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The design, analysis, and verification and validation of a spacecraft relies heavily on
Monte Carlo simulations. Modern computational techniques are able to generate large
amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to
analyze it all. The growing amounts of data combined with the diminished available time
of engineers motivates the need to automate the analysis process. Pattern recognition
algorithms are an innovative way of analyzing flight dynamics data efficiently. They can
search large data sets for specific patterns and highlight critical variables so analysts can
focus their analysis efforts. This work combines a few tractable pattern recognition algo-
rithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo
simulations. Current results show that this tool can quickly and automatically identify indi-
vidual design parameters, and most importantly, specific combinations of parameters that
should be avoided in order to prevent specific system failures. The current version uses a
kernel density estimation algorithm and a sequential feature selection algorithm combined
with a k-nearest neighbor classifier to find and rank important design parameters. This
provides an increased level of confidence in the analysis and saves a significant amount of
time.

I. Introduction

Spacecraft design is inherently difficult due to the nonlinearity of the systems involved as well as the
expense of testing hardware in a realistic environment. The number and cost of flight tests can be reduced
by performing extensive simulation and analysis work to understand vehicle operating limits and identify
circumstances that lead to mission failure. A Monte Carlo simulation approach that varies a wide range of
physical parameters is typically used to generate an umbrella of test scenarios. The results of these analyses
bound the vehicle performance and eventually help certify a spacecraft for flight. NASA’s Orion vehicle is a
current example of the importance and benefits of the Monte Carlo design approach.’

As in any engineering problem, identifying variables that can drive the design is crucial. These variables
need to be analyzed more thoroughly to ensure safety and reliability of the spacecraft. For a human-rated
spacecraft, identifying the variables that could cause failures is particularly important. Given enough time,
the Monte Carlo approach allows analysts to identify most of the individual design variables that influence
certain system failures. This is a long and meticulous process because it involves the analysis of thousands
of simulation runs. Engineers seek to pinpoint a few individual influential variables that directly affect a
particular system requirement in order to address the necessary changes in the design. However, it is typi-
cally not the individual parameters that lead to critical failures such as missing a landing target, sub-optimal
parachute deployment, or high g-forces on the crew. It is a series of complex variable interactions that cause
these anomalies due to the high level of coupling throughout the flight of a spacecraft. Determining which
variable combinations cause system failures is essential in the final design and testing phases, and they are
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extremely difficult to track down with a manual analysis of Monte Carlo data.

Currently, there is no general methodology that can be used to identify individual variables, or their
critical interactions in a reliable and timely manner for a flight dynamics problem. There have been several
methods developed to identify which variable uncertainties have a greater effect on the outcome of a simu-
lation, but in most cases the algorithms are specific to a particular problem and require the analyst to write
additional code, or to manipulate and re-run the Monte Carlo simulation. These are significant obstacles
that must be addressed in order to automate the data analysis process. To overcome them, the authors have
strived to solve this problem from the perspective on a flight dynamics engineer who does not necessarily
have access to the simulation, but is tasked with the analysis of a set of Monte Carlo data from a spacecraft
designed by someone else.

More specifically, the goal of this work is to develop a general methodology that can be used to analyze
flight dynamics data for problems with a small number of design parameter but especially for problems with
thousands of design parameters such as the Orion vehicle. In the past, the analysis of Monte Carlo data for
problems with a relatively small number of design variables has been addressed in a number of ways, but
the analysis of data for fully integrated spacecraft has mostly been performed manually on an individual
basis by a great number of people working simultaneously. In fact, there are several recent publications that
show how Monte Carlo data is used and analyzed for NASA’s newest spacecraft.2* The lack of a general
methodology for the analysis of flight dynamics Monte Carlo data is evident.

On the other hand, aerospace problems with a smaller number of variables than a high-fidelity spacecraft
simulation, have served as great test problems to develop a number of innovative analysis methods. Perhaps
the most intuitive method to find individual influential variables is to perform a sensitivity analysis of all
output parameters with respect to all input parameters, though this typically requires access to the model
equations and to write additional pieces of code. This is an obstacle for an engineer that does not own the
simulation.

Statistical methods such as Modern Design Of Experiments (MDOE)® and ANalysis Of VAriance (ANOVA)®
have been used effectively to allocate how much of the output variance is due to the variance of the dif-
ferent inputs. Problems in the aerospace field have been addressed with this method”® with the goal of
understanding the sources of variance in experimental data. The goal of the Monte Carlo analysis problem
is not to allocate the amount of variance among the different inputs, but to understand the interaction of
the variance of each design parameter that was purposefully introduced by the analyst in the form of a
simulation input file.

Another probability-based approach to the problem of characterizing input uncertainties that ultimately
result in a system failure is to iteratively expand or reduce a region in the input space that contains a
certain probability of failure. Reference® describes an algorithm that starts with a well-defined subset of the
input uncertainty space and iteratively modifies it based on whether or not it encapsulates dispersed points
that meet a certain performance criteria. A similar approach in the sense that new test input vectors are
generated and analyzed iteratively to narrow down a critical input space is presented in.'® Even though
both of these papers demonstrate the ability to narrow down certain influential variables in their systems,
the methods manipulate the Monte Carlo input deck and re-run the simulation. This is one of the obstacles
the authors wish to overcome.

One last related approach is the use of the Markov Chain Monte Carlo algorithm as in reference.!! The
authors assume that input parameters have Gaussian distributions and use a Markov Chain to generate
successive samples of inputs that would likely generate failures in the output space. The authors feel that
making assumptions about the parameter input space could yield results that cannot be used in a certifi-
cation task. Once again, using a non-deterministic technique to generate new samples and re-running the
simulation would not be an option if the analyst does not have access to the simulation.

Another novel approach that has been used for identifying influential variables in a Monte Carlo data
set is polynomial chaos. The method requires writing problem-specific code because the model equations
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must be reformulated. This is undesirable because the tool must be applicable to a wide range of problems.
However, references'? '3 use a modified non-intrusive version of the method that does not require modifying
the system equations. They treat the simulation as a black box, and perform the analysis around it. This
might seem a very practical approach, but if the analyst cannot fully understand and keep track of what
the algorithm is doing, he or she cannot trust the method, especially when it comes to the certification of a
human-rated vehicle. In fact, since one of the characteristics of this tool is to use tractable algorithms that
a flight dynamics engineer can trust, the use of non-deterministic algorithms is not an option. This includes
methods such as neural networks, or any other kind of method that assumes that the simulation is a black box.

The methods discussed above may be effective for small scale aerospace problems, but unfortunately
cannot be generalized to complex flight dynamics problems. Currently, and as far as the authors are aware
of, the only other attempt to develop a standard methodology for the analysis of flight dynamics Monte
Carlo data is the work done by K. Gundy-Burlet et. al'®'® at the NASA Ames Research Center. The
group has developed a method to analyze flight dynamics data which uses a combination of pattern recog-
nition methods to identify qualitative trends between inputs and outputs. They create success maps of
the most correlated variables. The work herein is similar in the sense that both seek to automate the
complex data analysis task that NASA flight dynamics engineers face today through the use of pattern
recognition, but different in the sense that it aims for a more deterministic answer, a concrete ranking of
influential parameters and most influential variable combinations that directly affect a specific system failure.

This work provides a systematic way of listing the most influential variables for each particular failure
metric sets the stage for a qualitative analysis of the physics of the problem, and reduces the number of
variables requiring analysis from several hundreds or even thousands, to a short list of influential variables.
This allows the analyst to reliably assume that the remaining parameters do not influence a particular failure
metric and consequently do not need detailed analysis. This is valuable because it saves time and increases
the level of confidence with which the design can be validated and certified. Time and confidence levels are
important to reduce the design cycle costs which currently involve hundreds of engineers generating terabytes
worth of Monte Carlo data and spending months analyzing said data.

A simple example, a satellite spinning about one of its axes, is used throughout this paper to explain the
method and benefits of the analysis tool. The paper is organized as follows. Section II briefly introduces
the simulation example. Section IIT discusses the challenges with current analysis methods and how this
research contributes to the automation of this process. Section IV presents the use of pattern recognition
methods in a flight dynamics problem. Section V, and section VI summarizes the contributions.

II. A Simple Flight Dynamics Problem

To illustrate the use of the Monte Carlo analysis tool, an example taken from reference'® will be used
throughout the rest of the paper. Consider a satellite represented by a rectangular box with a control
moment gyro (CMG), that spins about one of its axes. The equations of motion are the following:
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where wy, ws, w3 are the angular velocities, I7,I5,13, and J; are the inertias of the satellite and tangential in-
ertia of the CMG respectively, h is the constant angular momentum, u is the CMG torque, and K, = I1 + J;,
K3 =15+ J;.

The nominal motion of the satellite is simulated with given values of inertias and initial values of angular
velocities. The motion is considered stable when there is one dominant angular velocity and two small
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angular velocities.!” The motion is considered unstable when the three angular velocities are approximately
the same magnitudes. A Monte Carlo simulation is performed by varying the box dimensions as well as the
initial angular velocities to find out which design parameters are most influential in the spin stability of the
satellite. Figure 1 shows the resulting Monte Carlo trajectories.

III. Analysis of a Flight Dynamics Monte Carlo Simulation

Designing a spacecraft is an iterative process that begins with the current vehicle design and config-
uration, current information about parameter uncertainties, and a set of nominal initial conditions for a
nominal trajectory. The design is simulated and tested thousands of times through Monte Carlo simula-
tions. The resulting set of simulations yield information about the probability of success of the spacecraft
and its subsystems when operated under many different circumstances. The data is then analyzed by flight
dynamics engineers who design guidance, navigation and control algorithms for the fully integrated vehicle.
If the current design cannot perform adequately, the analysts then recommend changes for the next iteration.

The goal of a Monte Carlo simulation is to understand all critical design sensitivities that may prevent
the design from meeting requirements. It is relatively easy to determine if a given simulation run in a set
fails requirements. Typically, analysts look at a set of runs in which the failed ones have been somehow
labeled as such. For example, Figure 1 is a time history of the satellite angular velocities where the red
trajectories have failed the stability requirement and the blue trajectories successfully meet the stability
criteria established in section II.

It is well known that a box that spins about its intermediate inertia
is unstable. However, if this result was unknown, the first step in the
analysis process would be to plot the different input and output parame-
ters of the unstable simulation runs and try to track down the source of
the problem. Flight dynamics engineers would look at a series of trajec-
tory plots and scatter plots. They might see fit to plot combinations of
two or three variables at a time to understand their relationship visually.
Since there is no way of telling which of these variables should be plotted
together, other than engineering intuition, this process can take several
months for the thousands of variables in a spacecraft simulation. Realis-
tically, it is not possible to plot and analyze every single combination of
variables, so there is no guarantee that the analyst will be able to capture
every problematic aspect of the design. In other words, the best way of
obtaining confidence in the analysis is to be extremely familiar with the
spacecraft design and the odds and ends of the simulation. This is one of the drawbacks of the way today’s
engineers analyze flight dynamics simulations. The tool developed here still requires a good understanding
of the physics of a flight dynamics problem, but it does not require intimate knowledge of the parameter
dispersions. A flight dynamics engineer will be able to use this analysis tool without having designed the
specific spacecraft themselves, which will save a significant amount of work and time.
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Figure 1: Satellite Trajectories

IV. Pattern Recognition and Flight Dynamics

Pattern recognition can be defined in several different ways. In general, it is the process of automatically
finding common features and patterns in a data set with the purpose of describing the data, fitting a model,
or classifying data points into classes that help us understand it better. References'® ¥ contain more precise
definitions of pattern recognition and provide the mathematical background for the algorithms used in this
problem.

There are two basic concepts, features and patterns, that are used in the field of pattern recognition. A
feature is any characteristic that describes an object, and a pattern is a combination of specific features that
can describe the object in a particular way. Features are informative when they provide information that
differentiates an object from other objects. Features are not informative when the information they provide
is not helpful in discriminating one object from another.
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For a flight dynamics problem, the goal is to create a tool that can automatically rank individual vari-
ables (features) and combinations of variables (patterns) that are most relevant to the problem at hand. To
create these rankings, there are two things that are taken into account: correlation between variables, and
the separability of good data points from bad data points. More specifically, the goal is to find subspaces in
the input and output parameter space that allow the successful cases be most separable from the failure cases.

The specific algorithms used in the analysis tool were selected based on the constraints listed below. The
constraints are derived from the fact that the problem is addressed from the perspective on a flight dynamics
engineer who does not have access to the simulation and does not own the design of the particular vehicle
that must be analyzed.

1. Algorithm Constraints:

(a) Algorithms are for post-processing data only and cannot rely on iteratively running several Monte
Carlo sets

(b) Algorithms must make no assumptions about input probability density functions

(¢) Algorithms must compare all types of parameters at once regardless of their units or relative
magnitudes

(d) Algorithms must filter out all obvious variable correlations that do not affect a particular failure.
In order to reduce analysis time, the analyst must feel confident that detailed analysis of filtered
variables is not necessary and focus solely on those influential parameters

2. Usability Constraints:

(a) The tool must be general enough to address any GN&C issue that arises for any flight vehicle

(b) The tool must be specific enough to capture subtleties buried in large data sets while ignoring
obvious variable correlations that are not informative and do not affect system failures

(¢) Non-intrusive algorithms that do not require modification of existing code or writing new pieces
of problem-specific code

(d) Tractable methods that an aerospace engineer can trust and understand without being an expert
in the fields of statistics or pattern recognition

(e) Yield consistent results each time the algorithm is used on the same data sets (no heuristics)

The current version of the analysis tool uses a non-parametric density estimation method, kernel density
estimation, to identify individual influential variables and a k-nearest neighbors method to identify influential
variable interactions that lead to system failures.

V. Analysis Tool

To further justify the rationale for the selected algorithms, consider again the satellite example, specifi-
cally the trajectory plot from Figure 1. It is necessary to find trends that are common among failed simulation
runs but that are not common among successful runs in order to understand what causes the satellite to go
unstable. The goal of the analysis tool is to automatically rank the design variables according to how useful
they are in explaining the problem, given a metric for success. The best way to narrow down the variable
space in search for the most influential variables is to highlight differences. And to highlight differences
it is important to accurately describe the data, which implies that no assumptions should be made about
the input distributions. Non-parametric density estimation methods, namely the kernel density estimation
(KDE) method, and the k-Nearest Neighbors (k-NN) method are used here to describe and subsequently
compare the data. Section A explains the basic theory of the kernel density estimation method, and how it
is used to identify individual influential variables in a flight dynamics problem. Section B explains the k-NN
method and how it is used to identify critical combinations of variables.
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A. Identification of Individual Influential Variables

The KDE method!? is similar to a smooth histogram. Figure 2a shows a scatter plot of a given input variable
to a Monte Carlo simulation vs. the simulation run number, Figure 2b shows a histogram of the data, and
Figure 2c shows a density estimate of the data using the KDE method. The KDE estimate is a normalized
probability density function of the data, but the x-axis of 2c still preserves the original units of that input
variable. This is a significant advantage over methods that require data normalization before any comparison
between variables can be performed.
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(a) Input Variable (b) Histogram (c) KDE
Figure 2: Example of Non-parametric Density Estimation

KDE is useful in understanding flight dynamics data when a density estimate is calculated separately
for the failed simulation runs and the successful runs. Figure 4 demonstrates how the plotting both KDE
curves can easily highlight which design variables are the best discriminators between successful and failed
simulation runs. The variables that have one curve on top of the other are those that have little to no effect
on the given success metric, whereas the variables that significantly different red and blue curves clearly
show the trends that differentiate successful runs from failed ones.

The variables are then ranked according to how different the red and blue
KDE curves are. Figure 4 shows them in the correct order, but a bar graph
of the relative difference between the curves of each variable tells the user
which variables are relatively more important to analyze. For example, vari-
ables 4, 5, 6, 8, and 10 are not individually affecting the stability metric, . i
and variable 11, the width of the box, was the same for all simulation runs === .w..-
in the set no there is no difference between the curves and the bar height is Figure 3
Zero.

B. Identification of Influential Combinations of Variables

From Figure 4, it is clear that even though some of the top ranked variables are informative, none of them
can completely separate the successful cases from the failed cases. For example, the second inertia curves
show that the failed simulation runs tend to have values for Iy between 0 and 60 and between 80 and 100.
However, the successful runs also have a value between 0 and 20. So the region Iy = 0 — 20 must be explored
further because it is not possible to discriminate between success or failure. In other words, the single variable
I cannot provide a clear explanation, only a useful pointer for the user to include that variable in further
analysis. As mentioned previously, even though it is important to identify the individual parameters that
significantly influence system failures, these seldom cause failures by themselves, so their combinations and
interactions are what matters. Typically, further analysis means combining or co-plotting the interesting
individual variables with other variables to seek a more concrete answer. This section explains how this
analysis tools helps with this process.

In section II it was established that what causes spin stability is to spin about the axis of the intermediate
inertia. Since the success metric ensures that wo is the dominant angular velocity, the satellite goes unstable
when the value I5 is between I; and I3. Therefore, the subspace of variables in which all successful cases are
completely separable from failed cases must involve a region encapsulated by Iy, Is, and I3.
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(a) Iz (b) I3 (c) Ih (d) satellite height

(e) satellite depth (f) CMG angular momentum (g) w3(t =0) (h) wi(t=0)

(i) w2(t =0) (j) satellite mass (k) satellite width

Figure 4: KDE estimates for individual variables
Success metric: Stability
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It is necessary to check those higher dimensional regions that might contain the answer to our question
without forcing the flight dynamics engineer to select these regions manually. After some experimentation
with a few example problems, including flight dynamics data from the Orion vehicle, the authors found that
it is a reasonable assumption to consider only higher dimensional regions of up to four variables. Regions
that contain more that four variables proved to be difficult to analyze.

Computing and analyzing an exhaustive list of four-variable combinations for a system with thousands
of parameters is still too time consuming for an analyst. In order to alleviate this process, it was decided
that all original variables will be combined into pairs, both as a difference and as a ratio, to form a new set
of variables. Subsequently, these new variables are combined once again in the form of a two-dimensional
region that is automatically searched for data separability and ranked accordingly through the use of the
k-NN algorithm. The following steps summarize this process.

The total number of new variables (2D combinations) is calculated by

|
# of new variables = < v '> x (# of arrangements) (5)

2l(n —2)!
where n is the original number of dispersed variables, and the number of arrangements is two: for any pair of
variables a,b, the possible (non-redundant) arrangements are a — b, and ¢. This is still a very large number
of variables, but even though it is difficult to select which variables are the most important, it is safe to use

a solid flight dynamics background to reduce the list by taking out those variables that are known to be
independent of a specific failure.

Subsequently, the k-nearest neighbors algorithm!? is used to determine the separability of the successful
runs from the failed runs by creating a map of the 2D region and calculating the overlap between the red and
the blue areas. These regions are then ranked using this overlap as a performance index: the least amount
of overlap, the more informative the region is to the analyst. Figure 5a shows a scatter plot of two of the
new variables generated from the original variables as described above. The successful region is completely
separate from the failure region, and this is precisely the explanation for the satellite instability: I must
not be the intermediate inertia. Figure 5b shows a map of the region created with the k-NN algorithm. For
visualization purposes, the overlap is colored purple, and the performance index is the purple percentage of
the 2D region. For this example, the percentage is approximately 17%.

The analysis tool provides a ranking of the two-dimensional regions.
The exact shape of the region doesn’t matter as much as the fact that
the three inertia values are the variables that interact together to cause
a simulation run to fail. For a general flight vehicle, the nonlinear inter-
actions that are to be avoided are typically certain dynamic or vibration
modes that are catastrophic to the vehicle or the crew. These behaviors
occur when certain parameters, namely aerodynamics and mass prop-

erties, interact in complex nonlinear ways. This method is capable of ' Lol
finding nonlinear regions as complex as the checker board shape of the (a)
satellite inertias plot. This would not be possible to find with a method Sassess:

that did not do the calculations based on local information of the data.
These plots also confirm the reasons for not using any methods that are

based on correlation coefficients or on assumptions of the shape of in-

put parameter distributions. The authors are aware that such mapping o
could be achieved with artificial intelligence based methods, but again,

the goal is for a flight dynamics engineer to be able to track and trust

this analysis tool enough to aid in a certification task, without being an
expert on statistics of pattern recognition.

Figure 5
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VI. Summary of Contributions

The Monte Carlo data analysis tool developed has proved to be helpful in the analysis of general flight
dynamics problems. The methods used are tractable algorithms that can be understood by an aerospace
engineer, but above all, trusted. It has allowed analysts to save significant amounts of time by requiring a
single Monte Carlo data set rather than multiple sets. The tool can be used to analyzed any flight dynamics
problem because it does not require writing additional code or modifying any of the model equations or
simulation input files. It can be used to compare simulation outputs without the need to normalize any of
the data or losing the original units of any of the variables.

The general methodology developed here has proved to be useful in the analysis of problems as simple
as the satellite spin stability example in this paper, and as complex as the Orion ascent abort guidance,
navigation, and control algorithms. Additionally, the authors are currently in the process of programming
the algorithms on a GPU and developing a graphical user interface for this tool.
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