
Tsan-Hsing Shih
Ohio Aerospace Institute, Brook Park, Ohio 

Nan-Suey Liu
Glenn Research Center, Cleveland, Ohio

Density Weighted FDF Equations for 
Simulations of Turbulent Reacting Flows

NASA/TM—2011-217012

May 2011



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientifi c and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

 
• CONTRACTOR REPORT. Scientifi c and 

technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question via the Internet to help@

sti.nasa.gov
 
• Fax your question to the NASA STI Help Desk 

at 443–757–5803
 
• Telephone the NASA STI Help Desk at
 443–757–5802
 
• Write to:

           NASA Center for AeroSpace Information (CASI)
           7115 Standard Drive
           Hanover, MD 21076–1320



Tsan-Hsing Shih
Ohio Aerospace Institute, Brook Park, Ohio 

Nan-Suey Liu
Glenn Research Center, Cleveland, Ohio

Density Weighted FDF Equations for 
Simulations of Turbulent Reacting Flows

NASA/TM—2011-217012

May 2011

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135



Acknowledgments

This work is supported by the Subsonic Fixed Wing Project and the Supersonics Project of the NASA Fundamental 
Aeronautics Program. The authors highly appreciate the fruitful discussions with Dr. P. Tsao.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

This work was sponsored by the Fundamental Aeronautics Program 
at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management. 

This report is a formal draft or working 
paper, intended to solicit comments and 

ideas from a technical peer group.

This report contains preliminary fi ndings, 
subject to revision as analysis proceeds.



 

NASA/TM—2011-217012 iii 

Contents 
 
Abstract ......................................................................................................................................................... 1 

1.0 Introduction .......................................................................................................................................... 1 

2.0 Density Weighted Filtered Density Function (DW-FDF) and Filtered Turbulent Variables ............... 2 

2.1 Fine Grained Probability Density Function (FG-PDF) ( ) ( ); , , ; ,Uf t f tΦ′ ′V x xψ  ...................... 2 

2.2 Filtered Turbulent Variables and DW-FDF ( ) ( ); , , ; ,UF t f tΦV x xψ  ...................................... 4 

2.2.1 Filtered Turbulent Variables ......................................................................................... 4 

2.2.2 Definition of DW-FDF .................................................................................................. 5 

2.2.3 DW-FDF Mean 〈 〉L ....................................................................................................... 7 

3.0 Traditional DW-FDF Equations for ( ; , ), ( ; , )UF t F tΦ ψV x x  ............................................................. 8 

3.1 Traditional DW-FDF Equation for ( ; , )UF tV x  ......................................................................... 8 

3.2 Traditional DW-FDF Equation for ( ; , )F tΦ ψ x  .......................................................................... 8 

4.0 DW-FDF Equations Derived From Filtered Navier-Stokes Equations ................................................ 9 

4.1 Filtered Compressible Navier-Stokes Equations ........................................................................ 9 

4.2 DW-FDF Equation for ( ; , )UF x tV  ............................................................................................ 11 

4.3 DW-FDF Equation for ( ; , )F tΦ ψ x  ............................................................................................ 13 

4.4 Modeling of Unclosed Terms ................................................................................................... 14 

4.5 Summary ................................................................................................................................... 15 

5.0 Concluding Remarks .......................................................................................................................... 16 

References ................................................................................................................................................... 16 
 

  



 

NASA/TM—2011-217012 iv 

 
  



 

NASA/TM—2011-217012 1 

Density Weighted FDF Equations for Simulations of  
Turbulent Reacting Flows 

 
Tsan-Hsing Shih 

Ohio Aerospace Institute 
Brook Park, Ohio 44142 

 
Nan-Suey Liu 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
In this report, we briefly revisit the formulation of density weighted filtered density function (DW-

FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. 
(Ref. 1). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine 
grained probability density function (FG-PDF), then we explore another way of constructing the DW-
FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the 
terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed 
DW-FDF equations. This significant difference and its practical impact on the computational simulations 
may deserve further studies.  

1.0 Introduction 
The concept of filtered density function (FDF) method (Ref. 2) was extended to the compressible 

turbulent reacting flow by introducing a filtered mass density function (FMDF) (Ref. 1), which is a 
density weighted FDF and is referred as DW-FDF in this report. The work was considered as the 
extension of the probability density function (PDF) method (Pope (Ref. 3)) to the LES simulation with 
the advantage of its direct simulation of turbulence-chemistry interaction without modeling.  

This report follows our previous work on the conservational PDF equations (Shih and Liu (Ref. 4)) to 
explore different ways of constructing the DW-FDF equations for simulations of filtered turbulent 
reacting flows. It will be shown that there are significant differences between the FMDF equations and 
the newly proposed DW-FDF equations, with the latter requiring much less empirical modeling.  

In Section 2.0, we review the definition of DW-FDF starting from a delta function of a turbulent 
random variable, which is called in the literature as the fine grained probability density function (FG-
PDF) f ′. The definition of a filtered turbulent variable used in LES is also briefly reviewed. Then we 
explore the relationship between the DW-FDF and the filtered turbulent variable. This relationship 
suggests the concept of “DW-FDF mean”, 〈 〉L which is the analogy to the statistical mean, 〈 〉 in the PDF 
theory. A few properties of the DW-FDF mean are explored, and they are found to be useful in 
constructing the transport equations for the DW-FDF.  

In Section 3.0, we first formulate a compressible transport equation for FG-PDF, and then apply a 
stationary or homogeneous filtering on it to construct the equations that we refer as the traditional DW-
FDF equations, which are consistent with the FMDF equations introduced by Jaberi et al. (Ref. 1).  

In Section 4.0, we adopt a similar methodology described in Reference 4 to construct the DW-FDF 
equations by directly starting from the filtered compressible Navier-Stokes equations. The resulted 
equations are significantly different from the traditional FMDF equations. For example, the unclosed 
terms appearing on the right hand side of FMDF equations are now closed in the newly constructed DW-
FDF equations.  
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It is noted here that the quantity DW-FDF (or FMDF) is fundamentally different from the quantity 
PDF, namely, DW-FDF is a random quantity; but PDF is a deterministic quantity. The “DW-FDF mean” 
defines a density-weighted filtered turbulent random variable; but the “PDF mean” defines a turbulent 
mean variable. The DW-FDF, unlike PDF, does not represent a probability density of a random variable; 
it is only a density-weighted filtered FG-PDF and is still a random variable. These fundamental 
differences between DW-FDF and PDF may require a further investigation on their respective solution 
procedures based on the stochastic differential equation methods.  

2.0 Density Weighted Filtered Density Function (DW-FDF) and Filtered 
Turbulent Variables 

In this section, we will first review the basic properties of FG-PDF and its density-weighted filtered 
quantity, DW-FDF, then explore the relationship between DW-FDF and filtered turbulent variable. This 
provides the basis for further establishing the transport equations of DW-FDF. 

2.1 Fine Grained Probability Density Function (FG-PDF) ( ) ( ); , , ; ,Uf t f tΦ′ ′V x xψ  

The FG-PDF for turbulent velocity and scalars (e.g., species mass fraction, internal energy) are 
defined as follows (Pope (Ref. 3)), 

 ( ) ( )
3

1
( ; , ) ( , ) ( , )U i i

i
f t t U t V

=

′ ≡ δ − ≡ δ −∏V x U x V x  (1) 

 ( ) ( )
1

1
( ; , ) ( , ) ( , )

N

i i
i

f t t t
+

Φ
=

′ ≡ δ − ≡ δ Φ −ψ∏x x xψ Φ ψ  (2) 

where δ denotes the delta function, U(x,t) is the turbulent velocity vector (U1, U2, U3), Φ(x,t) is the 
turbulent scalar array (Φ1, Φ2,, ΦN, ΦN+1), for example, N species mass fractions and one internal 
energy ΦN+1 = e, the x,t denote the physical space variable (x1, x2, x3) and the time t, V ≡ (V1, V2, V3) and 
ψ ≡ (ψ1, ψ2,, ψN, ψN+1) are the sample space variables for U(x,t) and Φ(x,t), respectively. The FG-PDF 
has the following properties that will be used in this study:  

i. The Unity Integral of FG-PDF 

 ( ) ( ); , 1, ; , 1Uf t d f t d
+∞ +∞

Φ−∞ −∞
′ ′= =∫ ∫ ψ ψV x V x  (3) 

Note that (– ∞, + ∞) represents the whole domain of sample space, for the species mass fractions it really 
means (0,1). 

ii. The Differential Chain 

 U U i U i i
U

i i i

f f U f U Uf
t U t V t V t
′ ′ ′∂ ∂ ∂ ∂ ∂ ∂∂  ′= = − = −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (4) 

 U U i U i i
U

j i j i j i j

f f U f U Uf
x U x V x V x

 ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂∂ ′= = − = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (5) 
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Note that the summation convention on the same index, e.g., “i” is implied. Therefore, we have  

 , (for incompressible flow) , 1,2,3   U U i i
j U j

j i j

f f U UU f U i j
t x V t x

  ′ ′∂ ∂ ∂ ∂∂ ′ + = − + =  ∂ ∂ ∂ ∂ ∂   
 (6) 

and 

 , (for compressible flow) , 1,2,3j U i jU i
U

j i j

U f U Uf Uf i j
t x V t x

  ′∂ρ ∂ρ′∂ρ ∂ρ∂ ′ + = − + =  ∂ ∂ ∂ ∂ ∂   
 (7) 

Note that the continuity equation of compressible flow has been applied here. Similarly, 

 i i i

i i i

f f f f
t t t t
Φ Φ Φ

Φ
′ ′ ′∂Φ ∂Φ ∂Φ∂ ∂ ∂ ∂  ′= = − = −  ∂ ∂Φ ∂ ∂ψ ∂ ∂ψ ∂ 

 (8) 

 i i i

j i j i j i j

f f f f
x x x x
Φ Φ Φ

Φ
 ′ ′ ′∂Φ ∂Φ ∂Φ∂ ∂ ∂ ∂ ′= = − = −   ∂ ∂Φ ∂ ∂ψ ∂ ∂ψ ∂ 

 (9) 

and 

 
1,2, , 1

,   (for incompressible flow)  
1,2,3

i i
j j

j i j

i Nf fU f U
jt x t x

Φ Φ
Φ

   = +′ ′ ∂Φ ∂Φ∂ ∂ ∂ ′ + = − +    =∂ ∂ ∂ψ ∂ ∂    



 (10) 

 
1,2, , 1

, (for compressible flow)
1,2,3

j i ji

j i j

U f U i Nf f
jt x t x

ΦΦ
Φ

  ′∂ρ ∂ρΦ = +′ ∂ρΦ∂ρ ∂ ′ + = − +    =∂ ∂ ∂ψ ∂ ∂    



 (11) 

iii. The Sifting Property 

 ( ) ( ) ( )( ) ( )( )( ; , ) ( ; , )U Ut f t t t t f t′ ′≡ δ − = δ − =U x, V x U x, U x, V V U x, V V V x  (12) 

 ( , ) ( ; , ) ( ; , )t f t f tΦ Φ′ ′=ψ ψ ψx x xΦ  (13) 

More generally, 

 
( )( ) ( )

( ) ( )
( ; , ) ( ; , )

( , ) ( ; , ) ( ; , )
U UQ t f t Q f t

Q t f t Q f tΦ Φ

′ ′=

′ ′=ψ ψ ψ

U x, V x V V x

x x xΦ
 (14) 

where Q( ) denotes a general (but not the time or space differential) function form. 

iv. The Statistical Mean of FG-PDF  
Equations (1) and (2) indicate that FG-PDF is a random quantity, because it is the delta function of 

the random variable U(x,t) or Φ(x,t). The basic probability theory says that a random variable and its 
(non-differential) function share the same probability density. Therefore, the probability density function 
PDF of the random variable FG-PDF is fU (V; x,t) or fΦ(ψ; x,t), which is the PDF of turbulent velocity 
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U(x,t) or scalars Φ(x,t), respectively. It is easy to verify that the statistical mean of FG-PDF is the 
corresponding PDF (Pope (Ref. 3)): 

 ( )( ) ( )( ; , ) ( ; , ) ( ; , )U U Uf t t f t d f t
+∞

−∞
′ ′ ′ ′= δ − ≡ δ − =∫V x U x, V V V V x V V x  (15) 

Similarly, 

 ( ; , ) ( ; , )f t f tΦ Φ′ =ψ ψx x  (16) 

The FG-PDF is a useful quantity for mathematical derivations. It is interesting to examine the following 
expressions: 

 ( ) ( )( ; , )U FG
f t d t t′ ≡∫V V x V U x, = U x,  (17) 

 ( ; , ) ( , ) ( , )FGf t d t tΦ′ ≡∫ψ ψ ψx x xΦ = Φ  (18) 

which indicate that the “FG-PDF mean” defines the original random variable itself. More generally, 

 
( ) ( )( ) ( )( )

( ) ( ) ( )

( ; , )

( ; , ) ( , ) ( , )

U FG

FG

Q f t d Q t Q t

Q f t d Q t Q tΦ

′ ≡ =

′ ≡ =

∫

∫ ψ ψ ψ

V V x V U x, U x,

x x xΦ Φ
 (19) 

2.2 Filtered Turbulent Variables and DW-FDF ( ) ( ); , , ; ,UF t f tΦV x xψ  

First we review the definition of filtered turbulent variables conventionally used in the turbulent 
simulation and the definition of DW-FDF, and then we explore the relationship between the DW-FDF 
and the filtered turbulent variables. 

2.2.1 Filtered Turbulent Variables 
In the conventional simulation of compressible reacting flows, we often deal with two types of 

filtered turbulent variables: one with the density weighting, the other without the density weighting. The 
filtered turbulent variable without the density weighting is denoted by ( , )tφ x  and is defined as  

 ( , ) ( , ) ( )t t G t t dt
+∞

−∞
′ ′ ′φ = φ −∫x x  (20) 

where φ is the unfiltered turbulent variable, e.g., velocity components Ui, density ρ, pressure P, species 

mass fraction Φi and internal energy 
1

N

m m
m

e e
=

= Φ∑ . The integration is over the entire time domain  

– ∞ < t′ < + ∞. G(t – t′) is the time filter with a constant filter width ∆T and satisfies the following 
condition and asymptotic property: 

 ( ) 1G t t dt
+∞

−∞
′ ′− =∫  (21) 
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 ( , ) ( ) ( , ), as 0Tt G t t dt t
+∞

−∞
′ ′ ′φ − = φ ∆ →∫ x x  (22) 

The density-weighted filtered turbulent variable is denoted by ( , )tφ x and defined as 

 ( , )t ρφ
φ =

ρ
 x  (23) 

It is noted here that these filtered variables ( , )tφ x , ( , )tφ x  represent the large scale turbulent variables 
(Shih and Liu (Refs. 5 and 6)), and they are still random but contain relatively low frequency part of the 
turbulent motion when comparing with the unfiltered turbulent variable φ(x,t).  

2.2.2 Definition of DW-FDF 
Jaberi et al. (Ref. 1) introduced the density-weighted space filter operation ρ(x′,t)G(x – x′) on the FG-

PDF ( ; , ), ( ; , )Uf t f tΦ′ ′ ψV x x  and referred to them as the filtered mass density function FMDF. However, 
we prefer a more intuitive name related to the existing FDF methodology (Colluci et al. (Ref. 2)), and 
refer them as the density weighted FDF (DW-FDF). With the density-weighted time filter ρ(x,t′)G(t – t′) 
we define the following marginal DW-FDF as 

 

( )

( ) ( )( )

( )

( ) ( )( )

( ; , ) ( ; , ) ( )

                  ( )

( ; , ) ( ; , ) ( )

                  ( )

U UF t t' f t G t t dt

t' t' G t t dt

F t t' f t G t t dt

t' t' G t t dt

+∞

−∞
+∞

−∞
+∞

Φ Φ−∞
+∞

−∞

′ ′ ′ ′≡ ρ −

′ ′= ρ δ − −

′ ′ ′ ′≡ ρ −

′ ′= ρ δ − −

∫

∫

∫

∫

ψ ψ

ψ

V x x, V x

x, U x, V

x x, x

x, x,Φ

 (24) 

Obviously, DW-FDF, i.e., FU(V; x,t) or FΦ(ψ; x,t), is still a random quantity. It satisfies the following 
“normalization” property: 

 

( ) ( )

( ) ( )

( ; , ) ( ; , ) ( ) ( )

( ; , ) ( ; , ) ( ) ( )

U UF t d t' f t G t t dt d t' G t t dt

F t d t' f t G t t dt d t' G t t dt

∞ ∞
+∞ +∞

−∞ −∞
−∞ −∞
∞ ∞

+∞ +∞
Φ Φ−∞ −∞

−∞ −∞

′ ′ ′ ′ ′ ′ρ − ρ − = ρ

′ ′ ′ ′ ′ ′= ρ − = ρ − = ρ

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ψ ψ ψ

V x V = x, V x V = x,

x x, x x,ψ

 (25) 

With the definition of DW-FDF described in Equation (24), we can exactly deduce the filtered turbulent 
variables that are conventionally defined by Equations (20) and (23). For example, 

 

( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

( ; , ) ( )

( )

( ) ( , )

UF t d t' t' G t t dt d

t' t' t G t t dt d

t' t G t t dt t t

+∞ +∞ +∞

−∞ −∞ −∞
+∞ +∞

−∞ −∞
+∞

−∞

′ ′ρ δ − −

′ ′ ′ρ δ − −

′ ′ ′ρ − = ρ = ρ

∫ ∫ ∫

∫ ∫

∫ 

V V x V = V x, U x, V V

= U x, x, U x, V V

= x, U x, U x, U x

 (26) 

where the sifting property of FG-PDF has been used in the second line of (26). Similarly, 
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( ) ( ) ( ); , ,F t d t t

+∞
Φ−∞

ρ = ρ∫ ψ ψ ψ Φx = x, xΦ  (27) 

If we denote the left hand side of Equations (26) and (27) as the operation 〈U〉L and 〈Φ〉L, we may write 
Equations (26) and (27) as  

 
( ) ( )( ; , ) ,UL F t d t t

+∞

−∞
≡ = ρ∫ U V V x V x, U x  (28) 

 
( ) ( )( ; , ) ,L F t d t t

+∞
Φ−∞

≡ = ρ∫ ψ ψ ψ Φx x, xΦ  (29) 

and for the function Q(U(x,t)) or W(Φ(x,t)), 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ; , ) ( , )

( ) ( ; , ) ( , )

UL

L

Q Q F t d t Q t

W W F t d t W t

+∞

−∞

+∞
Φ−∞

= = ρ

= = ρ

∫

∫Φ ψ ψ ψ Φ





U V V x V x, U x

x x, x
 (30) 

Furthermore, we may consider the derivatives ∇P, ∇U, ∇Φ as the new random quantities and legitimately 
write 

 
  , ,L L LP P P∇ = ρ ∇ ∇ ∇ = ρ ∇ ∇ = ρ ∇Φ ΦU U  (31) 

However, the operation 〈 〉L does not have the differential commute property, i.e. 

 , ,L L L L L LP P∇ ≠ ∇ ∇ ≠ ∇ ∇ ≠ ∇U U Φ Φ  (32) 

because  ( )  ( )  ( ), ,P Pρ ∇ ≠ ∇ ρ ρ ∇ ≠ ∇ ρ ρ ∇ ≠ ∇ ρU U Φ Φ . 
It can be verified that  

 
( )( ; , ) ( , )i j i j U i jL

U U V V F t d t U U t
+∞

−∞
= ρ∫ V x V = x, x  (33) 

We can also write j i L
U Φ  for the joint variables as 

 
( ), ( , ; , ) ( , )j i j i U j iL

U V F t d d t U t
+∞

Φ−∞
Φ = ψ = ρ Φ∫ ψ ψV x V x, x  (34) 

where, FU,Φ(V,ψ; x,t) is the joint DW-FDF defined as  

 
( ) ( )( ) ( )( ), ( , ; , ) ( )UF t t t t G t t dt

+∞
Φ −∞

′ ′ ′ ′ ′= ρ δ − δ − −∫ψ ψV x x, U x, V x,Φ  (35) 

which also satisfies the normalization property: 
 

 
( ), ( , ; , ) ( )UF t d d t' G t t dt

∞ ∞
+∞

Φ −∞
−∞ −∞

′ ′= ρ − = ρ∫ ∫ ∫ψ ψV x V x,   (36) 
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2.2.3 DW-FDF Mean 〈 〉L 

Analogous to ∫V fU (V; x,t)dV = 〈U (x,t)〉, which defines the statistical mean of the random velocity 
by its PDF fU, we may refer the operation 〈 〉L as the “DW-FDF-mean”, which defines the density 
weighted filtered turbulent variable, e.g., L = ρU U , j i j iL

U UΦ = ρ Φ (see Eqs. (28) to (34)). From 

Equation (35), we may follow Pope (Ref. 3) to define a “conditional” DW-FDF on the condition Φ = ψ as 

 

, ( , ; , )
( ; , )

( ; , )
U

U
F t

F t
F t
Φ

Φ
Φ

≡
ψ

ψ
ψ
V x

V x
x

 (37) 

and the “conditional DW-FDF-mean” as  

 

( ) ( )( ) ( )( )

( ) ( ) ( )( )

,
1( , ) ( ; , ) ( , ; , )

( ; , )
1 ( )

1 ( )

UUL
t F t d F t d

F t

t' t' t' G t t dt d
F

t' t' t G t t dt
F

+∞ +∞
ΦΦ−∞ −∞Φ

+∞ +∞

−∞ −∞Φ
+∞

−∞Φ

≡

′ ′ρ δ − δ − −

′ ′ ′ρ δ − −

∫ ∫

∫ ∫

∫

ψ ψ ψ
ψ

ψ

ψ

U x V V x V = V V x V
x

= V x, U x, V x, V

= x, U x, x,

Φ

Φ

 (38) 

Then we have 

 
( ) ,( , ) ( ; , ) ( ) ( , ; , ) ( , )U L

t' t f t G t t dt F t d F t
+∞ +∞

Φ Φ Φ−∞ −∞
′ ′ ′ ′ ′ρ − = ⋅∫ ∫ψ ψ ψx, U x x V V x V = U x  (39) 

and 

 

( )
( )

( )

,( , ) ( , ; , )

( , ) ( )

( , )

UL
F t d F t d d

t t G t t dt

t t

+∞ +∞ +∞
Φ Φ−∞ −∞ −∞

+∞

−∞

⋅ =

′ ′ ′ ′= ρ −

= ρ

∫ ∫ ∫

∫

ψ ψ ψ ψ



U x V V x V

x, U x

x, U x

  (40) 

Equation (39) can be extended to any other turbulent quantities, for example, ∇P, ∇U, ∇Φ, Si(Φ): 

 

( )

( )

( )

( ) ( ) ( ) ( )

( , ) ( ; , ) ( )

( , ) ( ; , ) ( )

( , ) ( ; , ) ( )

( , ) ( ; , ) ( )

U U L

U U L

L

i i iL

t' P t f t G t t dt F P

t' t f t G t t dt F

t' t f t G t t dt F

t' S t f t G t t dt F S F S

+∞

−∞

+∞

−∞

+∞
Φ Φ−∞

+∞
Φ Φ Φ−∞

′ ′ ′ ′ ′ρ ∇ − ⋅ ∇

′ ′ ′ ′ ′ρ ∇ − ⋅ ∇

′ ′ ′ ′ ′ρ ∇ − ⋅ ∇

′ ′ ′ ′ ′ρ − ⋅ = ⋅

∫

∫

∫

∫

ψ ψ

ψ ψ ψ

x, x V x = V

x, U x V x = U V

x, x x =

x, x x =

Φ Φ

Φ Φ

 (41) 

where ∇P, ∇U, ∇Φ, are viewed as the random variables in addition to P, U, Φ. 
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3.0 Traditional DW-FDF Equations for ( ; , ), ( ; , )UF t F tΦ ψV x x  

In this section, we briefly review the traditional way of deriving DW-FDF equations starting from the 
equation of FG-PDF. The “exact” but not closed DW-FDF equations are derived, which are consistent 
with the traditional FMDF equations introduced by Jaberi et al. (Ref. 1). 

3.1 Traditional DW-FDF Equation for ( ; , )UF tV x   

The transport equation for the fine grained PDF with the variable density ρ(x,t) can be written as (see 
Equation (7)): 

 

22
3

j UU
U ij ij kk

j i i j

U ff Pf S S
t x V x x

  ′∂ρ′∂ρ ∂ ∂ ∂  ′+ = − − + µ − µδ    ∂ ∂ ∂ ∂ ∂     
 (42) 

Where the right hand side of (42) is from the Navier-Stoke equation (47).  
Applying the time filtering operation G(t – t′) with a constant filter width on Equation (42) and using 

the sifting property of FG-PDF, we may obtain (noting that the differential commutation property of the 
time filtering operation is valid with a constant time filter width) 

 1 1 2( ) 2 ( )
3

U U
j U U ij ij kk

j i i j

F F PV f G t t dt f S S G t t dt
t x V x x

∞ ∞

−∞ −∞

   ∂ ∂ ∂ ∂ ∂  ′ ′ ′ ′ ′ ′+ = − − ρ − + ρ µ − µδ −      ∂ ∂ ∂ ρ ∂ ρ ∂      
∫ ∫  

According to Equation (41), the DW-FDF equation for the velocity can be written as  

 

1 1 22
3

U U
j U U ij ij kk

j i i jL L

F F PV F F S S
t x V x x

 ∂ ∂ ∂ ∂ ∂  + = − − ⋅ + ⋅ µ − µδ  ∂ ∂ ∂ ρ ∂ ρ ∂    
V V  (43) 

At this point, the velocity DW-FDF equation is general but unclosed because of the unknown terms of the 
conditional DW-FDF means. The last term in Equation (43) is referred as the molecular mixing term and 
was modeled in various empirical ways by different researchers. Later, we will see that, when using a 
different way to derive the DW-FDF equation, the molecular mixing term is automatically closed with no 
need of modeling. The same happens to the pressure gradient term. 

3.2 Traditional DW-FDF Equation for ( ; , )F tΦ ψ x  

Applying the time filtering G(t – t′) on the following FG-PDF equation for scalars,  

 
( )( ) ( , )j i

i i
j i j j

U ff f S t
t x x x

ΦΦ
Φ

   ′∂ρ′ ∂Φ∂ρ ∂ ∂ ′  + = − ρΓ +ρ    ∂ ∂ ∂ψ ∂ ∂    
xΦ  (44) 

we obtain the DW-FDF equation for the turbulent species: 

 

( )
( )( )

1j L i
i i

j i j j L

F UF F F S
t x x x

Φ
Φ

Φ Φ

 ∂ ∂Φ∂ ∂ ∂ + = − ⋅ ρΓ + ⋅ 
∂ ∂ ∂ψ ρ ∂ ∂  

ψ
ψ ψ  (45) 
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where SN+1(ψ) = 0. Equation (45) is also unclosed, because the conditional DW-FDF means need to be 
modeled. Later, we will also see that using a different derivation of DW-FDF equation, the molecular 
mixing term is closed.  

4.0 DW-FDF Equations Derived From Filtered Navier-Stokes Equations 
4.1 Filtered Compressible Navier-Stokes Equations 

The Navier-Stokes equations for a compressible reacting flow can be written as 

 
0j

j

U
t x

∂ρ∂ρ
+ =

∂ ∂
 (46) 

 

12 ( )
3

i ji
ij ij kk

j i j

U UU P S S
t x x x

∂ρ∂ρ ∂ ∂  + = − + ρν − δ ∂ ∂ ∂ ∂  
 (47) 

 

12
3

i i
kk ij ij ii kk

i i

U e qe PS S S S S Q
t x x

∂ρ ∂∂ρ  + = − + + ρν − + ∂ ∂ ∂  
 (48) 

 

( ) 1,2, ,mm i m m
m

i i i

U W m N
t x x x

 ∂ρΦ ∂ρ Φ ∂Φ∂
+ = ρΓ + = 

∂ ∂ ∂ ∂ 
  (49) 

 1

N
n

nn

TP R
w=

Φ
= ρ ∑  (50) 

 

( )

1

N
m m

i m
i im

Tq c h
x xυ

=

∂Φ∂
= −ρκ − ρΓ

∂ ∂∑  (51) 

Applying the time filtering operation with a constant filter width on the above equations, we obtain the 
following filtered Navier-Stokes equations: 

 
0j

j

U
t x

∂ρ∂ρ
+ =

∂ ∂



 (52) 

 

 12 ( )
3

i ji
ij ij kk

j i j

U UU P S S
t x x x

∂ρ  ∂ρ ∂ ∂
+ = − + ρν − δ  ∂ ∂ ∂ ∂  



 (53) 

 

 12
3

i i
kk ij ij ii kk

i i

U e qe PS S S S S Q
t x x

∂ρ ∂∂ρ  + = − + + ρν − + ∂ ∂ ∂  



 (54) 

 



( ) 1,2, ,mm i m m m
i i i

U W m N
t x x x

 ∂ρΦ ∂ρ Φ ∂Φ∂
+ = ρΓ + =  ∂ ∂ ∂ ∂ 



  (55) 

where 
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 



1 1

1

1

or

N N
n n

n v nn n

N
n N

v nn

T eRP R
w c w

RP
c w

= =

+

=

Φ Φρ
= ρ =

Φ Φρ
=

∑ ∑

∑

 (56) 

 

( )

1

N
m m

i m
i im

Tq c h
x xυ

=

∂Φ∂
= −ρκ − ρΓ

∂ ∂∑  (57) 

In the above equations, κ, ν and Γ(m) are the molecular heat conductivity, kinematic viscosity and the m-th 
species diffusivity, they have the same dimension (i.e., velocity ⋅ length). The hm, T are the enthalpy of 
species and temperature, Q is the radiation rate, Wm = ρSm is the chemical generation rate of the m-th 
species, ΦN+1 represents the internal energy e, R is the universal gas constant. These equations are general; 
however, unlike the constant density flows, further approximations for the terms on their right hand side 
are required in order to complete the filtering process. One of such approximations leads to 

 

1 22
3 3

ji k
ij ij kk ij

j i k

UU US S
x x x

 ∂∂ ∂ ρν − δ ≈ µ + − δ    ∂ ∂ ∂   



 

 (58) 

In which, we have basically neglected the variations of µ and ρduring the filtering process, the value of µ 
will be considered as the function of , ,P T  . Another type of approximation writes 

 

1 22
3 3

ji k
ij ij kk ij

j i k

UU US S
x x x

 ∂ρ∂ρ ∂ρ ρν − δ ≈ ν + − δ    ∂ ∂ ∂   



 

 (59) 

Similarly, 

 



( ) ( )

1 1

N N
m mm m m

i m
i i i im m

hT Tq c h c
x x x xυ υ

= =

∂Φ ∂ρ Φ∂ ∂ρ
= −ρκ − ρΓ ≈ − κ − Γ

∂ ∂ ∂ ∂∑ ∑


 (60) 

 

( ) ( )m mm m

i ix x
∂Φ ∂ρΦ

ρΓ ≈ Γ
∂ ∂



 (61) 

Furthermore, invoking the turbulent kinetic energy dissipation rate: 

 

12
3ij ij ii kkS S S S ρν − ≡ ρε 

 
  (62) 

Where ν, κ, cυ and Γ(m) are considered as the function of , ,P T  .  
Therefore, the filtered Navier-Stokes equations can approximately be written as  

 
0j

j

U
t x

∂ρ∂ρ
+ =

∂ ∂



 (63) 



 

NASA/TM—2011-217012 11 

 

 2
3

i j ji i k
ij

j i j j i k

U U UU U UP
t x x x x x x

  ∂ρ ∂ρ∂ρ ∂ρ ∂ρ∂ ∂
 + = − + ν + − δ  ∂ ∂ ∂ ∂ ∂ ∂ ∂   



  

 (64) 

 



i i
kk

i i

U e qe PS Q
t x x

∂ρ ∂∂ρ
+ = − + + ρε +

∂ ∂ ∂


  (65) 

 



( ) 1,2, ,mm i m m
m

i i i

U S m N
t x x x

 ∂ρΦ ∂ρ Φ ∂ρΦ∂
+ = Γ + ρ = 

∂ ∂ ∂ ∂ 

 



  (66) 

 

 



1 1

1

1

or

N N
n n

n v nn n

N
n N

v nn

T eRP R
w c w

RP
c w

= =

+

=

Φ Φρ
= ρ =

Φ Φρ
=

∑ ∑

∑

 (67) 

 



( )

1

N
m m m

i
i im

hTq c
x xυ

=

∂ρ Φ∂ρ
= − κ − Γ

∂ ∂∑


 (68) 

These equations are still considered as quite general, because i) they are exact if the flow becomes 
incompressible, ii) all the approximations made in Equations (64), (65) and (66) are related only to the 
molecular diffusion terms that are less important and even negligible comparing with the convection 
terms on the left hand side for turbulent flows at high Reynolds number (see Tennekes and Lumley 
(Ref. 7) and Pope (Ref. 3)). For the LES simulation, Equation (63) to (66) are often used together with the 
further approximations for (67) and (68): 

 1 1
,

N N
n n

n nn n

T RT RTP R M
w M M w= =

Φ Φρ ρ = ρ = ≈ = 
 

∑ ∑
 

 (69) 

 
i

i

Tq c
xυ

∂ρ
= − κ

∂



 (70) 

The momentum flux 

i jU Uρ , the energy flux 

iU eρ  and the species flux 

i mUρ Φ  are considered to be 
critically important in LES simulations and should be carefully modeled. Many models in the literature, 
from the simplest Smagorinsky (Ref. 8) model to the complex two-equation models (Refs. 9 and 6) 
including the dynamic procedure (Ref. 10) have been suggested. In the next Section 4.2 and 4.3, we will 
derive the DW-FDF equations directly from Equations (63) to (68).  

4.2 DW-FDF Equation for ( ; , )UF x tV  

Using Equations (28) and (33), the left hand side of Equation (64) can be written as 

 



i ji U U
i U i j U i j

j j j

U UU F FV F d V V F d V V d
t x t x t x

∞ ∞ ∞

−∞ −∞ −∞

 ∂ρ∂ρ ∂ ∂∂ ∂
+ = + +  ∂ ∂ ∂ ∂ ∂ ∂ 

∫ ∫ ∫


V V = V  (71) 
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The pressure gradient term can be written as using (67) 



2

1 ,
1

1

1 2

1
1

( , ; , )

or

N

i n N U
k k v nnN

n N

i i v nn N

i n N UL
k k v nn

RV F x t d d
V x c w

P R
x x c w

RV F d
V x c w

∞ ∞

+ Φ
=−∞ −∞

+

= ∞

+
=−∞

   ∂   ψ ψ
  ∂ ∂     Φ Φ∂ ∂ ρ − = − =   ∂ ∂    ∂ Φ Φ  ∂ ∂   

∑∫ ∫

∑

∑∫

ψ ψV V

V V

 (72) 

During the above arrangement, no approximations have been made other than the integration by parts and 
a zero integration property like Eq.(74).  

Note that the pressure gradient term can be closed only when the joint DW-FDF, FU,Φ, is considered, 
otherwise, the “conditional DW-FDF mean” will be unavoidable. Now the molecular mixing term in 
Equation (64) can be written as  

( ) ( )

2
3

2
3

2
3

or

ji m
ij

j j i m

i U j U ij m U
j j i m

U
i i j U k j i m U

j j j k k m k

UU U
x x x x

V F d V F d V F d
x x x x

FV d V V F d V V F d
x x x x V x V

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

 ∂ρ∂ρ ∂ρ∂
ν + − δ  ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ = ν + − δ
 ∂ ∂ ∂ ∂ 

  ∂∂ ∂ ∂ ∂ ∂ ∂ ν − ν − δ    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
=

∂
−
∂

∫ ∫ ∫

∫ ∫ ∫



 

V V V

V V V

( ) ( ) ( )

2 2

2
3

2
3

or

i k U i j U k j i m U
j j k k k m k

j UU m U
i i i k j

j j j k k j k m

i
j

V V F d V V F d V V F d
x x V x V x V

V FF V FV d V d V d
x x x V x x V x

V
x

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞

−∞ −∞ −∞






  ∂ ∂ ∂ ∂ ∂ ∂  ν + − δ  ∂ ∂ ∂ ∂ ∂ ∂  

    ∂∂ ∂∂ ∂ ∂ ν − ν + δ ν       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
=

∂
− ν

∂

∫ ∫ ∫

∫ ∫ ∫

V V V

V V V

22 22
3

j Uk U m U
i i k j

k j j k k j k m

V FV F V Fd V d V d
V x x V x x V x

∞ ∞ ∞

−∞ −∞ −∞






     ∂∂ ∂∂ ∂  − ν + δ ν        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∫ ∫ ∫V V V

 (73)

 

Note, on the third line of (73), we have applied the integration by parts and the following type of zero 
integration similar to the one used in PDF formulations (Ref. 3): 

 
( ) 0i k U

k
V V F d

V

∞

−∞

∂
=

∂∫ V  (74) 

Finally, collecting the terms that are in the integrands and factored by Vi, we obtain the transport equation 
for FU (V; x,t) as  
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2

1
1

2

1
1

2
3

or

N
U U U

j n N UL
j k k v n j jn

U U
j k j m

k j k k j m

N
U U U

j n N U kL
j k k v n k j jn

F F FRV F
t x V x c w x x

F FV V
V x x V x x

F F FRV F V
t x V x c w V x x

+
=

+
=

  ∂ ∂ ∂∂ ∂
+ = Φ Φ + ν    ∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂∂ ∂ ∂
+ = Φ Φ − ν 

∂ ∂ ∂ ∂ ∂ ∂ ∂  

∑

∑

V

V

2
3

U U
j k j m

k j k k j m

F FV V
V x x V x x


  
 

   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

 (75) 

In Equation (75), all the terms are closed, except for the one involving the conditional DW-FDF mean 
originating from the pressure gradient. It should be noticed that one of the most important terms in the 
momentum equation, i.e., i jU Uρ , now is closed in the corresponding DW-FDF equation. And the less 
important molecular diffusion terms remain in the closed form.  

4.3 DW-FDF Equation for ( ; , )F tΦ ψ x  

Similarly, we may obtain the DW-FDF equations for the scalars (i.e. species and internal energy) 
from Equations (65), (66) as follows: first, we write the terms on the left hand side of Equation (66) as 

 

m
m m

FF d d
t t t

∞ ∞
Φ

Φ
−∞ −∞

∂ρΦ ∂ ∂
= ψ = ψ

∂ ∂ ∂∫ ∫ψ ψ  (76) 

 



( )

,

, or

m i U
i

i m
i m U

i i

m i L
i

V F d d
x

U V F d d
x x

F U d
x

∞ ∞

Φ
−∞ −∞∞ ∞

Φ
∞−∞ −∞

Φ
−∞

  ∂ ψ  
∂  

∂ρ Φ ∂
= ψ = 

∂ ∂ 
 ∂ ψ   ∂ 

∫ ∫

∫ ∫

∫

ψ

ψ

ψ ψ

V

V  (77) 

Then, the terms on the right hand side of (66) can be written as  

 



( )

( ) ( )

2
( )

or

m
m

i i
mm m

m
i i i i

m k
m

i k i

F d
x x

F d
x x x x

F d
x x

∞
Φ

−∞∞

Φ
∞−∞

Φ

−∞

  ∂ ∂ ψ Γ 
∂ ∂     ∂ ∂ρΦ ∂ ∂ Γ = Γ ψ =   ∂ ∂ ∂ ∂     ∂ ψ∂− ψ Γ   ∂ ∂ψ ∂ 

∫

∫

∫

ψ

ψ

ψ

 (78) 
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

( )
( ) k

m m m
k

S F
S S F d d

∞ ∞
Φ

Φ
−∞ −∞

∂
ρ = = − ψ

∂ψ∫ ∫ψ ψ ψ  (79) 

Where in Equations (78) and (79), we have applied the integration by parts and zero integrations similar 
to (74). Collecting all the integrand terms that factored by ψm, we obtain 

 

( )
( )

( )
( )

( )

( )

, 1,2, , 1

or

, 1,2, , 1

i L m
k

i i i k

i L m
k k

i k i i

F UF F F S m N
t x x x

F UF F F S m N
t x x x

ΦΦ Φ
Φ

ΦΦ Φ
Φ

∂   ∂ ∂ ∂ ∂ + = Γ −  ⋅  = +    ∂ ∂ ∂ ∂ ∂ψ   

∂   ∂ ∂ ∂ ∂ + = − Γ ψ + ⋅ = +  
∂ ∂ ∂ψ ∂ ∂   

ψ
ψ

ψ
ψ





 (80) 

This equation also represents the equation of internal energy m = N + 1, where SN+1(ψ) = 0 and other 
source terms in Equation (65) are neglected as suggested by Jaberi et al. (Ref. 1). Equation (80) is 
essentially closed if we consider the joint DW-FDF FU,Φ. For the marginal FΦ, the convection term is not 
closed because of the conditional DW-FDF mean i L

U ψ . Then, this critically important term, 

corresponding to 

i mUρ Φ  in Equation (66), must be carefully modeled while the less important molecular 
diffusion term remains in the closed form. In addition, we noticed that the equally important chemistry 
source term ( )mSρ Φ  in Equation (66) contains complex processes of turbulence-chemistry interaction, 
which is considered as very hard to be modeled. However, it is closed in the DW-FDF equation with no 
need of modeling. This direct calculation of turbulence-chemistry interaction represents one of the unique 
features of DW-FDF methodology.  

4.4 Modeling of Unclosed Terms 

Consider the approximation described by Equation (69), i.e. P RT M≈ ρ  , we may write from 
Equation (72) 

 



1 1

1

1 ,

1

2

1

2

N
n N N

i i v n i vn

N U
i v

N UL
i v

i N UL
k k v

i U
k k v

RP R
x x c w x c M

R F d d
x c M

R F d
x c M

RV F d
V x c M

R eV F d
V x c M

+ +

=
∞ ∞

+ Φ
−∞ −∞
∞

+
−∞

∞

+
−∞
∞

−∞

   Φ Φ ρ Φ∂ ∂ ρ ∂
− = − ≈ −    ∂ ∂ ∂   

∂
= − ψ

∂

∂
= − Φ

∂

 ∂
= Φ ∂ ∂  

 ∂
≈  ∂ ∂  

∑

∫ ∫

∫

∫

∫

ψ





V

V V

V V

V

 (81) 

The last step in Equation (81) employs a rough approximation: 
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 1 1N NL
e+ +Φ ≈ Φ =

V  (82) 

As for the convection term in the species Equation (80), i L
F UΦ ψ , we may start from a more general 

model for the term i mUρ Φ (see Ref. 6): 

 

  ( )( ) ( )
1 2

m mm mijiji m i m T T
i j

kU U c S c
x x

∂ρΦ ∂ρΦ
ρ Φ = ρ Φ −Γ −Γ + Ω

∂ ε ∂

 

   (83) 

Where c1 = c2 = – 0.24. This will lead to the following model by directly applying the Equations (27) and 
(39) described in Sections 2.2.2 and 2.2.3: 

 

  ( )

  ( )

( ) ( )
1 2

( ) ( )
1 2

or

m m
iji iji kT TL

i k j

m m
iji iji k kT TL

k i k j

F k FF U U F c S c
x x

F k FF U U F c S c
x x

Φ Φ
Φ Φ

Φ Φ
Φ Φ

  ∂ ∂ ∂
= − Γ + Γ + Ω ψ  ∂ ∂ψ ε ∂    

  ∂ ∂ ∂ ∂
= + Γ ψ + Γ + Ω ψ  ∂ψ ∂ ∂ψ ε ∂    

ψ

ψ

 (84) 

4.5 Summary 

With the models given by Equations (81) and (84), the marginal DW-FDF equations for FU(V; x,t) 
and FΦ(ψ; x,t) can be written as 

 

2
1

2
1

2
3

or

U U N U
j U

j k k v j j

U U
j k j m

k j k k j m

U U N U
j U k

j k k v k j j

U
j

k j

F F R FV F
t x V x c M x x

F FV V
V x x V x x

F F R FV F V
t x V x c M V x x

FV
V x

+

+

  ∂ ∂ Φ ∂∂ ∂
+ = + ν    ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

  ∂ ∂ Φ ∂∂ ∂ ∂
+ = − ν    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂∂ ∂
− ν
∂ ∂





2
3

U
k j m

k k j m

FV
x V x x

   ∂∂ ∂
+ δ ν      ∂ ∂ ∂ ∂   

 (85) 
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ijijk T
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k

U FF F F S
t x x x

k Fc S c m N
x x

U FF F F S
t x x x

ΦΦ Φ
Φ

Φ

ΦΦ Φ
Φ

∂   ∂ ∂ ∂ ∂ + = Γ + Γ − ⋅  
∂ ∂ ∂ ∂ ∂ψ   

  ∂ ∂ ∂ − ψ Γ + Ω = +   ∂ψ ∂ ε ∂   

∂   ∂ ∂ ∂ ∂ + = − ψ Γ + Γ + ⋅  
∂ ∂ ∂ψ ∂ ∂   

∂
− ψ
∂ψ

ψ

ψ



 ( )( )
1 2 , 1,2, , 1m

ijijk T
i j

k Fc S c m N
x x

Φ
  ∂ ∂ Γ + Ω = +   ∂ ε ∂   



 (86) 

It can be verified that the DW-FDF Equations (85) and (86) can exactly deduce the filtered compressible 
Navier-Stoke equations (64) to (66) with the assumed approximations of (81) and (83). However, by no 
means, the models described by Equations (81) and (84) are unique. Furthermore, the variables ( 1N +Φ , 

iU , ijS  and ijΩ ) are considered as available during the solution procedure of the DW-FDF equations.  

5.0 Concluding Remarks 
We have revisited the derivations of the traditional DW-FDF or FMDF equations by starting from the 

equation of FG-PDF that contains all the terms on the right hand side of the Navier-Stokes equations, see 
Equations (42) and (44). The resulting FMDF equations contain the “conditional DW-FDF mean” 
quantities for all the terms on the right hand side (except for the reaction term), see Equations (43), (45), 
which need empirical models to make the equations closed.  

From the relationship between the DW-FDF and the filtered turbulent variables, it is possible to 
construct the DW-FDF equations directly from the filtered compressible Navier-Stokes equations. Such 
DW-FDF equations have an outstanding feature that all the terms that were not closed on the right hand 
side of traditional FMDF equations are now in the closed form, see Equations (75) and (80), except for 
the pressure gradient term that involves joint DW-FDF.  

In the marginal DW-FDF equations, the two unclosed terms, one related to the pressure gradient and 
the other related to the species convection, are expected to be more important than the molecular “mixing” 
or “diffusion” terms, especially in the case of high Reynolds number. Their physics-based models, such as 
Equations (81) and (84), should be further developed and evaluated.  

The fundamental differences between the DW-FDF (a random quantity) and the PDF (a deterministic 
quantity) warrant further investigation on their respective solution procedure using the stochastic 
differential equation methods.  
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