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The centerline total enthalpy of arc jet flow is determined using laser induced 
fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, 
and chemical can be determined from LIF measurements. Additionally, enthalpy 
distributions are inferred from heat flux and pressure probe distribution measurements 
using an engineering formula. Average enthalpies are determined by integration over the 
radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated 
from computational fluid dynamics calculations at similar arc jet conditions. The trends 
show favorable agreement, but there is an uncertainty that relates to the multiple individual 
measurements and assumptions inherent in LIF measurements. 

I. Introduction 
One of the objectives of determining the performance of thermal protection materials during entry into the 
atmosphere is simulating the conditions encountered, including the pressure, heat flux, and enthalpy. Arc jet 
facilities have been used for testing thermal protection materials and evaluating their performance. Obtaining two of 
these three parameters has been fairly achievable, but not necessarily all three at one time. Engineers have had to 
settle with simulating the two parameters that would best apply to the characteristics of the material tested. Usually 
that is the heat flux, but often the material can chemically react with the environment, so simulating the chemical 
composition of the flow is needed. The composition of the flow depends largely on the enthalpy. However, the 
enthalpy is not readily measurable. Estimates of the enthalpy have been made using various techniques in the pase, 
such as the sonic throat technique and the energy balance techniques. These methods approach the enthalpy as an 
average quantity over the entire flow field. However, it is known that the enthalpy varies significantly over the 
radius of the flow in an arc jet due to the way the gas is heated in an arc and due to wall cooling. Centerline 
measurements of stagnation point heat flux and pressure used in combination with a heat flux prediction correlation 
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or theory have been used to estimate the enthalpy of the flow in the center of the flow. One such correlation 
commonly used is one by Hiester and Clark1 that is based on Fay and Riddell theory. Reference 1 compares the 
enthalpy derived by this formula with enthalpies determined in various ways for numerous facilities extant at the 
time. The correlation is not particularly good; nevertheless, it has been used extensively. A better way of 
determining local enthalpy of arc jet flows has been a goal of engineers for many years. Spectroscopic techniques, 
various laser scattering techniques, energy balance probes, and laser induced fluorescence (LIF) have been tried. An 
early survey was published earlier describing a number of the techniques.2 Early measurements using copper LIF to 
measure the flow velocity were reported by Arepalli, et al.3 Spectroscopy The LIF technique has been demonstrated 
to have the capability of obtaining almost all the parameters of the flow needed to determine the enthalpy when 
Bamford, et al.4 used O-atom and N-atom LIF to determine flow properties; then later Fletcher5 demonstrated the 
method for obtaining total enthalpy in pure nitrogen arc jet flow. Grinstead, Driver and Raiche6 extended LIF 
measurements to determine radial distributions of various properties of nitrogen flow, but did not obtain enthalpy 
profiles. The LIF technique used is based on that of Niemi, et al.7 as implemented by Grinstead, et al.3 at the Ames 
Research Center. More recently, Lohle, et al.8 used oxygen LIF to measure flow properties, including the enthalpy,  
in a pure oxygen plasma.  
 
The present technique uses a laser for two-photon ultraviolet excitation of oxygen and nitrogen atoms to excited 
states that then radiate at infrared/visible wavelengths which are detected by a photomultiplier tube. The laser is 
scanned over wavelengths to obtain the spectral profile that consists of information about the temperature and 
velocity, plus its intensity is proportional to the atom density. With the calibration obtained using the technique of 
Niemi, et al.7 one can obtain the atom densities. Because the excitation wavelength for nitrogen and oxygen are 
different, one must do the measurements with different configurations of the dye laser used to excited the atoms of 
oxygen and nitrogen. Sets of runs were made with two dye configurations, one for nitrogen and one for oxygen. This 
report documents the results obtained from the LIF measurements at the centerline of the arc jet flow, eight inches 
downstream of the nozzle exit. The present paper uses two-photon laser induced fluorescence of nitrogen and 
oxygen atoms, along with stagnation pressure measurements to determine the centerline enthalpy of arc jet flow at 
several operating conditions. Relative enthalpy distributions across the flow are estimated from relative stagnation 
heat flux and pressure distributions measured across the flow. The average enthalpy is determined from the 
centerline enthalpy and the radial distribution, under the assumption of a constant mass flux distribution. The 
accuracy of this assumption was assessed using a mass flux distribution calculated using computational fluid 
dynamics.  
 

II. The Experiment 

A. The Arc Jet Facility 
This test program utilized test position 2 (TP2) which consisted of a ten-pack dual-diameter constricted arc 

column attached to a 15º half-angle conical nozzle with an exit plane diameter of 5 inches.  A tungsten button 
cathode was used as the upstream electrode of the arc heater, and a conical copper anode is used as the downstream 
electrode.  The arc heater contains 200 individually water-cooled, electrically isolated constrictor segments 
assembled in modular packs, 20 segments in each pack.  The arc heated gas consisting of oxygen and nitrogen added 
to the flow separately. Nitrogen is injected at the cathode to avoid its oxidation. Oxygen is injected at various 
locations in the arc column. Gas is heated by a DC arc powered by a silicon-controlled rectified current of up to 
10Mw.  

B. Laser System and Laboratory Optical Configuration    
A simplified scheme of the experimental set-up is depicted in Figure 3.  A tunable 30 Hz Nd:YAG (Continuum 
Powerlite Precision 9030) pumped dye laser (Continuum ND6000) provides visible radiation from 612 nm to 690 
nm.  The output of the dye laser is frequency-tripled using two auto-tracking β-barium-borate ( “BBO”) crystal 
assemblies (Inrad AT-III) resulting in ~ 5ns pulses of vertically polarized coherent ultraviolet light between 204 nm 
and 230 nm with a pulse energy up to 4 mJ and a spectral bandwidth of approximately 0.25 cm-1.  A four-prism 
harmonic separator is employed to separate the third harmonic laser beam from the dye laser fundamental and 
second harmonic laser beams.  The two BBO crystals are automatically angle tuned using active feedback circuitry 
to provide constant output energy while scanning the dye laser wavelength.  Two different laser dyes (Exciton) are 
used to achieve the desired atomic excitation wavelengths.  To access the atomic nitrogen transitions, Rhodamine 
640 perchlorate dye is used, while LDS 698 is used to access the atomic oxygen transitions.  Approximately 20% of 
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the UV laser beam pulse energy is reserved for frequency and laser induced fluorescence (LIF) calibration 
measurements in the laboratory flow reactor.  A pyroel0ectric energy sensor monitors the pulse energy directed 
through the flow reactor.  The remaining 80% is directed out of the laboratory to the arc jet test cabin using a Class I 
fully enclosed laser beam transmission path.   

 

  
Figure 1 Schematic diagram of the laboratory laser and optical configuration. 

C. Arc Jet Optical Configuration  
The optical configuration for the JSC test position #2 (TP2) was designed to enable single point LIF 

measurements on the flow centerline at prescribed locations from approximately 8 cm to 20 cm downstream of the 
nozzle exit.  The portion of the laser beam to be transmitted to TP2 is elevated to approximately 2.5 m above the 
laser table, passes through an aperture in the laboratory wall, and is directed by a periscope (composed of right angle 
prisms) attached to a hatch on the side of the chamber.  The beam enters TP2 through a dedicated fused-silica 
window. Mounted on the inside wall TP2 is an enclosed telescope that focuses the laser beam after it passes through 
the window. A four inch aluminum mirror directs the laser beam upstream to intersect the nozzle axis at a prescribed 
distance downstream of the nozzle exit.  The entire beam transmission path from the optical table in the laboratory 
to the measurement location along the nozzle axis exceeds 10 m.  Attachment points of periscope hardware to the 
facility enclosure were designed to minimize beam deflection due to thermal and vibrational stresses.  As the 
overlap of the focused beam path with the region imaged by the collection optics is critical for repeatable absolute 
LIF intensity measurements, remotely controlled actuators operated from the laboratory are used to correct 
misalignment caused by cabin wall deflections or thermal drifts of the optics.  

 
With the exception of the final element, all turning elements along the transmission path are fused silica right 

angle prisms with ultraviolet anti-reflection coatings (198 nm – 248 nm).  The use of anti-reflection coated prisms 
rather than dielectric mirrors permits operation over the wavelength range required to access N, O, Kr, and Xe LIF 
without changing optics. The last turning element, which directs the beam into the flow at the non-normal angle 
necessary to realize a Doppler shift of the absorption profile, is a first surface, protected aluminum mirror with high 
(> 90%) reflectivity in the tuning range of the laser. The focused beam diameter at the measurement location is 
approximately 0.5 mm.  A continuous-wave, frequency-doubled Nd:YAG alignment laser is coupled on to the 
transmission beam path.  This laser is used for alignment purposes prior to testing. 
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The excited fluorescence is imaged from the probe volume and directed through a 1.37- inch clear aperture 

window located on the front face of TP2 at the 12 o’clock position directly above the arc heater column.  The 
primary objective optic is a 3 inch diameter lens attached to modified ring adapter plate that secures to the nozzle 
adapter plate within TP2.  A four inch protected gold surface mirror directs the imaged fluorescence horizontally to 
the integrated optical receiver which is located directly outside the vacuum chamber (TP2).   

 
The LIF optical detector includes an alignment laser to enable proper alignment of the mounted mirror, primary 

objective, and receiver to the location of the probe volume.  A motorized flip mirror, mounted inside the receiver, is 
used to intercept the collection optics path and couple a visible wavelength (red-diode laser) alignment laser on the 
path to back-illuminate the probe volume.  The motorized flip mirror is remotely operated from the laboratory.  The 
mirror also serves as an optical shutter to block the receiver photodetector when LIF measurements are not being 
performed. 

D. Titration 
To obtain the reference density of atoms in the flow reactor nitric oxide is added to the flow stream of nitrogen 

downstream of the discharge. It is added in such a way that good mixing is assured, via a multi-holed outlet vent 
inside the flow tube. The NO is added incrementally as the nitrogen atom LIF signal is measured. The point where 
the NO signal is extinguished (as determined by extrapolation) yields the amount of nitrogen atoms in the flow, 
which corresponds to the amount of NO that was introduced. In the present measurements this was 8.48x1013 cm-3. 
Under normal circumstances this would be the amount of oxygen atoms in the flow when oxygen is produced by 
reacting NO with N. However, there was a problem with the NO regulator that resulted in variations in the flow, 
hence the O-atom density. 

E. Data Acquisition 
An integrated LabVIEW and MATLAB software data acquisition remotely operates all subsystems of the 

experiment and records LIF data.  The total LIF signal magnitude and fluorescence lifetime can be extracted from 
the time-resolved fluorescence pulse; therefore, a four-channel, 500 MHz digital oscilloscope (Tektronix TDS 
5104B) was chosen to record the time-resolved fluorescence signals at each wavelength. The digital oscilloscope 
currently averages 8 fluorescence pulses at each step – with a wavelength step size of 0.002 nm - as the laser is 
scanned over the absorption features in the laboratory flow reactor and the arc jet.  The MATLAB data acquisition 
system records all LabVIEW data and digitizes the waveforms collected by the oscilloscope.  For each set of LIF 
data acquired, all relevant variables and waveforms are stored in a data structure within a MATLAB binary data file. 

F. Heat Flux and Pressure Probe Measurements 
The Heat Flux and Pressure Probe system consists of a chamber mounting assembly, a horizontal/vertical alignment 
plate, two  15-inch travel Velmex™ linear positioners, motion control and sensing hardware and software, and the 
water-cooled probe.  Figure 3 shows the heat flux probe on the motion system as installed into the Test Position 2 
(TP2) test chamber. The heat rate probe used for this test series is a Medtherm stagnation point heat flux probe, P/N 
24-3000-18-72-21074, with a Gardon gage style heat rate sensor and a range of 0 - 3000 BTU/(ft2-sec).  The probe 
assembly is made of OFHC Copper CDA 101 and is cooled with 500 psig de-ionized water. The probe tip at the 
sensor location is hemispherical with a 0.188-inch radius; and this hemispherical tip is located at the end of a an 
approximately 1.75-inch length of 0.375-inch diameter copper tubing. (See Figure 4 which is an extract from the 
Medtherm drawing). The sensor is provided with a NIST-traceable calibration curve in terms of absorbed heat flux. 
The calibration curve is produced by extrapolating the data beyond the limit of blackbody reference 
sources(approximately an order of magnitude below the 3000 BTU/ft2-s upper limit) and by designing the sensor so 
that it will not be compromised at the upper limit. The water-cooled pressure probe has similar dimensions, but has 
an internal tube leading to a pressure transducer. 
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Figure 2 Heat Flux Probe on the Motion System 

 
Vertical and horizontal alignment of the probes to the  arc jet nozzle exit plane is facilitated using a laser to find the 
nozzle exit center, and a laser level to check for the trueness of the horizontal/vertical sweep across the length of the 
axis movement. The motion system uses a 5 V DC voltage supply and two string potentiometers to track the 
horizontal and vertical movement of the attached probe. Data signals from the position potentiometers are translated 
to positional data utilizing calibration curves input to the Test Data Acquisition System (TDACS). The accuracy of 
the potentiometer(s) are 0.25% of full scale, and the repeatability of the potentiometer output for a given position is 
0.05% of full scale. The 5.0 VDC voltage to the potentiometers are supplied by two -10 to +10 VDC outputs from 
two 16-bit Digital to Analog (D/A) outputs; producing voltage output accuracy of ±3.512mV, or 0.07%. These 
accuracies produce a position reporting error of less than 0.01 inch. The individual linear axes are capable of 
movement accuracy of 1/400 (0.0025) inch increments, at feed rates of between 0.00025 in/sec to 1.5 in/sec. 
 



 

 
American Institute of Aeronautics and Astronautics 

 

 

6

 
Figure 3 Heat flux probe configuration with dimensions in inches 

 
 

III. Analysis 

G. Two Photon Laser Induced Fluorescence 
 

1. Calibration and reference atom source 
The LIF signal measured by the PMT detector is given by 
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Where f is the photomultiplier detector sensitivity in say, output volts per photon; υL is the laser frequency;  the laser 
energy squared is p

2; the collection volume LΔΩ/4π seen by the detector; the atom density n, the quantum yield 
Φ=τobs/ τn, the ratio of observed to natural lifetime of the upper state; the two-photon excitation cross section σ12

(2);  
η is the detector optical path transmission factor assumed to be constant over the laser scan wavelengths, including 
the filters; φ(υL-υo) is the normalized excitation line shape function; and the double integral term is the laser 
intensity distribution integrated in time and cross sectional space, which for conciseness shall be referred to as KL. 
By integrating over time and frequency, we can simplify the notation by grouping various factors in Eqn. (1).  
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contains all the information about the collection volume, optical transmission, and detector efficiency; 
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contains information about the optical absorption transition. KL contains the laser excitation information. 
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To calibrate the system as described earlier, the flow reactor provides a known source of atoms. They can either be a 
known species such as krypton or xenon at known temperature and pressure, or it can be the species to be measured 
in the arc jet, nitrogen or oxygen. Krypton has as fluorescence resonance at a wavelength very close to that of 
nitrogen; and xenon has a resonance wavelength very close to that of oxygen. We can therefore use these gases as 
calibration species to determine ratio of KG in the arc chamber and the flow reactor. This is accomplished by placing 
a gas calibration cell at the location in the arc jet chamber where actual measurements will be made. This assures 
that the collection geometry is virtually identical in the calibration and in the actual arc jet measurement. The gas 
calibration cell and the flow reactor are set to known conditions of pressure and temperature; therefore, the density is 
known in both. The laser energy at both the flow reactor and the calibration cell are measured for each set of data, 
thus the dependence on laser energy can be included as the KL factors. Neutral density and spectral filters for both 
are known.  The spectra filters are the same for both the flow reactor and the fluorescence detector. 
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Since the laser characteristics and gases during calibration are the same (same wavelength and pulse profile) the KS 

factors are the same, and the densities are the same (or can be taken into account) the geometry and detector 
efficiency ratios can be determined. Because of the proximity of the wavelengths of the calibration media (xenon or 
krypton) and their corresponding species to be measured, this ratio applies to both corresponding gases. 
 
Then 
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All factors are known or measured quantities. 
 
To determine the density of the unknown atoms in the arc flow a reference signal obtained in the flow reactor is 
used.  A titration with NO provides knowledge of the atom density in the flow reactor. We can find the ratio of LIF 
response in the arc jet and in the flow reactor as 
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where the factors Ks and KL for the flow reactor and the arc chamber, respectively, have divided out. All the 
quantities in this equation are measured or known. 

 

H. LIF Measurements of Arc Jet Flow 
The laser was aligned to cross the arc jet axis at eight inches from the nozzle exit and a calibration cell containing 
xenon or krypton was installed at the central location. The fluorescence from this signal was used as reference for 
calibrating the system at a known temperature and pressure (density). The laser was scanned over wavelength and 
the LIF response was measured as a function of time at each wavelength. There were 500 time points recorded for 
each wavelength. The LIF signals were obtained as averages of eight laser pulses, with the laser pulse energy also 
recorded. However, the pulse energy signals were not synchronous with the LIF signals, therefore, an average of the 
laser energy for the scan was used for normalization. In the future, it is expected that a synchronous signal can be 
obtained so that each laser pulse, or average of the eight pulses can be normalized with its respective synchronous 
laser pulse energy.  An average background versus time was determined from the first few pulses in the wavelength 
scan. The background was subtracted from the signal to obtain a relatively clean base. The background-subtracted 
LIF signals were integrated in time to yield spectral profiles. These spectral profiles were fit to Gaussian functions to 
obtain the central wavelength, amplitude, and width of the LIF signals.  The nitrogen excitation spectrum has only 
one component, whereas the oxygen spectrum consists of three components. Relative strengths of the three 
components and their line positions were taken from Saxon and Eichler.9 The raw data were also integrated with 
respect to wavelength to obtain the average time response for each wavelength scan. The time response data was fit 
to a Gaussian-exponential function that represents the convolution of the laser time pulse width and the LIF signal 
decay due to the natural decay and any quenching. Samples of the signals and the curve fits are shown in Figures 4 
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and 5 for spectra and time, respectively. The curve fit in time yields the decay constant, the amplitude of the 
fluorescent signal, and the laser pulse width. 
 
 

 
Figure 4 Spectral data for sample laser scan of nitrogen atoms in the flow reactor and in the arc jet. 

 

 
Figure 5 Gaussian/Exponential fit to transient nitrogen LIF response in the arc jet. 
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IV. Results and Discussion 

I. Centerline Velocity and Temperature 
From the relative central wavelength difference we obtained the flow velocity, taking into account the angle =64.5º  
of the laser beam with respect to the center line of the arc jet flow. 
 

ݒ                                                                       ൌ ௖∆
೚௖௢௦

 (6) 

 
The velocities as function of arc current for various arc jet gas flow rates are shown in Figure 6. 
 

 
Figure 6 Velocities determined from Doppler shift of LIF spectral scans of nitrogen and oxygen 
 
 
The temperature was estimated from the spectral widths using the standard Doppler Gaussian formula,5 which takes 
into account the laser line width.  
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where 0 is the central wavelength,   ∆்,௔

ଶ  is the full width at half maximum of the LIF signal in the arc jet, ∆்,௥
ଶ  is 

the full width at half maximum of the flow reactor signal, and ∆஽,௥
ଶ  is the Doppler full width at half maximum at 

the flow reactor temperature. The terms in parentheses is the net laser line width squared. The flow reactor 
temperature was about 300 K.  The temperatures are plotted versus arc current for various arc jet flow rates in 
Figure 7. It appears that the uncertainty in the temperature measurements dominate the results because we do not see 
a definite trend of temperature with arc current. One expects to see the temperature increase, as least somewhat, with 
are current at a given gas flow rate. 
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Figure 7 Temperatures inferred from Doppler widths of LIF spectral scans nitrogen (solid curves) and 
oxygen atoms (dashed curves).  

 
 
The dependence of velocities on bulk enthalpy is shown in Figure 8 for both nitrogen and oxygen LIF 
measurements. There are about three outlier points, but most of the points correlate fairly well with the bulk 
enthalpy determined from energy balance measurements of the arc heater. 
 
The LIF signal was integrated in both time and wavelength to obtain the total LIF pulse energy. The ratio of 
integrals was used to determine the number densities from Eqn. (5). Absolute densities for nitrogen and oxygen were 
obtained using the flow reactor as a reference. Titration by nitric oxide yielded a value of nN=8.49x1013 cm-3 and 
nO=1.52x1014 cm-1 in the flow reactor.  
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Figure 8 Correlation of velocities with bulk enthalpy 

 
Enthalpy data from LIF measurements were only available where the stagnation point pressure is known for that 
case. The total enthalpy was determined by summing the components in each energy mode: kinetic, chemical, and 
thermal. The relation can be expressed as: 
 

 ்݄ ൌ  
ଵ

ଶ
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where v is the velocity measured by LIF, YN is the mass fraction of nitrogen measured by LIF, YO=0.23 assuming 
all oxygen is dissociated, ܥ௣௜

 are the specific heats for fully excited molecules Cp/R = 5/2 for atoms  and Cp/R = 7/2 

for molecules. The temperature was found by LIF measurements. The mass fractions were determined from nitrogen 
and oxygen number densities measured by LIF, and the density found from the hypersonic Pitot formula10 
 
ߩ  ؆ 2 ௧ܲଶݒଶ/ܥ௣௥ (9) 
 
where ௧ܲଶ was the measured stagnation point pressure, and the hypersonic pressure coefficient is 
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The ratio of specific heats γ was assumed to be 1.5 for partially dissociated frozen flow. One method commonly 
used for determining local enthalpy of the flow is to use the formula from Hiester and Clark,1 which they based on 
the Fay and Riddell stagnation point heating formula, assuming the Lewis Number = 1 and Pr=0.72 
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2

0.24
T

eff

p

R
qh   (11) 

 
where h is the total enthalpy in Btu/lb, q is the measured stagnation point heat flux in Btu/ft2/s, Reff is the effective 
radius of the calibration model in feet, and PT2 is the measured stagnation point pressure in atmospheres.   
 

J. Enthalpy Distributions Based on Heat Flux and Pressure Probe Measurements 
Heat flux and pressure distributions were measured at a distance from the nozzle exit of 2.8 inches. This is not the 
same as the eight inches from the nozzle that the LIF beam was focused on. However, since enthalpy is conserved 
along the centerline of the jet the enthalpy should not vary from one distance to the other.  
 
 Because both probes could not be installed at the same time in the chamber, runs were made with one probe; and 
then runs were made with the other probe at corresponding run conditions of arc current and flow rate. Initially, the 
probes were scanned stepwise, but it was determined that a continuous scan would be reasonable. This was 
especially true of the heat flux measurements since the Gardon gage sensor responded very quickly. The pressure 
measurements did not respond as quickly due to the volume of the sensing tube; therefore, it was necessary to scan 
more slowly. To enhance accuracy a scan in the positive direction was averaged with a scan in the negative direction 
with a weight function designed to bias the result toward the true value in the low pressure wings of the pressure 
distributions. Since the measurements were not at exactly the same y-distance from the axis, the heat flux 
distribution and the pressure distribution were interpolated at a set of common y-distances. The pressure distribution 
for an example case is shown in Fig. 9. Then, equation (11) was applied to determine an estimate of the local 
enthalpy at each y-distance. An example of the heat flux and pressure distributions and the resulting enthalpy 
distribution is given in Fig. 10.  
 

 
Figure 9 Measured pressure sweep in the positive and negative directions with the weighted average 
distribution 0.25 lb/s and 1200 A. 
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Figure 10 Relative distributions of heat flux and pressure measured at a flow rate of 0.25 lb/s and arc current 
of 1200 A with the corresponding enthalpy distribution. 

 
The distributions were normalized with the central point and the positive and negative point were averaged to obtain 
a radial distribution of the enthalpy. The radial distribution was averaged over the radius of the flow (taken to be 5 
inches) to find the average enthalpy using the relation 
 

 ݄௔௩௘ ൌ
ଶగ ׬ ௥௠ሺ௥ሻ௛ሺ௥ሻௗ௥

ೃ
బ
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ೃ

బ

 (12) 

 
where m(r) is the relative mass flux distribution and h(r) is the relative enthalpy distribution as functions of radius r. 
Initially, it was assumed that the mass flux was constant across the jet since we did not have a measure of the mass 
flux. However, to assess the potential error in the average enthalpy, we decided to use a mass flux distribution 
determined from computational fluid dynamics (CFD) calculations made previously for cases similar, but not the 
same at the test conditions of the present measurements. The mass flux distribution determined in this way is shown 
in Fig. 11. The same relative mass flux distribution was used for all determinations of the average enthalpy. Peak to 
average enthalpies for each test condition were computed from the distributions shown in Fig. 11. These ratios were 
then were multiplied by the measured heat balance bulk enthalpy to obtain an estimate of the centerline enthalpy to 
be compared with the central value based on Eqn. (11). The results are shown in Fig. 13. Results of the LIF based 
calculations of total enthalpy and the enthalpy derived from stagnation point heat flux and pressure measurements 
are also shown in Figure 12. These values agree somewhat well at low arc currents, but the LIF measured point at 
1800 amps appears too low in comparison. It can be seen that the probe centerline enthalpies and the compare 
favorably with the bulk enthalpy multiplied by the peak to average ratio. Better agreement is obtained when the 
CFD-derived mass flux distribution is used to determine the peak to average enthalpy ratio. There is quite a bit of 
scatter in the LIF-based enthalpy. This might be expected because of the many separate measurements that are 
involved in determining the enthalpy by this technique. However, the agreement is fairly good. 
 

Peak h = 51.3 MJ/kg
Peak P = 23.3 kPa
Peak q = 1600 W/cm2

Average h = 26.0 MJ/kg
Peak to Average h =1.98
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Figure 11Mass flux distributions at two test conditions calculated by CFD (courtesy Maxim Larin). Distance 
from a 5-inch diameter nozzle is 2.8 inches. 

 
Figure 12 Summary of peak to average enthalpy determined assuming constant mass flux distribution and 
CFD-derived mass flux distribution.  
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Figure 13 Comparison of centerline enthalpy derived from centerline heat flux and pressure probe 
measurements, from probe distributions assuming constant mass flux distribution and with CFD derived 
mass flux distributions, and from LIF measurements of flow properties. Also shown is the enthalpy based on 
nitrogen LIF that assumes full oxygen dissociation. 

 

V. Conclusion 
The decades old goal of determining the total enthalpy of arc jet flow has been realized with the use of probes 

and laser induced fluorescence. The comparison is rather good, but there is still many variables that can induce error 
into the LIF measurements. Having a good estimate of the centerline enthalpy will help thermal protection material 
analysts use obtain better estimates of the actual enthalpy obtained in materials tests. Since the bulk enthalpy as 
determined by energy balance measurements is always made in the arc jet of the Johnson Space Center facility, 
having the ratio of centerline to average enthalpy as determined by probe heat flux and pressure distributions will 
help expedite determining the centerline enthalpy of the test flowfield. 
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