The Spatial Standard Observer

Degrees of visibility and discriminability of targets in images can be estimated.

Ames Research Center, Moffett Field, California

The spatial standard observer is a computational model that provides a measure of the visibility of a target in a uniform background image or of the visual discriminability of two images. Standard observers have long been used in science and industry to quantify the discriminability of colors. Color standard observers address the spectral characteristics of visual stimuli, while the spatial standard observer (SSO), as its name indicates, addresses spatial characteristics.

The SSO is based on a model of human vision. The SSO was developed in a process that included evaluation of a number of earlier mathematical models that address optical, physiological, and psychophysical aspects of spatial characteristics of human visual perception. Elements of the prior models are incorporated into the SSO, which is formulated as a compromise between accuracy and simplicity. The SSO operates on a digitized monochrome still image or on a pair of such images. The SSO consists of three submodels that operate sequentially on the input image(s):

1. A contrast model, which converts an input monochrome image to a luminance contrast image, wherein luminance values are expressed as excursions from, and normalized to, a mean;
2. A contrast-sensitivity-filter model that includes an oblique-effect filter (which accounts for the decline in contrast sensitivity at oblique viewing angles); and
3. A spatial summation model, in which responses are spatially pooled by raising each pixel to the power beta, adding the results, and raising the sum to the 1/\(\beta\) power. In this model, \(\beta=2.9\) was found to be a suitable value.

The net effect of the SSO is to compute a numerical measure of the perceptual strength of the single image, or of the visible difference (denoted the perceptual distance) between two images. The unit of a measure used in the SSO is the just noticeable difference (ND), which is a standard measure of perceptual discriminability. A target that is just visible has a measure of 1 JND.

The SSO was devised to satisfy an increasing need for a rapid, objective means of estimating degrees of visibility and discriminability of visual elements in scenes observed, not only by humans, but also by robotic vision systems, under a variety of circumstances. Examples of potential applications of the SSO include evaluating vision from un piloted aerial vehicles (UAVs) [see figure]; predicting visibility of UAVs from other aircraft; estimating visibility, from a control tower, of aircraft on runways; measuring visibility, from a distance, of damage on aircraft and on a space shuttle; evaluation of legibility of text, icons, or other symbols; specification of resolution of a camera or a display device; inspection of display devices during manufacturing; estimating the quality of compressed digital video imagery; and predicting the outcomes of corrective laser eye surgery.

This work was done by Andrew B. Watson and Albert J. Ahumada, Jr., of Ames Research Center.

This invention is owned by NASA and a patent application has been filed. Inquiries concerning rights for the commercial use of this invention should be addressed to the Ames Technology Partnerships Division at (650) 604-2954. Refer to ARC-14569-1.

Less-Complex Method of Classifying MPSK

Nearly optimal performance can be obtained with less computation.

NASA’s Jet Propulsion Laboratory, Pasadena, California

An alternative to an optimal method of automated classification of signals modulated with \(M\)-ary phase-shift-keying (\(M\)-ary PSK or MPSK) has been derived. The alternative method is approximate, but it offers nearly optimal performance and entails much less complexity, which translates to much less computation time.

Modulation classification is becoming increasingly important in radio-communications systems that utilize multiple data modulation schemes and include software-defined or software-controlled receivers. Such a receiver may “know” little \textit{a priori} about an incoming signal but may be required to correctly classify its data rate, modulation type, and forward error-correction code before properly configuring itself to acquire and track the symbol timing, carrier frequency, and phase, and ultimately produce decoded bits. Modulation classification has long been an important component of military interception of initially unknown radio signals transmitted by adversaries. Modulation classification may also be useful for enabling cellular telephones to automatically recognize differ-
different signal types and configure themselves accordingly.

The concept of modulation classification as outlined in the preceding paragraph is quite general. However, at the present early stage of development, and for the purpose of describing the present alternative method, the term “modulation classification” or simply “classification” signifies, more specifically, a distinction between M-ary and $M’$-ary PSK, where M and $M’$ represent two different integer multiples of 2.

Both the prior optimal method and the present alternative method require the acquisition of magnitude and phase values of a number N of consecutive baseband samples of the incoming signal + noise. The prior optimal method is based on a maximum-likelihood (ML) classification rule that requires a calculation of likelihood functions for the M and $M’$ hypotheses. Each likelihood function is an integral, over a full cycle of carrier phase, of a complicated sum of functions of the baseband sample values, the carrier phase, the carrier-signal and noise magnitudes, and M or $M’$. Then the likelihood ratio, defined as the ratio between the likelihood functions, is computed, leading to the choice of whichever hypothesis — M or $M’$ — is more likely.

In the alternative method, the integral in each likelihood function is approximated by a sum over values of the integer sampled at a number I, of equally spaced values of carrier phase. Used in this way, I is a parameter that can be adjusted to trade computational complexity against the probability of misclassification. In the limit as $I \to \infty$, one obtains the integral form of the likelihood function and thus recovers the ML classification.

The present approximate method has been tested in comparison with the ML method by means of computational simulations. The results of the simulations have shown that the performance (as quantified by probability of misclassification) of the approximate method is nearly indistinguishable from that of the ML method (see figure).

This work was done by Jon Hamkins of Caltech for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP (see page 1). NPO-40965

Improvement in Recursive Hierarchical Segmentation of Data

Goddard Space Flight Center, Greenbelt, Maryland

A further modification has been made in the algorithm and implementing software reported in “Modified Recursive Hierarchical Segmentation of Data” (GSC-14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent/spatially-non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent-region merges have priority over spatially-non-adjacent ones.

This program was written by James C. Tilton of Goddard Space Flight Center.
Further information is contained in a TSP (see page 1).

GSC-14994-1