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Abstract: Modified boundary conditions (MBC) and a multilayer
approach (MA) are proposed as fast and efficient numerical methods for
the design of 1D photonic structures with rough interfaces.These methods
are applicable for the structures, composed of materials with arbitrary
permittivity tensor. MBC and MA are numerically validated on different
types of interface roughness and permittivities of the constituent materials.
The proposed methods can be combined with the 4x4 scatteringmatrix
method as a field solver and an evolutionary strategy as an optimizer. The
resulted optimization procedure is fast, accurate, numerically stable and can
be used to design structures for various applications.
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1. Introduction

Photonic crystals are of high interest for many practical applications [1, 2, 3]. One-dimensional
photonic crystals are known for a long time and have been studied thoroughly [4, 5, 1, 6]. A
lot of effort was also put into the optimization of finite multilayer films [7, 8, 9, 10]. Different
optimization procedures, such as the quasi-Newton algorithm [8] or genetic algorithms [9, 10]
have been applied to improve the performance of finite multilayer mirrors.

Some applications require the optimization of the structure for high reflection or anti-
reflection in more than one frequency band. Reentry [11] is anexample of such an application,
where reflection in two ranges is desired.

In practice roughness of the interfaces is inevitable and causes severe numerical problems,
because it destroys the symmetry of the structure. In order to avoid time-consuming 3D simula-
tions, we propose a multilayer approach (MA) or modified boundary conditions (MBC) to take
roughness into account. These approaches are combined withthe 4x4 scattering matrix method
as field solver. The resulting procedure is fast, numerically stable, and easy to implement. De-
tails of the scattering matrix formalism can be found in [12,13, 14].

This paper is organized as follows. In Section 2 we illustrate the optimization procedure on
a dual band mirror with flat interfaces. In Section 3 and Section 4 we describe MA and MBC
for rough interfaces in detail. In Section 5 we provide numerical results of MBC and MA for
rough interfaces. A sinusoidal and a random hilly profiles ofroughness are taken as examples.
Results for isotropic and anisotropic uniaxial crystals are shown.

2. Optimal design of a dual band omnidirectional mirror

In most cases it is not possible to find an optimal design of a structure analytically. Various
optimizers [15, 16] can be helpful to find good solutions numerically.

If a layered structure consists ofN layers, one has (at least)N real-valued parameters (thick-
ness of each layer) to be optimized. The search space should be defined for each parameter
within a reasonable interval [dmin, dmax]. For such optimizations, various algorithms, such as
genetic algorithms (GA), micro-genetic algorithms (MGA),or evolutionary strategies (ES) may
be applied. The optimization task becomes difficult not onlywhenN is high, but also when the
fitness function has a complicated behavior, e.g. when it hasmany local optima. According to
our experience [17] ES is very powerful in real parameter optimization problems and outper-
forms genetic algorithm (GA), particle swarm optimization(PSO) etc. in most cases. Therefore,
we applied it to the multilayer problem without extensive testing. We used an (m+n) ES with
adaptive mutation for the optimization in the following example. Herem is the initial number



of parents,n is the number of children created in each generation. In the following example we
usedm= 5 andn= 40.

To illustrate the optimization procedure, we optimize the omnidirectional reflection of the
structure in two bands. Hereafter, we denote the reflection coefficients:Rss, Rsp, Rps, andRpp.
The first and second indices correspond to polarization of the incident and reflected light re-
spectively. The s- and p-polarized light correspond to electric or magnetic field parallel to layers
respectively. The multilayered structure to be optimized consists ofN=14 layers, embedded be-
tween air interfaces. It is composed of two alternating materials with permittivity tensorŝε1 and
ε̂2:

ε̂1 =

(

2+0.01i 0.02i 0
−0.02i 2+0.01i 0

0 0 3+0.01i

)

ε̂2 =

(

9+0.01i 0.03i 0
−0.03i 9+0.01i 0

0 0 11+0.01i

)

We take these permittivities just as examples. Any other materials with full permittivity ten-
sors could be used instead. In this example, we consider flat interfaces between the layers. In
case of rough interfaces MBC or MA can be used (see Section 3 and Section 4). MBC and MA
are applicable when the characteristic size of the roughness is much smaller than the wavelength
in the material (δ << λ ).

As a necessary step for the optimization, we must define the fitness function, i.e. the goal
of the optimization. We optimize the omnidirectional reflection of theunpolarizedlight in two
bandsB1 := 800− 1300 meV andB2 := 2000− 2500 meV. Therefore, we define the fitness
function as the averaged reflection:

Fitness= 〈R(d1,d2, ... ,dN)〉=
〈R1〉+ 〈R2〉

2
≤ 1, (1)

〈R1,2(d1,d2, ... ,dN)〉=

∫

ω1,2

∫

θ
0.5(Rss+Rsp+Rps+Rpp)dωdθ

∫

ω1,2

∫

θ
dωdθ

≤ 1. (2)

where the reflection coefficients are integrated over the angles of incidenceθ ∈ [0, π
2 ] and

energy bandsB1 andB2. The thickness of the i-th layer (i= 1, ...,N) is di . We now need to
maximize the fitness function Eq. (1) of N variables.
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Fig. 1. (a) Dependence of the total reflectivity of the unpolarized light on the energy of
photons and the angle of incidenceθ . (b) Thicknesses of individual layers of the optimal
structure. Total number of layers N=14.

The results of ES the optimization are shown in Fig. 1. One maysee that a high reflectivity is
achieved in theB1 andB2 bands. Figure 1.b shows the geometric profile of the obtainedoptimal
structure.



In the optimization procedure we limited the number of fitness calls to 14200. As a conse-
quence it is not guaranteed that the global optimum is found.As long as a sufficiently good
solution is found, this is acceptable in practice. The required optimization time was several
hours in Matlab on Intel(R) Core(TM) i7 CPU 2.67GHz with 8 GB of RAM.

The interfaces of fabricated multilayered films are not ideally flat. Roughness between inter-
faces can be a result of fabrication inaccuracies or interdiffusion, if the structure operates at high
temperatures. Therefore, it is desired to take roughness into account at least approximately. We
propose two ways for doing this: 1) multilayer approach (MA)2) modified boundary conditions
(MBC). These methods work very fast, this is essential for the optimization problems.

3. Multilayer approach for rough boundaries

Model

Geometry. The rough boundary is located between two subspaces:z<−δ , ε = ε1, µ = 1, and
z>+δ , ε = ε2, µ = 1. The region|z|< δ is occupied with the rough boundary, see Fig. 2. Both
sizes of the roughness 2δ and l are supposed to be small in comparison with the wavelength.
The volume fractions of two components aref1 = V1/V and f2 = V2/V, whereV is the total
volume of the rough region.
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Fig. 2. Rough boundary between interfaces with permittivitiesε1 andε2.

We can divide the region−δ < z< δ into M layers and assign an effective permittivityε i
eff

(i=1,...,M ) to each of these layers. However, standard formulas for effective permittivity, such
as Maxwell-Garnett or Bruggeman, are not valid in the general case of arbitrary anisotropic ma-
terials and geometric profile of roughness. Therefore, we can only use the bounds for effective
permittivity:

(

f1
ε1

+
f2
ε2

)−1

= εmin ≤ εeff ≤ εmax= ( f1ε1+ f2ε2) (3)

These bounds for effective permittivity were first derived by Wiener [18] and they are valid for
arbitrary anisotropic materials and shapes of the inclusions.

As an effective permittivity for each layer, the mean value of the two bounds can be taken:

ε i
eff =

ε i
min+ ε i

max

2
, i = 1, ...,M (4)

4. Modified boundary conditions for rough boundaries

Model

Geometry. The rough boundary is located between two subspaces:z<−δ , ε = ε1, µ = 1, and
z>+δ , ε = ε2, µ = 1. The region|z|< δ is occupied with the rough boundary, see Fig. 2. We



suppose that the dielectric permittivity is a function ofz in this region. Thus,

ε =







ε1, if z<−δ
ε(z) if |z|< δ
ε2, if z>+δ .

The wave is incident fromz=−∞ and propagates in theXZ plane, thus (∂/∂y= 0). The angle
of light incidence isθ with respect to Z axis.

Let us choose the rectangularl × 2δ contour at the rough boundary. Then the Maxwell’s
equations for the circulation around this contours are:

∮

H dl =
1
c

∂
∂ t

∫

DdS (5)
∮

Edl =−
1
c

∂
∂ t

∫

BdS

We can write the left part of the first equation as:

∮

H dl = H(1)
τ (−δ )l −H(2)

τ (δ )l +
∫ δ

−δ
Hn(l/2)dz−

∫ δ

−δ
Hn(−l/2)dz,

where
∫ δ

−δ
Hndz= Bn

∫ δ

−δ

dz
µ(z)

,

becauseBn is continuous at the boundary and can be considered as constant there. Thus we
obtain:

∮

H dl = [H(1)
τ (−δ )−H(2)

τ (δ )]l +[Bn(l/2)−Bn(−l/2)]
∫ δ

−δ

dz
µ(z)

The right part of the first equation (5) can be written as:

1
c

∂
∂ t

∫

DdS=
iω
c

Eτ

∫ δ

−δ
ε(z)dzdl.

Assumingδ � λ andl � λ , we obtain

H(1)
x −H(2)

x − δ

[

∂H(1)
x

∂z
+

∂H(2)
x

∂z

]

+
∂Bz

∂x

∫ δ

−δ

dz
µ(z)

=
iω
c

Ey

∫ δ

−δ
ε(z)dz

H(1)
y −H(2)

y − δ

[

∂H(1)
y

∂z
+

∂H(2)
y

∂z

]

+
∂Bz

∂y

∫ δ

−δ

dz
µ(z)

=−
iω
c

Ex

∫ δ

−δ
ε(z)dz (6)

E(1)
x −E(2)

x − δ

[

∂E(1)
x

∂z
+

∂E(2)
x

∂z

]

+
∂Dz

∂x

∫ δ

−δ

dz
ε(z)

=−
iω
c

Hy

∫ δ

−δ
µ(z)dz

E(1)
y −E(2)

y − δ

[

∂E(1)
y

∂z
+

∂E(2)
y

∂z

]

+
∂Dz

∂y

∫ δ

−δ

dz
ε(z)

=
iω
c

Hx

∫ δ

−δ
µ(z)dz.

Here all fields are written atz= 0. The first and second equations originate from the first
equation (5) being written for the different components of the magnetic field. The third and
forth equations are derived from the second equation of (5).



The boundary conditions Eq. (6) can be simplified, if we consider a wave of a certain polar-
ization. For E-waves we have

E = (0, Ey, 0)

H = (Hx, 0, Hz).

The second and third equations are satisfied identically, while the first and the last equations
reduce to

E(1)
y −E(2)

y = 0 (7)

∂E(1)
y

∂z
−

∂E(2)
y

∂z
=−

ω2

c2 t1E(1)
y

Similarly, we have for H-waves

E = (Ex, 0, Ez)

H = (0, Hy, 0)

and we obtain

H(1)
y −H(2)

y =
t1
ε1

∂H(1)
y

∂z
(8)

1
ε1

∂H(1)
y

∂z
−

1
ε2

∂H(2)
y

∂z
= t2

∂ 2H(1)
y

∂x2 .

Here

t1 = δ (ε1+ ε2)−
∫ δ

−δ
ε(z)dz

t2 =
∫ δ

−δ

dz
ε(z)

−
δ
ε1

−
δ
ε2

The generalization of the boundary conditions Eq. (7) and Eq. (8) for the anisotropic struc-
tures leads to very lengthy expressions. However, they are essentially simplified for uniaxial
crystals, where the dielectric permittivity tensor is diagonal andε11 = ε22 6= ε33. Then bound-

ary conditions Eq. (7) and Eq. (8) hold withε1 = ε(1)11 , ε2 = ε(2)11 and

t1 = δ
(

ε(1)11 + ε(2)11

)

−

∫ δ

−δ
ε11(z)dz

t2 =
∫ δ

−δ

dz
ε33(z)

−
δ

ε(1)33

−
δ

ε(2)33

.

Here the superscripts (1) and (2) correspond to the first and second bordered material, respec-
tively.

The second order correction onδ/λ needs an additional expansion of the fields in the inte-
grands of Eq. (5). This can be done also by integration of the wave equations over the interface
region|z|< δ , see Ref. [19]. The wave equation for the E-wave in this region is:

∂ 2Ey

∂z2 +
∂ 2Ey

∂x2 + ε(z)
ω2

c2 Ey = 0. (9)



The integration of this equation over theδ -region at the boundary (see Ref. [19] for the details
of calculation) leads to the following boundary conditionsfor the electric fieldsE1,2 and their
derivativesE′

1,2 = ∂E1,2/∂z at each side of the boundary (we omit the subscripty for reasons
of simplicity):

(

E2

E′
2

)

=





(

1+β ω2

c2

)

0

α ω2

c2

(

1+β ω2

c2

)−1





(

E1

E′
1

)

(10)

Hereα andβ are the parameters, which are independent of the wavelengthand incidence angle.
The wave equation for the H-wave inδ region is

∂
∂z

[

1
ε11(z)

∂Hy

∂z

]

+
∂
∂x

[

1
ε33(z)

∂Hy

∂x

]

+
ω2

c2 Hy = 0. (11)

If ε33 is independent ofx, then Eq. (11) can be written as:

∂
∂z

[

1
ε11(z)

∂Hy

∂z

]

+

(

ω2

c2 −
k2

x

ε33

)

Hy = 0.

Its integration leads to the following BC forHy field:

(

H2
H′

2

ε(2)11

)

=





(

1+β ω2

c2

)−1
− αγω2

2c2 sin2 θ −α
ω2

c2 γ sin2 θ
(

1+β ω2

c2

)

− αγω2

2c2 sin2 θ





(

H1
H′

1

ε(1)11

)

. (12)

Expansion similar to Eq. (6), but to the second order onδ/λ , leads toα = t1, β = (ε2−ε1)δ 2/2
andγ = t2. Here the parametersα andβ are the same as in Eq. (10).

5. Numerical results of modified boundary conditions and multilayer approach

We demonstrate the application of MBC and MA for rough interfaces by the following exam-
ples.

5.1. Sinusoidal roughness profile

Consider the reflection from a slab with a sinusoidal gratingon the top, see Fig. 3.a. The sinu-
soidal grating emulates a rough boundary between air and slab. The permittivities of the slab
and of the sinusoidal grating are the sameε = 5. The structure is embedded in air. The dielectric
permittivity in the region−h/2< z< h/2 is:

ε(x,y,z) =







ε2 = 5, if z> h
(

1
2 − sin(πx

dx
)sin(πy

dy
)
)

ε1 = 1, if z< h
(

1
2 − sin(πx

dx
)sin(πy

dy
)
)

Period and height of the grating are much smaller than the considered wavelength. As a conse-
quence, the dependence of the reflectivity on the azimuthal angleϕ is almost negligible, despite
the absence of the symmetry with respect toϕ .

We calculate the reflection spectra of the structure in four different ways. The results are
shown in Fig. 4.a and Fig. 4.b. The red curve represents the solution obtained with CST Studio
(Frequency Domain Solver). We refer to it as the ”reference solution”. The black dash-dotted
curve represents the reflection from a flat slab with thickness L+ h/2 = 105 nm. One can
see that the reflection from a flat interface deviates significantly from the ”reference solution”.



Fig. 3. (a) Sinusoidal grating on top of the slab with thickness L=100 nm. Height and
periods of the grating areh= 10 nm,dx = dy = 10 nm. (b) Random hilly roughness on top
of the slab with thickness L=100 nm. Periods of the unit cell aredx =dy = 50 nm, maximum
height of the hills ishmax= 10 nm. (c) Multilayered structure with rough interfaces 1-3.

This is especially pronounced for higher energies. The bluecurve corresponds to the multilayer
approach, withM = 6 layers in the sinusoidal region−h/2< z< h/2. The green curve corre-
sponds to the MBC solution (Eq. (10) and Eq. (12)), with optimal parametersα [cm], β [cm2]
andγ [cm].

In Fig. 4 one can see, that MA is in very good agreement with thereference solution for both
polarizations and for all angles of incidenceθ . MBC also is in good agreement. The parameters
α, β andγ of the MBC are independent of the frequency and incidence angle. These parameters
can be found either by fitting to the reference solution, as done in this paper, or by fitting to
experimental reflection/transmission spectra of multilayers.

Now we consider the reflection from the same structure, but composed of anisotropic material
with ε11 = ε22 = 7, ε33 = 9. It should be noted that the application of MBC is very much
simplified in the case of isotropic, or uniaxial crystals (ε11 = ε22 6= ε33). While MA is equally
easy to apply for arbitrary permittivity tensors.

The results of MA and MBC are shown in Fig. 4.c and Fig. 4.d. It can be seen that MA (blue
curve) is in very good agreement with the reference solution(red curve). MBC also show a very
good agreement. Thus the application of MA and MBC to the considered sinusoidal roughness
profile is justified.

5.2. Random hilly roughness

In order to demonstrate that MA and MBC methods are not restricted to sinusoidal approxima-
tion of rough interface, we consider the reflection from the slab with random hills (polygons)
on top, see Fig. 3.b. Maximum height of the hills does not exceedhmax= 10 nm. The roughness
profile is periodic, with periodsdx = dy = 50 nm. The characteristic size of the roughness is
much smaller than the wavelength, therefore the dependenceof the reflectivity on the azimuthal
angleϕ is practically negligible.

As in Sec. 5.1 for the sinusoidal roughness, we consider separately isotropic and anisotropic
materials. The results of MA and MBC for an isotropic material with ε = 5 are shown in
Fig. 5.a and Fig. 5.b. The results for an uniaxial crystal with ε11= ε22= 7,ε33= 9 are shown in
Fig. 5.c and Fig. 5.d. Evidently, a good agreement of MA and MBC with the reference solution
is observed.

If a structure consists of N layers with rough interfaces, then either MA or MBC can be
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Fig. 4. Reflectivity of the structure shown in Fig. 3.a. (a) and (b) correspond to an isotropic
material withε = 5, (c) and (d) correspond to an anisotropic material withε11 = ε22 =
7,ε33 = 9. Red curve - reference solution (CST Studio), black dash-dotted curve - flat slab
with thickness 105 nm, blue curve - multilayer approach (MA), green curve - MBC between
air and slab.

applied to each of the N-1 interfaces. This is demonstrated in the next example.

5.3. Multilayers with rough interfaces

In this final example, we apply MA and MBC to a multilayered structure with rough interfaces.
The structure is shown in Fig. 3.c. Structure is composed of two materials with permittivities
ε1 = 2 andε2 = 7, high index material is on top. Interfaces 1-3 are rough, with random hilly
roughness profiles, as in Fig. 3.b. Roughness of each interface was generated randomly. The
maximum height of the hills does not exceedhmax = 10 nm. The structure is periodic with
periodsdx = dy = 50 nm.

Reflection spectra of a normally incident light is shown in Fig. 6. The red curve corresponds
to the ”reference solution”, obtained with the CST Studio. Some resonances are observed for
energies above 9 eV. The reason is that the size of roughness becomes comparable with the
wavelength. The black dash-dotted curve corresponds to flatinterfaces. The blue curve corre-
sponds to MA withM = 6 layers in the interface regions. The green curve on the plotcorre-
sponds to MBC at each rough interface. One can see that MA and MBC in general demonstrate
a better agreement with ”reference solution”. This is especially pronounced in two regions,
which are marked with arrows in the Fig. 6.

It should be noted that MA and MBC combined with scattering matrix method work very
fast. Calculation of one frequency point of the structure shown in Fig. 3.c requires only about
1 ms with the scattering matrix code and about 1 min with the CST Studio (Frequency Domain
Solver). Calculations were performed on Intel(R) Core(TM)i7 CPU 2.67GHz with 8 GB of
RAM.
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Fig. 5. Reflectivity of the structure shown in Fig. 3.b. (a) and (b) correspond to an isotropic
material withε = 5, (c) and (d) correspond to an anisotropic material withε11 = ε22 =
7,ε33 = 9. Red curve - reference solution (CST Studio), black dash-dotted curve - flat slab
with thickness 105 nm, blue curve - multilayer approach (MA), green curve - MBC between
air and slab.
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Fig. 6. Reflectivity of the structure shown in Fig. 3.c for normally incident light. Permit-
tivities of materials areε1 = 2 andε2 = 7 (on top). Red curve - reference solution (CST
Studio), black dash-dotted curve - flat interfaces, blue curve - multilayer approach (MA) at
interfaces, green curve - MBC at interfaces.

6. Conclusions

We presented modified boundary conditions (MBC) and a multilayer approach (MA) as fast and
efficient numerical methods for the design of layered structures with rough interfaces. These
methods are applicable for arbitrary anisotropic materials. MA and MBC provide a good agree-
ment with the reference solutions for sinusoidal and randomhilly roughness profiles. Combined
with the scattering matrix technique as field solver and an evolutionary strategy as numerical
optimizer these methods reveal a fast way of optimizing 1D photonic structures for various



applications.


