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Blur is an important attribute of human spatial vision, and sensitivity to blur has been the subject of 
considerable experimental research and theoretical modeling. Often these models have invoked 
specialized concepts or mechanisms, such as intrinsic blur, multiple channels, or blur estimation units. In 
this paper we review the several experimental studies of blur discrimination and find they are in broad 
empirical agreement. But contrary to previous modeling efforts, we find that the essential features of blur 
discrimination are fully accounted for by a visible contrast energy model (ViCE), in which two spatial 
patterns are distinguished when the integrated difference between their masked local contrast energy 
responses reaches a threshold value.

Introduction
Like many terms that we take for granted, blur is surprisingly difficult to define. Dictionaries 

typically state that to blur is to render indistinct, usually by smudging or smearing, but sometimes by 
dimming, or through obscuration by fog, by soot, or by a blow to the head. In the narrower technical 
context of vision, optics, and imaging, blurring generally connotes a smearing of an image, through 
convolution with an impulse response of non-zero width, or equivalently through a low-pass filtering.

In this sense, all optical systems, and indeed all imaging systems, exhibit some blur. Over the last six 
decades, it has become commonplace to analyze the early parts of the visual system as an an imaging 
system, incorporating various optical and neural filtering operations. This in turn has led to questions 
about blur in vision: its nature, its magnitude, and its effect on visual tasks such as detection, recognition, 
and localization (Chen et al., 2009; Hamerly & Dvorak, 1981; Hess et al., 1989; Mather & Smith, 2002; 
Pääkkönen & Morgan, 1994; Watt & Morgan, 1983; Westheimer et al., 1999; Wuerger et al., 2001).

The study of blur may also be connected to recent studies on wavefront aberrations of the eye, which 
have led to ever more detailed descriptions of the optical transfer function of the visual system (Thibos et 
al., 2002), and to theoretical connections between optical blur and basic functions of detection, 
discrimination, and acuity (Thibos, 2009; Watson & Ahumada, 2008). These studies generalize the 
concept of blur beyond Gaussian blur, to more complex and realistic blurring functions.

There has also been interest in the role of blur as a visual cue. Blur is a powerful cue to 
accommodation, since it will be minimized when the eye is accommodated at the depth of the viewed 
object (Kruger & Pola, 1986). Likewise, since blur will increase at larger or smaller depths, the depth of 
other objects, or points on the surface, can be sensed by their relative amounts of blur (Held et al., 2010; 
Mather & Smith, 2002). Motion of an object relative to the observer will also blur the image of the object, 
by an amount and in a manner that is characteristic of the objects velocity. This has led to theories of 
visual motion estimation from blur (Barlow & Olshausen, 2004; Burr & Ross, 2002; Geisler, 1999; 
Harrington & Harrington, 1981).

In the context of visual displays there is an applied interest in human sensitivity to blur. Many display 
attributes, such as resolution, pixel shape (Farrell et al., 2009), surface coatings, screen grain (Fiske et al., 
2007), and motion blur (Watson, 2010a, 2010b) will affect the amount of rendered image blur. It is 
essential to understand human sensitivity to blur in order to optimize the engineering and economic trade-
offs in design of these displays. Blur is also a central concern in automated analysis of image quality. For 
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image processing operations such as scaling or compression, it is important to know whether perceptible 
blur has been introduced. In fact, the first direct measurements of blur detection and discrimination were 
made as part of an applied interest in image sharpness (Hamerly & Dvorak, 1981). Since that time many 
“blur metrics” have been devised to assess the sharpness of images (Ferzli & Karam, 2006).

One approach to the study of human perception of blur is to ask observers to make judgments of 
photographic images subjected to blurring or sharpening operations (Field & Brady, 1997; Párraga et al., 
2005; Tadmor & Tolhurst, 1994). However this has not led to simple models, perhaps because the 
statistics of natural images are not stationary.

Alternatively, one can study the perception of blur in a single edge. An edge is a transition between 
two different luminances. When the edge is straight, there is no variation in the dimension orthogonal to 
the edge, and we can consider just the one-dimensional cross section of the edge. In the limiting case of 
an edge with no blur, the transition is a step function. An edge may be blurred by convolving it with a 
blurring kernel. In the experiments discussed here, this is typically a Gaussian with unit area. The width 
of the Gaussian, usually characterized by its standard deviation, is a measure of the amount of blur.

In one classic experiment, an observer is presented with a pair of edges, identical except for their 
respective blurs. One is said to have the “reference” blur, and the other a larger “test” blur, which may be 
considered the reference plus an added blur. The observer is asked to identify the edge with the larger 
blur. Over a series of trials, the reference blur is fixed, while the amount of added blur is varied, so as to 
determine the threshold blur increment, that is, the amount of added blur at which the observer is correct 
some specified percentage of the time. When the reference blur is zero (step edge vs blurred edge), this 
threshold is the absolute threshold for blur detection. When the reference blur is greater than zero, the 
measurement is of blur discrimination. This measurement is repeated for a number of values of the 
reference blur, to produce an empirical function that we will call the threshold vs reference, or TVR 
curve.

A number of models and theories have been constructed to explain the results of blur discrimination 
experiments of this sort. These theories have often assumed explicit estimation of blur magnitude (Watt, 
1988), and have often invoked ad hoc concepts such as “intrinsic blur” (Mather & Smith, 2002; 
Pääkkönen & Morgan, 1994; Watt, 1988). Likewise they have often attributed the form of the TVR curve 
to interaction among multiple channels (Hess et al., 1989; Watt & Morgan, 1984), or complex nonlinear 
contrast normalization schemes (Chen et al., 2009). These ideas will be discussed in more detail below.

The first purpose of this report is to review the several studies that have analyzed blur detection and 
discrimination in this manner. Despite many differences in stimuli and procedures, the various studies will 
be shown to largely agree on the basic pattern of results. The second purpose is to review briefly the 
various theories that have been put forward to account for the data. The third and final goal will be to 
show that a simple model of visible contrast energy detection can account for the essentials of the data, 
and that consequently no additional mechanisms or models are required.

Data
We consider here the data extracted from eight studies of blur detection and discrimination. While 

varying in many details, all employed a similar paradigm. In each, an observer attempted to discriminate 
between two stimuli, one containing an edge (or edges) with some reference amount of blur, and the other 
identical except for a larger test blur. Threshold is quantified as the difference between reference and test 
amounts of blur at some specified percent correct.

In the following sections we describe briefly the stimuli, methods, and data from each study. The 
studies are presented in chronological order, except for (Westheimer et al., 1999), in which only blur 
detection thresholds were measured. Data were extracted from published figures using manual location of 
points in the graphic and subsequent processing of locations by software of our design. To compare these 
diverse sets of data it is necessary to adopt consistent notation and plotting conventions. Here all blur 
measurements are expressed as the standard deviation of a Gaussian, in minutes of arc of visual angle 
(arcmin). Where the actual blur was other than Gaussian, such as a ramp or cosine, it has been converted 
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Hamerly & Dvorak !1981"

Watt & Morgan !1983"

Hess, Pointer & Watt !1989"
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Westheimer, Brincat, & Wehrhahn !1999"

Figure 1. Stimuli used in eight studies of blur detection and discrimination. All stimuli are drawn to scale. Each 
stimulus is surrounded by a 0.25 deg wide margin of our estimate of the background. In each stimulus the blur width 
(standard deviation) is 4 arcmin.
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to the closest Gaussian in a mean square error sense. Our standard plot is what we call the TVR (threshold 
versus reference) curve, that is the threshold blur increment as a function of the reference blur. In most 
plots, threshold and reference axes are logarithmic and are equally scaled. Where present, points with a 
zero abscissa (zero reference blur) are plotted at 0.1 or lower, with a broken x-axis. Where possible, a 
consistent color code is used to identify each study.

From each study, we have derived a summary curve, by averaging over observers or conditions, as 
described in the text. These summaries will ease comparison of data and models.

In Figure 1 we show our reconstructions of the stimuli used in these eight studies. To allow 
comparisons the images are all drawn to a common scale. In each, we embed the stimulus in a 0.25 deg 
wide margin of the background luminance. In many cases there were ambiguities regarding stimulus 
details (e.g. luminance of the background) and in those cases we have made our best inference. In all 
cases we have contacted the authors to confirm general accuracy. Further details on these stimuli will be 
provided in the following sections.
Hamerly & Dvorak (1981)

In this early paper, the authors used a pair of edges, aligned and separated by 12 arcmin (Figure 1). 
Two observers (the authors) and two contrasts (0.333, 0.818) were used. A 2AFC method was used, and 
inspection time was unspecified, and thus assumed to be unlimited. Data are shown in Figure 2. Beacuse 
different reference blur sets were used for the two observers, we have created a mean set by averageing 
linear interpolations of each observers mean, sampled at the union of all reference blurs used. This is 
shown by the gray points in Figure 2. 

The data show a clear decline in threshold with increasing reference blur. This is the beginning of the 
so-called “dipper” shape, though the study does not use reference blurs large enough to show the 
subsequent rise. As will be noted below, the mean thresholds are 2 to 5 times lower than estimates from 
the other studies considered here.

Contrast has a very small effect for one observer, and essentially no effect for the other. The two 
observers differ by, on average, a factor of 2.6. As will be noted below, these thresholds are well below 
those measured in other studies. They also explore a much smaller range of reference blur. As a summary 
set, we have taken the mean of all four data sets.
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Figure 2. Blur discrimination data from (Hamerly & Dvorak, 1981). Green and red indicate different observers; the 
lighter shade indicates the higher contrast. The gray points are a mean summary set derived as explained in the text.

Watt & Morgan (1983)
These authors used a narrow bar (180 x 12 arcmin) containing two edges separated by 90 arcmin 

(Figure 1). The background area outside the stimulus was not specified, but was probably dark, since a 
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caligraphic display was used. Inspection time was unlimited. Contrast was 0.8. Three different edge 
profiles were used: Gaussian, ramp, and cosine. In Figure 3, we show the data for two observers and three 
profiles, all converted to units of equivalent Gaussian standard deviations. 

It is evident that the profile has little effect on thresholds. The results show a dipper shape, with a 
detection threshold around 0.4 arcmin, a minimum threshold of about 0.15 arcmin, at a reference blur of 
around 1 arcmin. As a summary set, we have taken the mean of the two observers for the Gaussian 
profile.
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Figure 3. Blur discrimination data from (Watt & Morgan, 1983). Thresholds for two observers and three edge profiles: 
Gaussian (red and blue), ramp (green, orange), cosine (purple, brown).

Hess, Pointer, & Watt (1989)
This report considered blur discrimination in fovea and periphery, and also manipulated duration, 

edge extent, and contrast. The target was a horizontal edge, vignetted by horizontal and vertical Gaussian 
windows (Figure 1). For the data we use here, inspection time was unlimited, and a three spatial 
alternative procedure was used (three vertically distributed targets, one different, one at the center of the 
screen). Fixation instructions are not described. This project used a much larger range of reference blurs 
than is typical, up to 73 arcmin. In extracting the data from their Figure 2, we omitted the first point from 
observer JSP, as it was about five times larger than comparable results from other studies. There are 
various uncertainties regarding their methods1. We plot their results below in Figure 4. These data again 
show a prominent dipper shape, with a detection threshold of about 0.6 arcmin, and a minimum at a 
reference blur just above 1 arcmin.
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Figure 4. Blur discrimination data from (Hess et al., 1989) for two observers.

In other experiments, these authors found that edge extent has little effect beyond about 30 arcmin, 
and that duration (measured in a 2AFC procedure) had little effect beyond about 60 msec (both measures 
expressed as 1/e Gaussian half-widths). They also found that contrasts above 0.3 produced little or no 
change in thresholds, but that contrasts of 0.05 and 0.02 did produce appreciably higher thresholds. 

Pääkkönen & Morgan (1994)
This report was concerned mainly with the effect of motion on blur discrimination, but included a 

zero motion condition. The target was a narrow bar (20 x 140 arcmin) bisected by a Gaussian edge 
(Figure 1). A 2IFC method was used. The contrast was 0.35, and the duration was 150 msec. Data were 
collected from three observers, and are shown in Figure 5. The dipper is again evident, with results 
similar to those of Watt and Morgan (1983).
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Figure 5. Blur discrimination data from Pääkkönen & Morgan (1994) . Thresholds for three observers.

Wuerger, Owens, & Westland, (2001) 
This study considered blur discrimination in both luminance and chromatic domains. Here we 

consider only the luminance data (Wuerger et al., 2001). Their target was a 1 cycle/deg square wave, 
blurred by a Gaussian, and vignetted by a gaussian with standard deviation of 2 deg (Figure 1). Duration 
was 1 sec, and contrast was 0.1. A 2IFC method was used, and four observers participated. It was not 
possible to extract individual observers from their Figure 1, so we have only extracted the mean, shown 
here in Figure 6. These data again show a dipper. They are similar but somewhat higher than the previous 
two studies.
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Figure 6. Blur discrimination data of Wuerger, Owens, & Westland, (2001). These are means of four observers.

Mather & Smith (2002)
This study is primarily about blur as a cue to depth, but includes blur discrimination thresholds for a 

range of reference blurs and contrasts (Mather & Smith, 2002). The target was a 4.36 deg square 
separated into bright and dark halves by a sinusoidally curving border (2 cycles/image, amplitude = 0.15 
image) (Figure 1). A 2IFC method was used, with two 0.5 sec exposures separated by a 1 sec gap. No 
feedback was given. The interval and remainder of the screen were filled with a luminance equal to the 
mean of bright and dark regions. Five subjects took part but only mean data were shown. Five different 
contrasts were used in separate sessions: 0.1, 0.2, 0.4, 0.6, 0.68, and 0.8. These results are shown in 
Figure 7. 

It is evident that contrast has little or no effect, except at the lowest value of 0.1. The pattern of results 
is similar to the previous studies, and the thresholds are resemble those of Wuerger et al. (2001). As a 
summary set, we have taken the mean of the data from the highest four contrasts, over which thresholds 
differed little.
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Figure 7. Blur discrimination data of Mather & Smith (2002). These are means of five subjects for six contrasts, as 
indicated approximately by the contrast of the points.

Chen, Chen, Tseng, Kuo, & Wu (2009)
This study used a target similar to but larger than Pääkkönen and Morgan (1994), an elongated 

rectangle (640 x 40 arcmin) divided by a single Gaussian edge into light and dark regions (Figure 1) 
(Chen et al., 2009). Contrast was nominally 1, and a 2IFC method was used. Duration was 200 msec, and, 
unique to this study, a random mask filled the rectangle in the interval between the two presentations. One 
focus of the study was to assess effects of mean luminance. The data in Figure 8 show that mean 
luminance has very little effect, above their lowest value of 0.26 cd/m2.In general, the results resemble 
those of Wuerger et al. (2001) and Mather and Smith (2002). As a summary record, we use the average of 
their three highest luminances.
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Figure 8. Blur discrimination data of Chen, Chen, Tseng, Kuo, & Wu (2009) for mean luminances of 0.26 (orange), 
2.58 (blue), 5.16 (green), and 25.8 (red) cd/m2.

Westheimer, Brincat, & Wehrhahn (1999)
This study considered only blur detection (only a zero reference blur was considered), as part of a 

larger study of the effect of contrast on various spatial tasks (Westheimer et al., 1999). The target was 
similar to that of Watt and Morgan (1983), consisting of a single bar containing two edges (Figure 1). The 
separation between the edges was not specified, but it appears from their figure to be similar to the bar 
width, which was 30 arcmin. One of the edges was sharp, the other was a linear ramp. Exposure duration 
was 250 msec. The data are shown in Figure 9.
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Figure 9. Blur detection thresholds as a function of contrast, from Westheimer, Brincat, & Wehrhahn 
(1999). Each color is a different observer. The gray curve is an approximation of the mean, obtained as a 
mean of linear interpolations.

Thresholds for the various observers appear to have been collected at various contrasts, making 
averaging difficult. Instead we have created a linear interpolation (in log-log coordinates) for each 
observer’s data, and averaged these interpolations, as shown by the gray curve. This curve falls rapidly at 
low contrasts, but flattens out at high contrasts. In brief, the effect of contrast on blur detection thresholds 
saturates rapidly at higher contrasts. As a summary measure to compare to other results, we have taken 
the value of the mean curve at a contrast of 0.2 (0.516 arcmin).
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The authors state that “in most situations a fixation circle 45 arcmin in diameter was shown in the 
center of the field during the interstimulus interval.” If in fact this fixation target was shown in this 
particular experiment, it does not indicate where in the blur stimulus the observer was looking. Wherever 
they where fixating before the presentation, the 250 msec presentation did not allow enough time for the 
observer to fixate both edges, so it is unclear how these data relate to sensitivity at the point of fixation.
Discussion of data

The summary data for the various studies are collected together in Figure 10, and identified by color 
and abbreviated citation. They show considerable variation. This is not altogether surprising, given the 
heterogeneity of methods employed. Some of the parameters of the methods are enumerated in Table 1. 
Below we discuss variations among studies and some possible explanations.
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Figure 10. Summary data sets from eight studies of blur discrimination. Each set consists of data averaged over 
observers and/or luminance or contrast.

Study Method Duration 
(msec)

Blur Edge extent 
(arcmin)

Contrast Mean
(cd/m2)

Observers

Chen 2IFC 200 Gaussian 40 1 0.26, 2.58, 
5.16, 25.8

4

Hamerly 2AFC ! ? Gaussian 54 0.33, 0.82 86 2
Hess 3AFC, 2IFC ! Cosine 39 0.3 500 2
Mather 2IFC 500 Gaussian 262 0.1, 0.2, 

0.4, 0.6, 
0.68, 0.8

37.5 5

Pääkkönen 2IFC 150 Gaussian 20 0.35 43.7 3
Watt 2AFC ! Gaussian, Ramp, 

Cosine
12 0.8 292 2

Wuerger 2IFC 1000 Gaussian 240 0.1 40 4
Westheimer 2AFC 250 Ramp 30 various 5

Table 1. Methods and parameters used in eight studies of blur detection and discrimination.

The data for Hamerly and Dvorak (1981) are well below all the others. One possible explanation is 
that their method, uniquely, involved side-by-side comparison of close, aligned edges (see Figure 1). This 
does not seem sufficient explanation, however. Because they are so discrepant we do not generally 
consider them in subsequent discussions.

The remaining discrimination data are similar in form. All show a characteristic “dipper” shape, in 
which the lowest threshold is found not at a reference blur of zero but at around 1 arcmin. Beyond the 
dipper minimum, thresholds rise in an approximately linear fashion with reference blur. However the 
dippers for the various studies vary somewhat in vertical and/or horizontal position.  
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Three studies (Chen, Wuerger, Mather) cluster together, with thresholds somewhat higher than the 
other studies, and with an absolute threshold of close to 1 arcmin. It is suggestive that these are three of 
the four studies that used a 2IFC method. It is plausible that 2AFC side-by-side comparison, as used in 
most of the other studies, would yield lower thresholds. However one study that used 2IFC (Pääkkönen) 
yields thresholds about a factor two lower than this cluster. No other aspect of that study would obviously 
lead to lower thresholds.

Within this cluster, there are some curiosities. The thresholds of Chen are perhaps the highest, even 
though they used a contrast of 1, while Wuerger used a contrast of 0.1. However Chen employed a 
random mask in the interval between presentations, which may have made comparisons more difficult, 
while Wuerger used a very large target, with multiple edges, which may have made discriminations easier.

Outside of the cluster (and excepting Hamerly), the thresholds of Watt are the lowest. This may be 
partly attributed to an indefinite exposure duration, and simultaneous (but not aligned) 2AFC comparison 
of the two edges (Figure 1). The absolute threshold of Westheimer, who also used 2AFC,  is close to that 
of Watt. Because of uncertainties regarding the methods of Hess, we do not comment further on those 
data, except to note that they used a simultaneous comparison (3AFC) method and the thresholds are 
similar, at least at higher reference blurs, to those of Watt.

To roughly summarize all of these data, we identify two primary stimulus effects. First, the effect of 
reference blur, which is to yield a dipper-shaped function, and second, the saturating effect of contrast. 
Additional stimulus effects, that must be considered for precise predictions, are method (2AFC vs 2IFC), 
duration, mean luminance, edge extent and number of edges, and presence of a mask between intervals in 
the 2IFC method.

Models
A number of proposals have been put forward to explain the blur discrimination data. In this section 

we will review these briefly, and in one case estimate model parameters. We will conclude with a 
discussion of the shortcomings of these models.

Watt & Morgan (1983)
Watt and Morgan (1983) considered four explanations for blur discrimination performance. The first, 

maximum rate of luminance change, they reject as not showing the proper relation to contrast and 
pedestal variations. The second, less well defined explanation, is a "Fourier transform model," in which 
blur discrimination is based on frequency discrimination. While no formal model is constructed, this, too, 
they reject on qualitative empirical grounds. The third model, also described only in qualitative terms, is 
the range of spatial filters reporting zero crossings. They note that while increasing blur will attenuate 
high frequency filters more than low, the range will be unaltered. The final explanation offered assumes 
that observers directly estimate edge width as the distance between stationary points (peaks and troughs) 
in the (one dimensional) second derivative of the image. By itself this is a model for blur estimation. To 
this they add the notion that location accuracy will be proportional to the square root of the blurring extent  
and the square root of contrast, and that comparison of locations is governed by Weber’s law. This model 
yields a power law with an exponent of 1.5 between base blur and increment blur, but does not yield a 
dipper, so they assume an arbitrary additional process limiting accuracy at very small base blurs.

Watt & Morgan (1984)
Here the authors proposed a model (MIRAGE) in which the waveform is processed a range of 

bandpass filters and each output is split into positive and negative parts. The positive and negative signals 
from the several filters are separately combined. Each zero bounded region is then marked by its mass and 
centroid. The edge width is then the distance between centroids (Watt & Morgan, 1983).

Watt (1988)
This theoretical treatise introduced the Weber model that will be analyzed more extensively below. It 

assumes that observers make internal estimates of the blur of the two edges. In each case this is the result 
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of quadratic combination of external and filter blur magnitudes. In addition it is assumed that the 
detectable internal difference is proportional to the smaller internal blur (that due to the reference). From 
this, a prediction is derived of the threshold blur increment (equivalent to our Equation 4 below, with ! = 
1). To this simple Weber model is added a second increment, dependent upon contrast, that reflects the 
accuracy with which individual blurs can be estimated. The final prediction is that threshold is the 
quadratic sum of the two increments. A good fit to data from is shown, but parameters are not given. For 
reference, and converting to the notation of this paper, the resulting formula for the TVR is 

a ! r " !Ω2 " 1" Β2 % r2 Ω2
2

%
!r2 % Β2"3#2 kL

2

c Β3
 (1)

where kL is a parameter.

Hess, Pointer & Watt (1989)
Hess, Pointer & Watt (1989) first considered an array of Gabor filters, with sensitivities governed by 

the overall contrast sensitivity function, with outputs subject to an accelerating nonlinearity. The energy 
response of a filter of a particular center spatial frequency to changes in the blur of an edge was then 
computed to determine the threshold blur increment. The overall threshold was assumed to be that due to 
the most sensitive filter. They later abandon this model, as inconsistent with their data from phase-shifted 
edges, and resort to a MIRAGE model (Watt, 1988; Watt & Morgan, 1984).

Pääkkönen & Morgan (1994)
These authors adopt the Weber model (see below) as introduced by Watt (1988), but they extend it to 

incorporate a motion blur term as well. They provide a formula for the threshold as a function of 
reference blur. Their fit to data (including both static and moving edges) estimated an intrinsic spatial blur 
of about 0.5-0.7 arcmin, and a Weber constant of about 1.11 to 1.16.

Wuerger, Owens & Westland (2001)
Wuerger et al. (2001) discuss the Weber model (see below), in its simplified form in which ! = 1, find 

a good fit, and estimate parameters for their conditions. For luminance blur at 0.1 contrast, they found 
internal blur " of about 1.2 arcmin, and a Weber constant # of about 1.2. They also consider a model 
based on contrast sensitivity, which is in many respects the same as the visible contrast energy model that 
we discuss below. They compute amplitude spectra of the two blurred edges to be distinguished, weight 
by the contrast sensitivity function, inverse Fourier transform, take their difference, compute the RMS 
contrast of the result, and divide that by the RMS contrast of the filtered reference image. This formula 
differs in several respects from ours, but the most significant difference in this context is that their model 
lacks a parameter to control the contrast normalization. Some details of their model are not clear from the 
description. In any case, they state of this model "For higher reference blurs, a single channel model does 
not predict blur difference thresholds." It is unclear why their formulation fails to account for the blur 
discrimination function, while ours succeeds, as shown below.

Chen, Chen, Tseng, Kuo, & Wu (2009)
Chen et al. (2009) developed a model consisting of an array of odd-symmetric difference-of-Gaussian 

receptive fields of different scales. In the frequency domain, these correspond to filters tuned to different 
spatial frequencies. The response of each receptive field to a given edge is half-wave rectified, raised to a 
power, and divided by an inhibitory or normalizing term that is a weighted sum of the responses of all 
receptive fields, half-wave rectified and raised to a possibly different power. This final quantity is 
compared for the reference and test edges, and threshold occurs when their difference is 1. In fitting the 
model, parameters estimated include the receptive field gain and scale factor, the two nonlinear 
exponents, the sensitivity to inhibition, and an additive constant that is part of the divisive inhibition term. 
The model provides reasonable fits to the data. Because they are intermixed, it is difficult to determine 
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whether it is the intensity nonlinearities (the exponents and divisive inhibition) or the spectral changes 
that are responsible for the success of the model.

Weber Model
Here we define and fit one particular model, which we call the Weber model. We explore its behavior 

because it has been widely adopted. In particular, it is used in the studies by Watt (1988), Pääkkönen & 
Morgan , Wuerger, Owens & Westland (2001), and Mather & Smith (2002). 

The Weber model assumes that two blurred edges will be discriminated when the larger perceived 
blur $2 is a factor # times the smaller perceived blur, $1, raised to a power !,

! 2 ="!1
#  (2)

Note that in a traditional Weber model, the exponent ! is 1. Here we allow it to vary. As we shall see, 
values slightly greater than one fit the data better than one, and yield a slight upward concavity of the 
TVR curve. Also in a traditional Weber model, the so-called Weber fraction is # - 1. Although any 
consistent measure of blur could be used, here we assume blur is measured by the standard deviation of 
the equivalent Gaussian blur.

Each perceived blur is assumed to be the combined result of an “intrinsic blur” ", and the external 
image blur. Because the blurs are conceived as the result of successive convolutions, the blurs combine as 
the square root of the sum of their squares. In the case of the smaller reference blur, r, this result is

!1 = r2 + " 2  (3)

The larger test blur is the sum of the reference blur r and an increment a, which yields a perceived 
blur of

! 2 = r + a( )2 + " 2  (4)

From these expressions, it is possible to solve for the increment a as a function of r, which is an 
expression for the TVR curve,

a = !r + " 2 # 2 + r( )$ ! # 2  (5)

In the simpler case in which ! = 1, the absolute detection threshold is

a0 = ! " 2 #1  (6)

the minimum occurs at

rmin =
!
"

 (7)

and has a value of

amin = ! " # 1
"

$
%&

'
()  (8)

Qualitatively, viewed in the log-log TVR plot that we have used for data above, the parameters of this 
expression have the following effects. The intrinsic blur " shifts the early part of the curve vertically, 
without much effect on the portion beyond the dip. The Weber ratio # shifts the entire curve vertically. 
Increasing ! lowers the early part of the curve, and lifts the later part of the curve. It also increases the 
upward curvature of the later part of the curve.
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As one illustration of the model, we show predictions of Equation 5 in Figure 11, along with the 
ensemble of data. We have not fit the model, merely picked a set of parameters that roughly resemble the 
consensus data. To further illustrate the parameter effects, we have provided an interactive version of 
Figure 11. The reader can manipulate the values of the three parameters. This demonstration uses the 
Computable Document Format (CDF) and requires a plugin or application, which are available for free 
from Wolfram Research, Inc.
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Figure 11. Predictions of the Weber model (black dashed line) along with summary data. Weber model parameters: # 
= 1.149, " = 1, ! = 1.02.

We have fit this model to the mean data of the seven studies that collected TVR curves. Each fit 
minimized RMS error in the log10 domain. Parameter estimates are shown in Table 2, along with RMS 
errors. We show estimates and error for both ! free and ! = 1. In Figure 12 we show plots of individual 
data sets and fitted curves for the case of ! free. Considering the RMS values, and the plots in Figure 12, 
it is evident that the model fits quite well to the seven data sets.

Study " # ! RMS " # RMS 
(log10 
arcmin)

Chen 1.2 1.18 1.05 0.0428 0.937 1.29 0.0547

Hamerly 0.389 1.07 1 0.0711 0.389 1.07 0.0711

Hess 1.71 1.06 1.03 0.0337 1.11 1.14 0.0737

Mather 1.54 1.13 1.04 0.0397 1.23 1.21 0.0457

Pääkkönen 0.78 1.13 1.01 0.036 0.744 1.14 0.0361

Watt 1.56 1 1.06 0.0552 0.607 1.11 0.0982

Wuerger 1.91 1 1.13 0.0449 1.17 1.21 0.0522

Table 2. Estimated Weber model parameters and RMS error for seven studies. Values are shown for the case of ! 
free and ! = 1.

Looking at the differences between ! = 1 and ! free, we see that allowing ! to vary lowers the the 
error substantially only in those cases where large reference blurs are used. This is expected, since the 
effect of ! > 1 is to bend the curve upward at higher reference blurs.
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Considering the parameters for ! free, the intrinsic blur parameters vary between 0.39 (Hamerly) and 
1.91 arcmin (Wuerger), and reflect the large variation in absolute sensitivity in the data. The Weber ratios 
vary between 1 and 1.18. Values of ! vary between 1 and 1.13. Because the three parameters are 
somewhat correlated in their effects, it is difficult to interpret absolute values for the various parameters. 
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Figure 12. Fit of the Weber model to mean data of seven studies of blur discrimination. Text in each panel indicates 
the study and estimated parameters, as well as the RMS error.
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When ! = 1, values of " are generally, sometimes substantially lower, while values of " may be 
substantially different, sometimes higher, sometimes lower. When ! = 1, the parameters are less 
correlated, and absolute values may have more meaning. With the obvious exception of Hamerly, the 
values of " are near to 1, and the values of # are around 1.18.
Objections to the Weber Model

While it provides a reasonable description of empirical blur discrimination performance, there are a 
number of objections to the Weber model. The first is that it relies on a notion of “perceived blur,” but 
provides no suggestion of how that should be computed from the luminance image. In effect, it assumes 
that the observer directly and perfectly measures the actual image blur (r + a), and then combines this 
with a constant intrinsic blur ("), to obtain perceived blur ($). The lack of an explicit algorithm to 
compute perceived blur from the image renders this model incapable of dealing with edges with non-
Gaussian blur, or with changes in contrast.

This leads to the second objection, that the model cannot account for the variations in blur 
discrimination performance  with contrast (Westheimer et al., 1999). As we have noted (Figure 9) contrast 
has little effect at higher contrasts, but an almost a linear effect at low. Watt (1988) augmented the basic 
Weber model with an effect of contrast (Equation 1), but in our hands it has not provided a good account 
of both TVR curve and contrast data (Figure 9).

A third objection is that the model appears to introduce a new, ad hoc, concept to early spatial vision: 
intrinsic blur. How is this distinct from the filtering imposed on the luminance image by the spatial 
contrast sensitivity function? If it is the same, why are its parameters estimated independently from the 
blur discrimination experiment, rather than drawn from the CSF? And if it is the same, why is it generally 
treated as Gaussian blur, when the CSF is rarely (and poorly) described as a Gaussian?

A final and related question is whether the Weber model is necessary? If the main effects of blur 
discrimination can be accounted for by existing, general, theoretical formulations, then there is no need to 
construct a special ad hoc model for the case of blur discrimination. As we will argue in the next section, 
such a model does exist in the form of visible contrast energy discrimination.

Visible Contrast Energy Discrimination
In the previous section we questioned whether a model designed uniquely to deal with blur 

discrimination was necessary, or whether the results could be accounted for by existing general models of 
contrast discrimination. In this section we describe two such models. The first is particularly simple, and 
is presented to show that the essentials of the TVR curve are a consequence of the nature of difference 
signal and the contrast sensitivity function alone. In the second model, we add a small amount of 
complexity, in the form of local contrast and masking by local contrast energy, in order to better account 
for the saturating effect of contrast on blur discrimination. We call these two models ViCE (Visible 
Contrast Energy) and ViCEs (ViCE simplified).

Simplified model (ViCEs)
In this model we assume that two blurred edges are discriminated when the contrast energy of their 

difference, after filtering by the contrast sensitivity function (CSF), equals a criterion value. In this 
derivation, we make use of a canonical function, which we call a unit Gaussian. In the space domain, a 
unit Gaussian with positive scale s is given by

G x, s( ) = 1
s

exp !" x2

s2

#
$%

&
'(

  . (5)

This has a maximum of 1/s, and an integral of one. The scale s is an alternative to the standard deviation 
as a measure of the Gaussian width. The two are related by
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! =
s
2"

  . (6)

A unit Gaussian in the frequency domain is given by

 
!G u, s( ) = exp !" s2u2( )   . (7)

This has a maximum of 1 and an integral of 1/s. It is the Fourier transform of G(x,s). An attractive feature 
of this parameterization of Gaussians is that the Fourier transform of a Gaussian of scale s degrees is a 
Gaussian of scale 1/s cycles/degree.

An ideal unit contrast edge can be represented by the sgn (sign) function. The reference and test 
blurred edges can be represented by convolution with Gaussians of scale r%, and r%  + a% , respectively:

G x, !r( )" sgn x( ) , G x, !r + !a( )" sgn x( )  . (8)

We use primes to indicate that the quantities represent scales, converted from the corresponding standard 
deviations by Equation 6. Note that the two edge blurring Gaussians differ in width, but both have the 
same unit area. 

We represent the CSF, in the space domain, as a difference of Gaussians (DoG), with center scale &, 
and surround scale ' , with a surround weight of (, and gain ). The parameter ( lies between 0 and 1, and 
represents the ratio of areas of the two Gaussians, 

! G x,"( )# $ G x,%( )&' ()    . (9)

To compute the contrast energy difference between the two blurred edges, we convolve each with the 
CSF, subtract the results, and then square and integrate the difference. Because convolution is linear, we 
can rearrange terms and subtract the edge blurring kernels first, followed by convolution with the ideal 
edge and the CSF. Including the edge contrast c, the  visible contrast energy difference can thus be written 
as

V = c2! 2 G x, "r( )#G x, "r + "a( )$% &'( sgn x( )( G x,)( )# * G x,+( )$% &'
2

#,

,

-  (10)

According to Plancherel's Theorem, a function and its Fourier Transform have equal energy. Thus 
Equation 10 can be re-written by Fourier transforming the elements within the absolute value. The unit 
Gaussians transform to unit Gaussians, and the sgn function transforms to an imaginary hyperbola, and 
convolutions transform to multiplications, giving us

 
V = c2! 2 !G u, "r( )# !G u, "r + "a( )$% &' (

#i
)u

( !G u,*( )# + !G u,,( )$% &'
2

#-

-

.  (11)

Note that the difference of Gaussians on the right now represents a CSF in the frequency domain. The 
parameter (, introduced above, determines the attenuation at low spatial frequencies.

The steps in this derivation are also illustrated in Figure 13, which shows them in the form of a 
graphic equation. The first row shows the elements of the model in the space domain, the second row 
shows them in the Fourier domain. The final row shows that the final result is the energy of the product of 
two functions, one the difference of the two blur spectra, and the second the product of the CSF and the 
hyperbola.
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Figure 13. Graphic representation of the derivation of the simple version of the visible contrast energy model. The first 
row shows blurring Gaussians (left), step edge (center), and difference-of-Gaussians receptive field (right). The 
second row shows these elements after Fourier transformation. In the third row, we show that the final result is the 
energy of the product of two functions, one the difference of the two blur spectra, and the second the product of the 
CSF and the hyperbola. 

A convenient and remarkable feature of this model is that the integral has a solution, which simplifies 
the calculation of predictions. For reference, we provide it here. In this expression, a´, r´, &, and ' are 
Gaussian scales expressed in degrees, and V is the visible contrast energy:

V ! "
1
Π

2 c2 Γ2 ! 2 Λ2 Θ2 ' "r(#2 ' 2 Φ2 ' "r(#2 "
2 Λ Θ2 ' Φ2 ' 2 "r(#2 " 2 Λ2 2 Θ2 ' "a(#2 ' 2 a( r( ' 2 "r(#2 '
4 Λ Θ2 ' Φ2 ' "a(#2 ' 2 a( r( ' 2 "r(#2 " 2 2 Φ2 ' "a(#2 ' 2 a( r( ' 2 "r(#2 '

2 Λ2 Θ2 ' "a( ' r(#2 ' 2 Φ2 ' "a( ' r(#2 " 2 Λ Θ2 ' Φ2 ' 2 "a( ' r(#2 $
        (12)

In the Visible Contrast Energy model, a signal is detected when the energy V = 1. In order to generate 
predictions for this model, we require values for the parameters &, ', ), and (. We have obtained these 
values through an approximate fit to a set of eleven contrast thresholds for Gabor functions from the 
ModelFest experiment (Carney et al., 2000; Watson & Ahumada, 2005). All of these targets employed a 
Gaussian aperture with a standard deviation of 0.5 deg. The first target, with a nominal spatial frequency 
of 0, was actually a simple Gaussian, with no sinusoidal modulation. That target is useful for estimating 
the sensitivity to very low spatial frequencies.

In this fitting procedure we are aided by the fact that the response of this model to a Gabor target also 
has a closed form solution (Appendix A). Because the DoG CSF falls much more rapidly than the human 
data, we have elected to omit the highest frequency Gabor (30 cycles/deg) from the fit. The result of this 
fit is shown in Figure 14. The estimates obtained were: ) = 160.05, ( = 0.7329, & = 2.456 arcmin, ' = 
24.75 arcmin.2
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2 Watson and Ahumada (2005) also fit a Visible Difference Contrast Energy model employing a DoG CSF 
to the complete set of ModelFest stimuli, and published the estimated parameters (line 18 of Table 5). 
Converting to Gaussian scales, we obtain & = 2.20027 arcmin, and ' = 25.2396 arcmin, and ( = 0.76, and 
) = 271. The values are similar to those obtained here, but the gain is larger. However, the model in 
Watson and Ahumada (2005) was two-dimensional, and included a Gaussian spatial aperture, an oblique 
effect, and two-dimensional CSF, all of which would entail a larger gain. 
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Figure 14. Fit of the simplified visible contrast energy model (ViCEs, red) to contrast thresholds for ModelFest Gabor 
targets (blue). The last point, at 30 cycles/degree, was not included in the fit.

Using the estimated parameters, for each value of reference blur r we can solve for the value of added 
blur a that yields V = 1. A result is shown in Figure 15 for an edge contrast of c = 0.2. This figure shows 
that the simplest visible contrast energy model, with no adjustment of parameters, predicts the essential 
features of the blur discrimination TVR function: the absolute threshold, the dipper, the location of the 
dip, the magnitude of the dip and the rise at higher reference blurs.
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Figure 15. Predictions of the simple Visible Difference Contrast Energy model (black dashed line and black point), 
along with mean data from eight studies.

To allow the reader to explore the effects of the various model parameters, we provide an interactive 
version of Figure 15 that allows modification of the parameters. This demonstration shows that, in the 
log-log plot, ) generally shifts the predictions vertically, & vertically shifts the portion of the curve to the 
left of the dipper, ' vertically shifts the portion to the right of the dipper, while ( controls the slope of the 
curve to the right of the dipper. In the following section we will provide a general explanation for these 
behaviors.

As noted in Figure 13, the visible contrast energy due to a pair of blurred edges is ultimately the 
product of the spectrum of the difference between blurring kernels, and a fixed filter that is the CSF 
weighted by a hyperbola. In Figure 16, we show this difference spectrum (blue curve) for a fixed value of 
a (0.5 arcmin) and several values of reference blur r. This difference spectrum, multiplied by the filter 

Journal of Vision (2011) 5, 1-xxx http://journalofvision.org/11/5/x/ 18

doi:10.1167/11.5.x Received March 30, 2011; published x x, 2011 ISSN 1534-7362 © 2011 ARVO

http://journalofvision.org/5/1/1/
http://watson-jov-blur-02.cdf
http://watson-jov-blur-02.cdf
http://journalofvision.org/5/1/1/


(orange curve) and squared, is the dashed curve, and it is the integral of this (the gray area) that must 
equal 1 at threshold. When r is zero, the difference spectrum is restricted to high spatial frequencies, and 
little of it passes through the filter. When r = 1 arcmin, the difference spectrum is concentrated at middle 
frequencies, and much more passes through the filter. Hence a smaller a is required to reach threshold. As 
r increases to 8, the difference spectrum moves to still lower frequencies, where sensitivity is higher. But 
because the width of the blur spectra (red and green) are inversely related to their kernel widths, their 
width difference diminishes, as does the width and  magnitude of the difference spectrum. Hence a larger 
a is required to reach threshold. A CDF demonstration is also provided here to allow the reader to explore 
other values of r, a, and model parameters.
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Figure 16. Behavior of the simple Visible Contrast Energy blur discrimination model for a fixed value of a (0.5 arcmin) 
and three values of r (0, 1, 8 arcmin). The elements are: spectrum of smaller and larger blurs (red and green); their 
difference (blue);  the product of edge spectrum and the CSF (orange); the difference spectrum after filtering and 
squaring (dashed). The integral of the dashed curve is the contrast energy, and must equal 1 at threshold. In this 
figure c = 0.2, and default model parameters were used. Orange and black curves are amplified by 4 and the orange 
curve does not reflect either contrast or CSF gain.

The predictions in Figure 15 show that the essential features of human blur discrimination, in 
particular the dipper shape of the TVR and its vertical position, are a direct consequence of the contrast 
sensitivity function and contrast energy detection. We do not claim that the model provides a perfect fit to 
any of the several sets of data, and indeed we have not tried to optimize the fit of the model. What we do 
claim is that no special mechanisms or concepts, such as “intrinsic blur,” are required to explain these 
essential features. It may well be that additional mechanisms will be required to account for all the 
features of the data, but those mechanisms should only be called upon to explain the small remaining 
errors in the predictions. Put another way, the effects due to the inescapable effects of the CSF and 
contrast detection should be discounted first before any further modeling is applied.

One effect that is not accounted for by the simple model is the effect of contrast. In Figure 17 we have 
reproduced the data of (Westheimer et al., 1999), which show that contrast has a nearly linear effect at 
low contrasts, and almost no effect at high contrasts. The cyan dashed curve in this figure shows the 
predictions of the simplified visible contrast energy model (ViCEs) discussed above. The curve has been 
arbitrarily shifted down by a factor of two, to match the mean data (gray curve) at low contrasts. The 
vertical shift is justified, since we do not know the precise gain expected for the stimulus and conditions 
used by these authors.  While the gray and cyan curves are well matched at low contrasts, they depart 
sharply at contrasts above about 0.2. In short, the data show more saturation at high contrasts than does 
the model. To obtain a more accurate fit, it will be necessary to develop a more complex visible contrast 
energy model that includes contrast masking. That will be done in the next section.

It is interesting that while the simple model does not exhibit sufficient saturation at the highest 
contrasts, it does show some saturation even at low contrasts. Note that contrast energy is proportional to 
contrast squared, but that the blur thresholds decline with contrast at a rate that is less than linear. This 
illustrates that the relation between threshold blur and contrast energy is itself nonlinear.
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Figure 17. Predictions of the simple visible contrast energy model (cyan curve) for absolute blur detection thresholds 
as a function of contrast. Also shown are the individual data from (Westheimer et al., 1999), along with an average 
(gray curve).

Model with Local Contrast and Masking (ViCE)
In this section we develop a slightly more complex model of visible contrast energy detection. It 

differs from the previous model in four respects: 1) an explicit computation of local contrast, that induces 
a particular CSF, 2) a different form for the center mechanism of the CSF, 3) an explicit local contrast 
masking operation, and 4) energy is summed only over a restricted spatial extent.

Because this is a general model of pattern discrimination, we develop it here in terms of the two 
arbitrary luminance waveforms to be discriminated, l1 and l2. Although it may be generalized to two 
spatial dimensions, we describe it here in only one dimension, which is sufficient to treat discrimination 
of one-dimensional edges.

We first compute a measure of the space-time local luminance. The theory here is that the early visual 
system adapts, over space and time, to a measure of the luminance in a local spatial neighborhood, and 
over an interval of past time. When an observer is presented a target, the adapting luminance can be 
regarded as a mixture of the current target luminance, and the luminance that preceded the presentation. If 
we write L for the target luminance waveform, and L0 for the preceding luminance waveform, then the 
space-time average luminance can be approximated by La

La x( ) = Hs x( )! "L x( ) + 1#"( )L0 x( )$% &'  (13)

where * is a measure of the degree to which complete adaptation to the target has transpired. Although * 
should be a function of time, we imagine it to be slowly varying, at the time that observers must respond, 
or by the time the target is extinguished, so we regard it as a constant here. The mixture of the two 
luminance waveforms is convolved with a kernel Hs (the “surround” kernel) that represents the spatial 
window over which the adapting average is estimated. The kernel has unit area, so that it computes a 
weighted average.

We next convert the luminance waveform into a local contrast signal. This is done by first convolving 
the luminance by a “center” kernel Hc , also with with unit area, that reflects optical and perhaps neural 
blurring.  From this is subtracted the local average, which also divides the result,
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C x( ) = Hc x( )! L x( ) " La x( )
La x( )

=
Hc ! L x( )

La x( )
"1  . (14)

In many cases, the prior luminance waveform is a constant L0, in which case

C x( ) = Hc x( )! L x( )
"Hs x( )! L x( ) + 1#"( ) L0

#1  (15)

For the center kernel, we use a hyperbolic secant with a scale & deg,

Hc x( ) = 1
!

sech " x
!

#

$
%

&

'
(  . (16)

Later we will show that this provides a better fit to the high frequency decline of the human CSF than 
does a Gaussian.

For the surround kernel, we use a unit Gaussian with scale ' deg,

Hs x( ) = G x,!( ) = 1
!

exp "# x
!
$
%
&

'
(
)

2$

%
&&

'

(
)) . (17)

Masking is accomplished by dividing the local contrast signal by a measure of the mean local contrast 
energy. This is mean is computed by first dividing the local contrast signal by a masking threshold + in 
units of contrast (0 < + < 1), squaring to compute energy, and then convolving with another Gaussian 
kernel Hm, with scale , degree, that determines the neighborhood over which the energy is integrated. 
Here we set , = 10/60 degree. Finally, we add one to the result, and take the square root, to yield the 
masking waveform, which then divides the contrast waveform, to yield the masked contrast M

M x( ) = C x( )
1+ Hm x( )! C x( ) " 2

  . (18)

This is similar to a model developed by (Ahumada et al., 2006) in a study of symbol discrimination. It 
also resembles so-called normalization models of masking and contrast gain control (Heeger, 1992; 
Watson & Solomon, 1997). Note that the addition of 1 means that there is no masking at small contrasts, 
and that the threshold + determines the approximate contrast at which masking begins to take effect.

The final step in the model is to compute the square root of the energy of the difference between 
visible masked contrast waveforms, M1 and M2 that result from luminance waveforms L1 and L2

! = " px

#1
2 Max hp $ m1 # m2

2( )%
&

'
(

1
2

 (19)

where ) is a gain parameter, Hp is a Gaussian pooling kernel with scale - deg, and px is the width of one 
waveform sample in degrees (this assumes a discrete sampled representation of the waveforms). The 
pooling kernel determines the area over which the energy is pooled. Based loosely on estimates from 
similar models fit to the ModelFest data, we set - = 1 deg. The Max operator returns the maximum of a 
waveform. Several of the steps involved in this model are illustrated in Figure 18.

While appearing rather different, this is in fact quite close to the simple model discussed earlier. The 
primary differences were noted above. One additional difference is that here we take the square root of 
the energy. Since threshold is defined as when this quantity equals 1, this difference has no practical 
import.

To determine the parameters of this model, we again make use of the ModelFest Gabor data discussed 
above (Figure 14). We obtain predictions using the one-dimensional profile of the Gabor as the luminance 
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waveform for l1, and a constant waveform of the background luminance to create l2. The result of this fit 
is shown in Figure 19.  The estimated parameters are: & = 2.766 arcmin, ' = 21.6 arcmin, ) = 217.65, * = 
0.772. Note that in this case (unlike Figure 14) we make use of the highest frequency Gabor, and that the 
fit is considerable better, showing that the hyperbolic secant function is a much better representation of 
the center mechanism than the Gaussian.
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Figure 18. Calculation of visible contrast energy in the ViCE model. In this example, c = 0.7, r = 1 arcmin, V =!3. a) 
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Figure 19. Contrast thresholds for Gabor targets from the ModelFest study (blue) and from the best fitting version of 
the visible contrast energy model (red). The separated point is for a Gaussian target.

Watson and Ahumada (2005) also fit a Visible Contrast Energy model employing a Hyperbolic Secant  
(sech) minus a Gaussian CSF to the complete set of ModelFest stimuli. and published parameter estimates 
(line 13 of Table 5). Converting to scales, their estimates were # = 2.758 arcmin, and $ = 18.76 arcmin, 
and % = 0.78, and & = 329.9. The values are similar to those obtained here, but the gain is larger. However, 
the model in Watson and Ahumada (2005) was two-dimensional, and included a Gaussian spatial 
aperture, an oblique effect, and two-dimensional CSF, all of which would entail a larger gain. 

With these parameters we are now able to simulate the TVR curve, and the effect of contrast. The 
TVR curve for the model and a stimulus of contrast 0.2 is shown in Figure 20. As with the simple model 
discussed earlier, we see that the visible contrast energy model, predicts the essential features of the TVR 
curve: the absolute threshold, the dipper, the location of the dipper, and the rise with larger reference 
blurs.
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Figure 20. Blur discrimination thresholds for the masked visible contrast energy model (dashed black curve). Also 
shown are mean data for eight studies.

We do not make any attempt to fit the model to any particular data set; as we have seen, they employ 
a broad range of targets, contrasts, durations, and psychophysical methods. The import of this figure is to 
show that, as with simple visible contrast energy model, the essential features of blur discrimination are 
predicted by visible contrast energy detection.
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On possible discrepancy between model and data is that the data appear to rise, at large reference 
blurs, more rapidly than does the model. As noted above in the context of the simple visible contrast 
energy model, this rise is governed by the sensitivity to low spatial frequencies. This sensitivity is 
governed by the surround scale parameter, and by the parameters ( or *. Elsewhere we have suggested 
that experimental artifacts in ModelFest may have exaggerated sensitivity to large Gaussian targets, 
artificially elevating sensitivity at low frequencies (Ahumada & Scharff, 2007). Since we used these data 
to estimate model parameters, this may explain the deviation at large reference blurs.

The effect of contrast is shown in Figure 21 along with the data of (Westheimer et al., 1999). Here we 
have made one adjustment to the model parameters: the gain has been increased by 2.4, in order to match 
the generally lower thresholds obtained in their particular study (see Figure 11). The addition of the 
masking process causes the predicted thresholds to saturate with contrast, as do the empirical thresholds, 
yielding a better fit to the data (compare to Figure 17). In this figure the value of the masking threshold is 
+ = 0.3. We did not attempt a precise estimate of this parameter, but values of 0.2 and 0.4 produced 
noticeably worse fits. The model may deviate from the data at the very lowest contrasts, possibly because 
at these very low contrasts, for human observers, the edge location becomes uncertain.
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Figure 21. Blur discrimination thresholds for the masked visible contrast energy model (dashed cyan curve). Also 
shown are mean data for eight studies.

In summary, the visible contrast energy model, with local contrast masking, and with parameters 
estimated from Gabor detection thresholds, provides a good account of the essential features of blur 
discrimination data.

Discussion
We have reviewed eight studies of blur detection and discrimination, and with one exception 

(Hamerly & Dvorak, 1981), have found their data to be broadly consistent. The threshold for blur 
detection is about 0.4 to 1 arcmin. Thresholds for blur discrimination decline from this value by as much 
as a factor of two as the reference blur is increased from zero to about 1 arcmin, beyond which thresholds 
rise again, producing the well known dipper shape of the TVR curve. The thresholds are very dependent 
on contrast at low contrasts, but much less so at high. The thresholds are also somewhat dependent on 
duration, length of the edge, and experimental method.

We have reviewed an array of prior models, which have involved explicit estimation of blur width, or 
processing by multiple bandpass channels, or measuring distances between computed extrema, and other 
more or less complicated operations. In contrast, we find that a minimal model of contrast detection and 
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discrimination is sufficient to explain the essential features of the data: the detection threshold, the dipper 
shape, the location of the dipper, the rate at which thresholds rise with larger reference blurs, and the 
dependence on contrast. We call this the Visible Contrast Energy model (ViCE). The same model, with 
identical parameters, can predict the thresholds for detection of Gabor targets. In summary, we find no 
reason to resort to additional mechanisms to explain blur detection and discrimination.

In this report we have deliberately confined ourselves to one particular experimental paradigm: 
discrimination of a pair of blurred edges. However, blur perception is much broader than that. Still in the 
realm of simple blurred edges, there are a number of studies that analyze blur estimation or blur matching. 
Georgeson and colleagues asked observers to match a Gaussian blurred edge to an edge blurred with a 
mixture of narrow and wide Gaussians (Georgeson et al., 2007). Their results show a very large bias 
toward the narrow blur, which is not predicted by our model, but which is predicted by their much more 
complex scale-space model.
Eccentricity and fixation

In the ViCE model, the position of the TVR curve depends largely upon the sizes of the filter kernels 
(& and '). It is well established that these increase with eccentricity (Graham et al., 1978 ; Koenderink et 
al., 1978; Virsu & Rovamo, 1979 ; Watson, 1987). Hess et al. measured blur discrimination at several 
eccentricities, and found shifts in the TVR that are at least roughly consistent with this idea. However, this 
variation in the CSF with eccentricity creates problems for some of the methods used in the studies 
reviewed here. For example, if a 2AFC method is used with a brief exposure (Westheimer et al., 1999), 
the observer cannot fixate both targets, and thus the effective eccentricity of the edge is uncertain. Where 
the exposure duration is long, and fixation is uncontrolled (Hamerly & Dvorak, 1981; Hess et al., 1989; 
Watt & Morgan, 1983), we may imagine that observers move their eyes back and forth between test and 
reference edges, in which case the method is much like 2IFC, albeit with a brief interval. For accurate and 
consistent local measurements of blur discrimination, a 2IFC method with brief exposure and controlled 
fixation would appear to be required.
Individual differences

It is important to note that most of the studies reviewed here use very few observers (Table 1), and 
their age is rarely given. Part of the variation in absolute threshold among studies may be due to age and 
individual differences. In one of the two studies to use as many as five observers, the data show a 
variation among observers of at least a factor 2 (Westheimer et al., 1999). The two observers of Hamerly 
and Dvorak (1981) differ by an overall factor of 2.6. In the ViCE model, the blur detection threshold 
depends largely on the parameter &, which also determines sensitivity at high spatial frequencies, and 
acuity. Thresholds in general depend upon the gain parameter ), which is analogous to peak contrast 
sensitivity. In this regard it is worth noting that both contrast sensitivity and acuity decline with age in 
adults. From the 20’s to the 80’s, in the absence of obvious ocular pathology, contrast sensitivity at 16 
cycles/deg declines by about 0.1 log unit per decade, while LogMAR acuity declines by between 0.07 
(Owsley et al., 1983). Thus we may expect substantial differences in blur sensitivity between observers as 
a result of differences in acuity and contrast sensitivity.
Optical blur

The center kernel Hc, and its scale &, play a central role in the ViCE model in determining the 
sensitivity to blur. This kernel must incorporate any optical blur present in the eye of the observer. Any 
additional blur forms what is known as the neural transfer function (NTF). Sekiguchi, Williams, and 
Brainard (1993) estimated a very small additional blur, corresponding to an NTF represented by a 
Gaussian with a scale of 0.75 arcmin. Recently we have argued that even this additional blur may be 
better attributed to limits on spatial summation, themselves the result of retinal inhomogeneity (Ahumada 
et al., 2010). Thus most, and perhaps all of the limits on blur discrimination, at least for small reference 
blurs, are due to optical limitations. However discrimination at large reference blurs depends upon the 
behavior of the CSF at low spatial frequencies (see Figure 16), which is not optical in origin.
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Conclusions
We have reviewed data from eight studies of blur detection and discrimination in single edges. We 

find good agreement among the studies, apart from discrepancies that may be due to methodological, 
stimulus, or observer differences. We also find that the general pattern of results, and overall sensitivity, 
are consistent with a general model in which observers discriminate between two images when the energy 
of the difference between their masked local contrast waveforms exceeds a threshold. We call this the 
Visible Contrast Energy Model (ViCE). We conclude that blur detection and discrimination are instances 
of contrast detection. We further note that much of the limitation on blur discrimination performance, for 
small reference blurs, is due to optical blur.

Appendix A: Notation
In the following, we define the notation used in the text. Where available, we note default values of 

model parameters. In the text, primed quantities represent Gaussian scales, converted from standard 
deviations according to Equation 6.

Stimuli
c contrast
r standard deviation of reference Gaussian blur (deg)
a standard deviation of added Gaussian blur (deg)

Weber Model
" standard deviation of internal Gaussian blur (deg)
$ standard deviation of perceived Gaussian blur (deg)
# weber constant
! weber exponent

Visible Contrast Energy Model (simplified)
) gain of CSF 160.05
& scale of center Gaussian kernel 2.456 arcmin
' scale of surround Gaussian kernel 24.75 arcmin
(  weight of surround in DoG CSF 0.7329

Visible Contrast Energy Model

) gain 217.65
& scale of center sech kernel 2.766 arcmin
' scale of surround Gaussian kernel 21.6 arcmin
* adaptation constant 0.772 
, scale of masking Gaussian kernel 10 arcmin
- scale of pooling Gaussian kernel 60 arcmin
+  masking threshold 0.3
Hc(x) center kernel
Hs(x) surround kernel
Hm(x) masking kernel
Hp(x) pooling kernel
M(x) masked contrast
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C(x) local contrast
L(x) luminance
La(x) local average luminance

Appendix B: Gabor response of simple ViCE model
The response of the simple Visible Contrast Energy model to a Gabor function in cosine phase with 

spatial frequency f in cycles/degree and Gaussian scale s in degrees is given by

V ! c2 "#2 f 2 Π s2 s2 Γ2 2 1 & "
2 f 2 Π s4

s2&Θ2 !s2 & Φ2" !2 s2 & Θ2 & Φ2" Λ2 # 4 1 & "
4 f 2 Π s4

2 s2&Θ2&Φ2 !s2 & Θ2" !s2 & Φ2" Λ &
2 1 & "

2 f 2 Π s4

s2&Φ2 !s2 & Θ2" !2 s2 & Θ2 & Φ2" # $4 !s2 & Θ2" !s2 & Φ2" !2 s2 & Θ2 & Φ2" %
 (?)
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