  Pressure variation for an incoming Concorde aircraft wave (fig. 10-2 case) 

At  z = 1.5 and nt = 20,000 steps 
 

 
 

Figure 23. Pressure variation for an incoming Concorde aircraft wave (fig. 10-2 case)  
at  z = - 0.5 (shadow zone) and nt = 20,000 steps. 
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Solution for an Incoming  Flat-Top 1 Wave (Fig.10-3): 
 
Computational domain and grid:  
 
We choose a rectangular domain with .]2.,2[z and ]67.3,67.2[ dimensionless units, and 
the number of grid points in the Z direction is 1000 and in the  direction is 2048 points when 
using the time-domain scheme, or frequencies when using the frequency-domain scheme. 
  
The F- function of Eq. (11) on the upper boundary z = 2.0 is used as an incoming flat-top 1 wave 
(see Figure 10-3), which extends from  = -1.386 to  = – 2.836 (duration of 1) with pmax = 1  and 
pmin = -1.0 ( and p are dimensionless).   With these dimensionless pressure and duration, p = 1 is 
equivalent to 0.5 psf and  = 1 is equivalent to 150 ms. The dimensionless time step for the 
pseudo time integration is taken as 0.001. The case has been run for 20,000 time steps until the 
total error of the pseudo unsteady time term was reduced to 10-7. 
 
Results and Discussion: 
 
Figure 24 shows the pressure contours of the incoming wave as it progresses in the domain 
toward the caustic surface at z = 0 and the outgoing wave as it originates from the caustic 
surface. In Fig. 25, it is noticed that the predicted wave at the caustic surface shows pressure 
peaks of 3.2, 3.7 and -2.5 (equivalent to 1.6 psf, 1.85 psf  and – 1.25 psf, respectively). Figure 26 
shows pmax of 5.9, which is equivalent to 2.95 psf at z = 0.0672.  These results conclusively show 
that the superboom response from dimensionless pressure peaks of 1.0 and -2.0 is predicted. It 
is noticed that the superboom of this case of a flat-top signature would behave in the same 
manner as the N-wave of figure 10.1  Figures 27 and 28 show the interaction of the incoming 
wave with the outgoing wave at z = 0.5 and 1.5. These figures show the growth of the pressure 
peaks as it proceeds toward the caustic surface. Figure 29 shows the pressure wave in the shadow 
zone, which is fading away. 
   

 
Figure 24. Pressure contours for an incoming flat-top 1 wave (Fig. 10-3 Case) at nt = 20,000  

 time steps. The outgoing wave is clearly predicted. 

nz = 1,000 
ω =  2,024 
nt = 20,000 
dt = 1e-3 
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Figure 25. Pressure variation for an incoming flat-top 1 wave (Fig.l 0-3 case) 
at the caustic surface z = 0 and nt = 20,000 ste s 
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Figure 26. Pressure variation for an incoming flat-top 1 wave (Fig.l 0-3 case) 
at z of maximum pressure, z = 0.0672 and nt = 20,000 steps 
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Figure 27. Pressure variation for an incoming flat-top 1 wave (Fig. 1 0-3 case) 
at z = 0.5 and nt = 20,000 steps 
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Figure 28. Pressure variation for an incoming flat-top 1 wave (Fig. 1 0-3 case) 
at z = 1.5 and nt = 20,000 step 
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Figure 29.  Pressure variation for an incoming flat-top 1 wave (Fig. 10.3 case) at z = -0.5 

(shadow zone) and nt = 20,000 steps. 
 
Solution for an Incoming  Ramp-Top 1 Wave (Fig.10-4): 
 
Computational domain and grid:  
 
We choose a rectangular domain with .]2.,2[z and ]67.3,67.2[ dimensionless units, and 
the number of grid points in the Z direction is 1000 and in the  direction is 2048 points when 
using the time-domain scheme, or frequencies when using the frequency-domain scheme. 
  
The F- function of Eq. (11) on the upper boundary z = 2.0 is used as an incoming ramp-top wave 
(see Figure 10-4), which extends from  = -1.386 to  = – 2.836 (duration of 1) with pmax = 1  and 
pmin = -1.0 ( and p are dimensionless).  With these dimensionless pressure and duration, p = 1 is 
equivalent to 1 psf and  = 1 is equivalent to 150 ms. The dimensionless time step for the pseudo 
time integration is taken as 0.001. The case has been run for 20,000 time steps until the total 
error of the pseudo unsteady time term was reduced to 10-7. 
 
Results and Discussion: 
 
Figure 30 shows the pressure contours of the incoming wave as it progresses in the domain 
toward the caustic surface at z = 0 and the outgoing wave as it originates from the caustic 
surface. In Fig. 31, it is noticed that the predicted wave at the caustic surface shows pressure 
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peaks of 2, 1.6 and -1.4(equivalent to 2 psf, 1.6 psf and – 1.4 psf, respectively). Figure 32 shows 
pmax of 2.8, which is equivalent to 2.8 psf at z = 0.242, and pmin of -2.2 and  is equivalent to -2.2 
psf.   These results conclusively show that the superbooom response from dimensionless pressure 
peaks of 1.0 is predicted. It is noticed that the superboom of this case is about 33 percent lower 
relative to the front shock than that of the flat-top case.  The recompression shocks are similar in 
magnitude. Figures 33 and 34 show the interaction of the incoming wave with the outgoing wave 
at z = 0.5 and 1.5. These figures show the growth of the pressure peaks as it proceeds toward the 
caustic surface.  Figure 35 shows the pressure wave in the shadow zone, which is fading away. 
  

 
 

Figure 30. Pressure contours for an incoming ramp-top 1 wave (Fig. 10-4 Case) 
 at nt = 20,000 time steps. The outgoing wave is clearly predicted. 

 

nz = 1,000 
ω =  2,024 
nt = 20,000 
dt = 1e-3 
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  Figure 31. Pressure variation for an incoming ramp-top 1 wave (Fig.10-4 case)  
at the caustic surface (z = 0) and nt = 20,000 steps. 

 

 
  

  Figure 32. Pressure variation for an incoming ramp-top 1 wave (Fig.10-4 case)  
at z of maximum pressure, z = 0.242 and nt = 20,000 steps. 
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Figure 33. Pressure variation for an incoming ramp-top 1 wave (Fig.10-4 case) 
 at z = 0.5 and nt = 20,000 steps. 

 

 
 

   Figure 34. Pressure variation for an incoming ramp-top 1 wave (Fig.10-4 case)  
at z = 1.5  and nt = 20,000 steps. 
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Figure 35. Pressure variation for an incoming ramp-top 1 wave (Fig.10-4 case) 
at z = -0.5 (shadow zone) and nt = 20,000 steps 

 
Solution for an Incoming  Flat-Top 2 Wave (Fig.10-5): 
 
Computational domain and grid:  
 
We choose a rectangular domain with .]2.,2[z and ]67.3,67.2[ dimensionless units, and 
the number of grid points in the Z direction is 1000 and in the  direction is 2048 points when 
using the time-domain scheme, or frequencies when using the frequency-domain scheme. 
  
The F- function of Eq. (11) on the upper boundary z = 2.0 is used as an incoming flat-top 2 wave 
(see Figure 10-5), which extends from  = -1.386 to  = – 2.386 (duration of 1) with pmax = 1  and 
pmin = -1.0 ( and p are dimensionless).   With these dimensionless pressure and duration, p = 1 is 
equivalent to 0.5 psf and  = 1 is equivalent to 150 ms. The dimensionless time step for the 
pseudo time integration is taken as 0.001. The case has been run for 20,000 time steps until the 
total error of the pseudo unsteady time term was reduced to 10-7. 
 
Results and Discussion: 
 
Figure 36 shows the pressure contours of the incoming wave as it progresses in the domain 
toward the caustic surface at z = 0 and the outgoing wave as it originates from the caustic 
surface. In Fig. 37, it is noticed that the predicted wave at the caustic surface shows pressure 
peaks of 3.0, 2.0 and -2.12 (equivalent to 1.5 psf, 1.0 psf and -1.06 psf, respectively).  Figure 38 
shows p max of 4.2, which is equivalent to 2.1 psf at z = 0.0657.  These results conclusively show 
that the superboom response from dimensionless pressure peaks of + 1.0 is predicted. It is 
noticed that the superboom of this case, as compared to the flat-top case (Fig. 10.3), results in 
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similar bow-shock pressure values but results in a larger recompression shock pressure level.  
Figures 39 and 40 show the interaction of the incoming wave with the outgoing wave at z = 0.5 
and 1.5.  These figures show the growth of the pressure peaks as it proceeds toward the caustic 
surface. Figure 41 shows the pressure wave in the shadow zone, which is fading away. 
   
 

 
 

Figure 36. Pressure contours for an incoming flat-top 2 wave (Fig. 10-5 Case) at nt = 20,000 
time steps. The outgoing wave is clearly predicted. 

 
 
 
 
 
 

 
 
 

 
 
 
 

nz = 1,000 
ω =  2,024 
nt = 20,000 
dt = 1e-3 
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Figure 37. Pressure variation for an incoming flat-top 2 wave (Fig.10-5 case) 
at the caustic surface (z = 0) and nt = 20,000 steps 
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Figure 38. Pressure variation for an incoming flat-top 2 wave (Fig.l0-5 case) 
at z of maximum pressure, Z = 0.0657 and nt = 20,000 steps 
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Figure 39. Pressure variation for an incoming flat-top 2 wave (Fig. 1 0-5 case) 
at z = 0.5 and nt = 20,000 steps 
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Figure 40. Pressure variation for an incoming flat-top 2 wave (Fig. 1 0-5 case) 
at z = 1.5 and nt = 20,000 step 
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Solution for an Incoming  Ramp-Top 2 Wave (Fig.10-6): 
 
Computational domain and grid:  
 
We choose a rectangular domain with .]2.,2[z and ]67.3,67.2[ dimensionless units, and 
the number of grid points in the Z direction is 1000 and in the  direction is 2048 points when 
using the time-domain scheme, or frequencies when using the frequency-domain scheme. 
  
The F- function of Eq. (11) on the upper boundary z = 2.0 is used as an incoming ramp-top 2 
wave (see Figure 10-6), which extends from  = -1.386 to  = – 2.386 (duration of 1) with pmax = 
1  and  pmin = -1.0 ( and p are dimensionless).  With these dimensionless pressure and duration, p 
= 1 is equivalent to 1 psf and  = 1 is equivalent to 150 ms. The dimensionless time step for the 
pseudo time integration is taken as 0.001. The case has been run for 20,000 time steps until the 
total error of the pseudo unsteady time term was reduced to 10-7. 
 
Results and Discussion: 
 
Figure 42 shows the pressure contours of the incoming wave as it progresses in the domain 
toward the caustic surface at z = 0 and the outgoing wave as it originates from the caustic 
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surface. In Fig. 43, it is noticed that the predicted wave at the caustic surface shows pressure 
peaks of 1.95, 1.3 and -1.7(equivalent to 1.95 psf, 1.3 psf and – 1.7 psf, respectively). Figure 44 
shows p max of 2.8, which is equivalent to 2.8 psf at z = 0.24, and p min of - 2.5 which is equivalent 
to -2.5 psf. These results conclusively show that the superboom response from dimensionless 
pressure peaks of 1.0 is predicted. It is noticed that the superboom of this case is higher than 
that of the flat-top case. Figures 45 and 46 show the interaction of the incoming wave with the 
outgoing wave at z = 0.5 and 1.5. These figures show the growth of the pressure peaks as it 
proceeds toward the caustic surface. Figure 47 shows the pressure wave in the shadow zone, 
which is fading away. 
 
 

 
Figure 42. Pressure contours for an incoming ramp-top 2 wave (Fig. 10-6 Case) 

 at nt = 20,000 time steps. The outgoing wave is clearly predicted. 

nz = 1,000 
ω =  2,024 
nt = 20,000 
dt = 1e-3 



 D-46

 
  

  Figure 43. Pressure variation for an incoming ramp-top 2 wave (Fig.10-6 case)  
at the caustic surface (z = 0) and nt = 20,000 steps 

 

 
  

  Figure 44. Pressure variation for an incoming ramp-top 2 wave (Fig.10-6 case)  
at z of maximum pressure, z = 0.24 and nt = 20,000 steps 
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Figure 45. Pressure variation for an incoming ramp-top 2 wave (Fig.10-6 case) 
 at z = 0.5 and nt = 20,000 steps 

 

 
 
 

   Figure 46. Pressure variation for an incoming ramp-top 2 wave (Fig.10-6 case)  
at z = 1.5  and nt = 20,000 steps 
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Figure 47. Pressure variation for an incoming ramp-top 2 wave (Fig.10-6 case) 

at z = -0.5 (shadow zone) and nt = 20,000 steps. 
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