Molecular anions in protostars, prestellar cores and dark clouds

Martin Cordiner, Nasa Goddard Space Flight Center
Steven Charnley, Nasa Goddard Space Flight Center
Jane Buckle, University of Cambridge
Catherine Wash, Queen's University Belfast
Tom Millar, Queen's University Belfast

From our recent survey work using the Green Bank Telescope, microwave emission lines from the hydrocarbon anion C$_6$HA- and its parent neutral C$_6$H have been detected in six new sources. Using HC$_3$N $J = 10-9$ emission maps, we targeted the most carbon-chain-rich sources for our anion survey, which included the low-mass Class 0 protostar L1251A-IRS3, the prestellar cores L1389-SMM1 and L1512, and the interstellar clouds L1172A, TMC-1C and L1495B. Derived \([\text{C}_6\text{H}^A/\text{C}_6\text{H}]/\) anion-to-neutral ratios are $\sim 1-10\%$. The greatest C$_6$HA- column densities are found in the quiescent clouds TMC-1C and L1495B, but the anion-to-neutral ratios are greatest in the prestellar cores and protostars. These results are interpreted in terms of the physical and chemical properties of the sources, and the implications for molecular cloud chemistry are discussed.