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I. ABSTRACT

It is important that accurate estimates of crew exposure to radiation are obtained for

future long-term space missions. Presently, several space radiation transport codes ex-

ist to predict the radiation environment, all of which take as input particle interaction

cross sections that describe the nuclear interactions between the particles and the shield-

ing material. The space radiation transport code HZETRN uses the nuclear fragmentation

model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Cur-

rently, NUCFRG2 employs energy independent branching ratios to calculate these cross

sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is

more advantageous than the method currently employed in NUCFRG2. The WE theory

can calculate not only neutron and proton emission, as in the energy independent branching

ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle

emission. These particles can contribute significantly to total exposure estimates. In this

work, photonuclear cross sections are calculated using WE theory and the energy indepen-

dent branching ratios used in NUCFRG2 and then compared to experimental data. It is

found that the WE theory gives comparable, but mainly better agreement with data than

the energy independent branching ratio. Furthermore, EMD cross sections for single neu-

tron, proton, and alpha particle removal are calculated using WE theory and an energy

independent branching ratio used in NUCFRG2 and compared to experimental data.

II. INTRODUCTION

Radiation protection is an important technology for the future of space exploration. When

traveling into space, radiation is emitted from a variety of sources, such as the Van Allen
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trapped radiation belts, solar energetic particles, or galactic cosmic rays. Accurate estimates

of the radiation exposure to astronauts or electronics is important for long term missions,

such as the exploration of Mars. Several particle transport codes have been developed that

estimate space radiation exposure. These transport codes take as input particle interaction

cross sections that describe the nuclear interactions between the particles and the shield-

ing material. Therefore, an accurate and efficient method of calculating cross sections is

fundamental for shielding optimization.

A relativistic nucleus-nucleus collision will result when a cosmic ray nucleus interacts with

a spacecraft wall or shielding material. Nucleus-nucleus collisions can be mediated by either

the strong or electromagnetic (EM) forces. EM processes dominate when the collision’s

impact parameter is larger than the range of the nuclear force, so no nuclear interaction

occurs. A reaction proceeding via the EM force is often called Electromagnetic Dissociation

(EMD). For this type of reaction, a projectile nucleus is excited by the absorption of a

virtual photon, which is supplied by the target nucleus. The projectile subsequently decays

by the emission of one or more nucleons, with neutron emission the primary decay mode for

nuclei with high atomic numbers, Z, and for photon energies below a few tens of MeV. In

the region of low Z and energies above a few tens of MeV, light ion production will compete

with neutron emission. The Coulomb barrier suppresses light charged particle emission for

heavy nuclei, but for lighter nuclei, the Coulomb barrier is lower, thus allowing for light ion

production.

The high charge and energy (HZE) particle transport code HZETRN is a computational

tool used for space radiation studies and shield design. HZETRN uses a deterministic ap-

proach for particle transport to enable fast and accurate estimates of the relevant dosimetric

quantities [1, 2]. HZETRN uses the nuclear fragmentation model NUCFRG2 [3] to calcu-
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late EMD cross sections. Currently, NUCFRG2 employs an energy independent branching

ratio for the calculation of EMD nucleus-nucleus cross sections. This energy independent

branching ratio can only account for neutron and proton emission. In this paper, a way

of calculating EMD nucleus-nucleus cross sections, using an energy dependent branching

ratio, is presented. This branching ratio can account for the emission of a neutron, proton,

deuteron, triton, helion, and alpha particle, which is a significant improvement over the

current NUCRFG2 branching ratio model. It should be noted that the additional ions have

been shown to account for a non-negligible portion of the total exposure in some cases. The

energy dependent branching ratio, which is calculated from Weisskopf-Ewing (WE) theory,

is first folded into the photonuclear cross section formula and then incorporated into the

EMD nucleus-nucleus cross section equation.

A large part of the uncertainty in an EMD nucleus-nucleus cross section calculation comes

from the photonuclear cross section. The uncertainties generally arise due to the poor the-

oretical treatment of the branching ratio. This paper will compare an energy dependent

branching ratio, which is calculated from WE theory, to the energy independent branch-

ing ratio currently employed by NUCFRG2. It is shown here that the energy dependent

branching ratio, calculated with WE theory, provides better estimates of the photonuclear

cross section, which consequently give more accurate EMD nucleus-nucleus cross sections.

A review of the photonuclear cross section is first given, followed by a summary of the

WE method and the energy independent branching ratio used in NUCFRG2. The EMD

nucleus-nucleus cross section is also reviewed and comparisons are made.
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III. PHOTONUCLEAR CROSS SECTION

This paper focuses on photonuclear reactions where a photon interacts with a nucleus,

typically at an energy above a few MeV. When a nuclear excitation occurs, the main contri-

bution comes from the Giant Dipole Resonance (GDR); the reaction results in the emission

of neutrons, charged particles, or gamma rays. The photonuclear cross section is a funda-

mental component of an EMD nucleus-nucleus cross section, as it describes the response of

the excited nucleus to spectator photons. If there is uncertainty in the photonuclear cross

section, it will ultimately induce uncertainty into the EMD cross section. Therefore, it is

important that the photonuclear cross section is well understood.

The photoparticle total cross section for producing particle b is given by the product of

the photonuclear absorption cross section, σabs(Eγ), and the branching ratio, gb, representing

the probability of a specific decay mode [4, 5];

σ(Eγ, b) = gb σabs(Eγ) , (1)

where Eγ is the photon energy.

The branching ratio, gb, will be discussed later, and it will be shown that the branching

ratios can be modeled as either energy independent or energy dependent. Note that the

branching ratio in equation (1) is energy independent; the dependence will be explicitly

written if it is included.

Typically, experimental data are used for the absorption cross section, when available.

For reactions with no experimental absorption cross section data, parameterizations are

often used [5]. In addition, applications which require rapid cross section calculations, such
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as space radiation transport codes, employ a parameterized absorption cross section, since it

would be impractical to put experimental photonuclear cross sections into EMD calculations

for transport code analyses. The parameterized absorption cross section used in this paper

will now be discussed.

A. Absorption Cross Section

The photonuclear absorption cross section, σabs(Eγ),is parameterized in the region near

the giant dipole resonance as

σabs(Eγ) =
σm

1 +
[
(E2

γ − E2
GDR)2/E2

γΓ
2
] . (2)

The abbreviation, GDR, stands for the giant dipole resonance, as mentioned previously.

Here, EGDR is the energy at which the photonuclear cross section has its peak value, and

Γ is the width of the electric dipole (E1) giant dipole resonance. Values of Γ used in this

paper can be found in Table I. Also,

σm =
σTRK

πΓ/2
, (3)

with the Thomas-Reiche-Kuhn cross section given by [5]

σTRK =
60 N ∗ Z∗

A∗
(4)
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with the * referring to the excited nucleus. Here, N ∗, Z∗, and A∗ are the neutron number,

atomic number, and the mass number of the excited nucleus, respectively. The GDR energy

is [5]

EGDR =
~c[

m0.7 c2 R2
0

8J
(1 + u− 1+ε+3u

1+ε+u
ε)
]1/2 , (5)

with

u =
3J

Q′
A∗−1/3 (6)

and

R0 = r0 A∗1/3 . (7)

The parameters are [5]:
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ε = 0.0768 , (8)

Q′ = 17 MeV , (9)

J = 36.8 MeV , (10)

r0 = 1.18 fm , (11)

m0.7 = 0.7 mnucleon , (12)

where mnucleon is the nucleon mass, taken as 938.95 MeV.

IV. BRANCHING RATIO

A branching ratio provides the relative probability of a specific type of decay. In this

section, a form for the branching ratio, which is dependent on the excitation energy of the

compound nucleus, will be introduced that is calculated on the basis of the WE evaporation

model of nuclear reactions. In addition, the energy independent branching ratio, used in

NUCFRG2, will be presented. This energy independent branching ratio is not restricted to

compound nucleus decay, but can also be applied to direct reactions.

A. Energy Dependent Branching Ratio

Weisskopf-Ewing (WE) theory is a commonly used method for computing an energy

dependent branching ratio of a compound nucleus reaction. In a compound nucleus reaction,

a compound nucleus is formed in an excited energy state and then decays into the products of

the reaction once reaching statistical equilibrium. The formation and decay of the compound
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nucleus can be considered independent processes because only energy, angular momentum,

and parity determine the de-excitation of the compound system.

The Hauser-Feshbach (HF) method provides another way of calculating cross sections

for compound nucleus reactions. The difference between WE and HF lies in the number

of allowable dynamical paths. The HF method accounts for more states, since parity and

angular momentum are considered. The WE theory provides a simple way of calculating

compound nuclear reactions going to continuum states, because only energy is conserved.

The HF method has greater complexity than the WE theory and presents a much greater

computational cost. Despite the fact that the HF method is generally favored for calculations

of reactions proceeding through a compound nucleus state, the WE theory is chosen here

due to its straightforward formulation and relatively low computational cost. Thus, the

WE theory can be seen as a good alternative to the HF method for applications, such as

radiation transport codes, that require near real time simulations. Here, computational

efficiency must be weighed against the sensitivity of the results to the model.

The WE theory is developed by first considering a nuclear reaction where a particle a

strikes a nucleus A to produce a residual nucleus B and an outgoing particle b. The reaction

proceeds though a well-defined compound state,

a+ A → C∗ → B + b , (13)

(State A) (State C) (State B)

where C represents the intermediate compound nucleus and the * signifies an excited state.

Particles a and b may be particles, such as photons, neutrons, and protons, although they
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could also be nuclei, such as deuterons, tritons, helions, or alpha particles. Note that a

photonuclear reaction proceeds via γ + A→ A∗ → B + b.

The probability that the compound state will decay by emission of particle b is given by

the energy dependent branching ratio [6] as

gb(E
∗
C) =

Γb(E
∗
C)

Γtot(E∗C)
, (14)

where Γb is the partial decay width for emitting particle b, Γtot is the total width of the

compound state, and E∗C is the excitation energy of the compound nucleus C. It is important

to note that for a photonuclear reaction, the excitation energy will correspond to the photon

energy, Eγ. Equation (14) will be referred to as the WE branching ratio. The total width is

defined as the sum of all the partial widths. This work considers the emission of six particle

types: neutron, proton, deuteron, triton, helion, and alpha. Emissions of other particles are

assumed negligible. As a result, the total width is given by the sum of the six individual

decay widths

Γtot(E
∗
C) = Γn(E∗C) + Γp(E

∗
C) + Γd(E

∗
C) + Γt(E

∗
C) + Γh(E

∗
C) + Γα(E∗C) , (15)

where n, p, d, t, h, and α represent a neutron, proton, deuteron, triton, helion, and alpha

particle, respectively. Other decay modes, like fission and gamma emission, could also

be included in equation (15) as additive terms. These decay modes have been discussed

elsewhere [7, 8] and will not be discussed here.
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According to WE theory, the partial width of the decay in the numerator of equation

(14) will be contingent on whether particle b is charged. For the neutron, the partial width

of decay is expressed as [9, 10]

Γn(E∗C) ≈ MnCn(2sn + 1)

π2~2
σgeo

ρB(E∗C − εn)

ρC(E∗C)
TB

×
[
(εn − E∗C − TB − βn) exp

(
εn − E∗C
TB

)
+ TB + βn

]
, (16)

where Mn, sn, and εn are the mass, spin, and binding energy for the emitted neutron,

respectively. Here, βn = (2.12A−2/3
B − 0.050)/Cn and Cn = 0.76 + 2.2A−1/3

B , where AB is the

atomic mass of the residual nucleus [11]. The geometrical cross section σgeo, is represented

by the classical target area, σgeo = π(r0A1/3
B )2, where the radius parameter r0 is taken to be

1.18 fm [11]. Also contained in equation (16) are the nuclear densities ρC and ρB, for the

compound nucleus C and the residual nucleus B, respectively. See references [12, 13] for

detailed information of all these terms.

The partial width for a charged particle is defined by [9, 10]

Γc(E
∗
C) ≈ Mc(2sc + 1)

π2~2
σgeo

ρB(E∗C − εc)
ρC(E∗C)

TB

×
[
(εc − E∗C − TB − Vc) × exp

(
εc − E∗C
TB

)
+ TB exp

(
−Vc
TB

)]
, (17)

where Mc, sc, Vc, and εc, are the mass, spin, Coulomb barrier and binding energy for one of

the charged particles (p, d, t, h, α), respectively.

Both of the expressions for the partial width contain TB, the temperature of the residual
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nucleus after b emission, which is calculated by [9, 10]

TB =

(
d ln ρB
dE∗C

)−1

=

(
E∗C − εb

aB(E∗C − εb)

)1/2(
1 +

δE0,B

E∗C − εb
ãB

aB(E∗C − εb)

× [exp (−γB[E∗C − εb])× (1 + γB[E∗C − εb])− 1]

)−1

. (18)

Here, aB, ãB, δE0,B, and γB are the level density parameter, asymptotic level density param-

eter, shell correction energy, and damping parameter of the residual nucleus B, respectively.

These terms and a complete derivation of the neutron and charged particle partial width

formula, equations (16) and (17), have been discussed in detail in references [12, 13].

B. Energy Independent Branching Ratio

In the previous section, a method was introduced for calculating branching ratios, based

on WE theory. This branching ratio formalism differs from the method used in NUCFRG2.

Currently, NUCFRG2 employs a branching ratio from references [14, 15]. This branching

ratio neglects energy dependence, unlike the WE theory, which takes into account the exci-

tation energy (or for a photonuclear reaction, the photon energy). This energy independent

branching ratio is not restricted to compound nucleus decay, but can also be applied to direct

reactions. A direct reaction has a short interaction time, unlike the long lived intermediary

state of a compound nucleus reaction. A compound nucleus reaction follows equation (13),

but a direct reaction proceeds via
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a+ A → B + b . (19)

(State A) (State B)

The energy dependent proton branching ratio utilized in NUCFRG2 is given by [3, 14, 15]

gp =



0.5 Z∗A < 6

0.6 6 ≤ Z∗A ≤ 8

0.7 8 < Z∗A < 14

min
[
Z∗

A

A∗A
, 1.95 exp(−0.075 Z∗A)

]
14 ≤ Z∗A

. (20)

Here, Z∗A and A∗A are the atomic number and mass number of the excited nucleus A (either

the projectile or target), respectively. Due to the dependence on only the atomic number

and mass number of the excited nucleus A, this energy independent branching ratio can be

applied to a direct or compound nucleus reaction.

With the ratio of proton emission now formulated, the neutron branching ratio can be

found easily from

gn = 1− gp , (21)

since only proton and neutron decay are considered in NUCFRG2 [3]. For this crude ap-

proximation, emission of other particles was thought to compete insignificantly with proton

and neutron emission, so other channels were neglected for simplicity. It should be noted

that the above relations assume only single nucleon emission.
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V. NUCLEUS-NUCLEUS CROSS SECTION

In a nucleus-nucleus collision mediated by the EM force, the target (or projectile) rep-

resents a source of virtual photons, which impinge upon the projectile (or target). The

spectrum of virtual photons contains a variety of energies, in contrast to a photonuclear

reaction where the incoming photon possesses only a single energy.

The total cross section for electromagnetic nucleus-nucleus reactions can be written in

the form

σAA =

∫
dEγ N(Eγ) σγA(Eγ) , (22)

where N(Eγ) is the Weizsacker-Williams virtual photon spectrum and σγA(Eγ) is the pho-

tonuclear total cross section. The Weizsacker-Williams virtual photon spectrum will be

discussed in the subsequent section.

Equation (1) expresses σγA(Eγ) as the branching ratio, gX , multiplied by the absorption

cross section, σabs(Eγ). When replacing the photonuclear total cross section in equation (22)

with equation (1), the form of the total cross section for an electromagnetic nucleus-nucleus

reaction will depend on whether the branching ratio is energy dependent or independent.

For the case of an energy dependent branching ratio,

σAA =

∫
dEγ N(Eγ) gX(Eγ) σabs(Eγ) , (23)

whereas an energy independent branching ratio can be brought outside the integral,

13



σAA = gX

∫
dEγ N(Eγ) σabs(Eγ) , (24)

which allows for faster computation.

A. Weizsacker-Williams Virtual Photon Spectrum

Equations (22), (23), and (24) require the Weizsacker-Williams virtual photon spectrum.

The virtual photon spectrum describes the number of photons the target contributes at a

specific energy and is given by [16, 17]

N(Eγ) =
1

Eγ

2

π
Z2
S αfsc

1

β2

[
ξK0(ξ)K1(ξ)−

1

2
ξ2β2(K2

1(ξ)−K2
0(ξ))

]
, (25)

where ZS is the nuclear charge of the spectator nucleus (either the projectile or target) and

αfsc is the EM fine structure constant given by αfsc = e2/~c. The relativistic beta factor is

expressed as

β =

√
1− 1

γ′2
, (26)

and the relativistic gamma factor of the excited nucleus is given by
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γ′ = 1 + Tlab

mnucleon

, (27)

where Tlab is the kinetic energy per particle N of the projectile. Equation (25) also con-

tains the modified Bessel functions, K0(ξ) and K1(ξ), which are functions of the adiabacity

parameter ξ;

ξ =
Eγbmin

γ′ β (~c)
. (28)

The minimum impact parameter, bmin, is the value below which the strong force is assumed

to dominate [18] and is found from the relation [5]

bmin = R0.1,P +R0.1,T − doverlap , (29)

where R0.1,P and R0.1,T are the 10% charge density radii for the projectile and target nuclei,

respectively. Values of the 10% charge density radii used in this paper can be found in Table

II. The overlap distance is expressed as doverlap and is treated as an arbitrary parameter.

VI. COMPARISON TO EXPERIMENT

The primary focus of this work was to evaluate and compare the WE branching ratio to

the energy independent branching ratio, the method currently used in NUCFRG2, for the
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purposes of calculating EMD nucleus-nucleus cross sections. To obtain a true comparison of

these branching ratios, the photonuclear cross section must be examined for reasons which

will now be explained. Following this explanation, comparisons to experiment will be made

for both branching ratio methods for EMD nucleus-nucleus cross sections.

A. Photonuclear Cross Sections using WE and energy independent branching

ratios

Photonuclear cross sections, calculated with equation (1) are presented in this section.

Comparisons to experimental data are made for a few nuclei, as shown in Figures 1 - 5. The

photonuclear cross sections in this section are calculated using experimental absorption cross

sections, from reference [19], at various photon energies. The experimental cross sections are

multiplied by the WE branching ratio, given in equation (14), to produce the photonuclear

cross sections shown in red in Figures 1 - 5. Similarly, the energy independent branching

ratios are used, equations (20) and (21), to find the photonuclear cross section results shown

in green.

By using experimental absorption cross sections, the WE and energy independent branch-

ing ratio can be compared directly, because it eliminates the possibility of induced uncer-

tainty from a parameterized absorption cross section. The absorption cross section used in

this paper, equation (2), for EMD nucleus-nucleus cross section comparisons is a Lorentzian

parameterization. This absorption cross section will give the photonuclear cross section its

dominant feature, a hump, which corresponds to the excitation of the giant dipole resonance.

This parameterization will be poor for deformed nuclei, where the cross section is seen as

the sum of two Lorentzians, and for light nuclei, which often exhibit complicated shapes

[20].
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It can be seen in Figures 1 - 5 that the theoretical photonuclear cross sections, calculated

with WE and energy independent branching ratios, adequately agree with experiment. For

most of the reactions, the theoretical photonuclear cross section, calculated with a WE

branching ratio, provides better agreement to experiment. This can be observed for the

reactions 28Si(γ,n), 28Si(γ,p), 88Sr(γ,n), and 91Zr(γ,n), as shown in Figures 2 - 5, respectively.

It should be noted that for Figures 4 and 5, the WE branching ratio provides a much better

fit to the experimental values around the peak of the photonuclear cross section, therefore

capturing the essential feature of the GDR.

For 16O(γ,n), shown in Figure 1, it is unclear which branching ratio (WE or energy

independent) provides the better fit to experimental results, without performing a statistical

analysis. The WE theory will have problems evaluating reactions involving oxygen, since a

significant contribution of the photonuclear reaction comes from direct reactions [19]. The

WE theory is not intended to be used for reactions that proceed directly and do not pass

through a well defined compound state.

Problems matching experimental data can be seen for reactions involving 28Si. The

theoretical photoneutron and photoproton cross sections calculated using WE branching

ratios seem to provide the better fit. Although, as seen in Figures 2 and 3, the WE branching

ratio does not represent the data well. Reactions involving 28Si are unique in the fact that

compound nucleus decay is found for the neutron channel, but different behavior is observed

for proton decay. Predominately direct Giant Dipole Resonance (GDR) decay occurs for

the proton channels of 28Si [21]. Most of the partial (ground state, first excited state, etc.)

proton cross sections demonstrate different intermediate structures [21]. Consequently, the

branching ratios calculated with WE theory will not be representative of the proton decay

channel. The erroneously calculated proton branching ratio will also have an effect on the
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other channels (neutron, deuteron, triton, helion, and alpha), because the denominator of

the WE branching ratio formula contains the total width, which is given by the sum of all

the decay channels. If one of the channels is calculated incorrectly, it will ultimately affect

all of the channels.

From the comparisons presented, it is recommended that NUCFRG2 should use WE

branching ratios rather than the energy independent method currently employed. For com-

pound nucleus reactions, as in equation (13), the WE branching ratio provides the best

fit, which is shown for 88Sr(γ,n) and 91Zr(γ,n). For reactions that have single or multiple

channels that proceed through a direct reaction, as in equation (19), the WE branching

ratio provides the same or better results when compared to the energy independent branch-

ing ratio. This is surprising, since WE theory was not designed for reactions that proceed

through direct channels. Due to the WE branching ratio giving similar, or better, results

than the energy independent branching ratio, for direct and compound nucleus reactions,

it is recommended that WE branching ratios be incorporated into NUCFRG2. In addition,

the WE branching ratios are more advantageous, because they allow for not only neutron

and proton emission, but also for deuteron, triton, helion, and alpha particle emission.

B. Nucleus-Nucleus Cross Sections using WE and energy independent branching

ratios

In the previous section, a comparison of WE and energy independent branching ratios

was presented for photonuclear cross sections. Conclusions made from the comparison and

evaluation of photonuclear cross section results should be used for making future NUCFRG2

recommendations. This comparison eliminated the possibility of induced uncertainty from

parameterized terms, as mentioned previously. In this section, EMD cross sections for
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single neutron, proton, and alpha particle removal are calculated using WE and energy

independent branching ratios and then compared to experiment, as shown in Table III.

Graphical depictions of this data are shown in Figures 6-20.

To calculate nucleus-nucleus cross sections using an energy independent branching ratio,

equation (24) is employed, where the proton and neutron branching ratios are given by

equations (20) and (21), respectively. It is important to reiterate that for the case of the

energy independent branching ratio, the formulation was based on the assumption that only

neutron and proton emission occurred. Therefore, single alpha particle removal EMD cross

sections, calculated using energy independent branching ratios, could not be determined. In

Table III, for single particle alpha particle removal, the results calculated with an energy

independent branching ratio will be marked not applicable (N/A). The current capability

to calculate only neutron and proton emission in NUCFRG2, due to energy independent

branching ratios, makes WE theory very desirable.

For a nucleus-nucleus cross section that utilizes the WE branching ratio, equation (23)

is used. The WE branching ratio is given by equation (14), with the total width given by

equation (15) and the partial width given by equations (16) and (17) for a neutron and

charged particle, respectively. Here, EMD cross sections for single alpha particle removal

that employ WE branching ratios can be calculated, and are given in Table III.

Before comparing EMD nucleus-nucleus cross section results to experiment, using WE

and energy independent branching ratios, it is necessary to consider a few caveats in this

analysis. One is that EMD nucleus-nucleus cross sections are calculated with a parameterized

absorption cross section. This parameterization is not intended for deformed nuclei, such

as 28Si [22] or for light nuclei, which exhibit complicated absorption cross section shapes.

Another caveat is that there is very little experimental data concerning EMD nucleus-nucleus
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cross sections. Most experimental efforts have focused on special cases, in which the decay

channel displays interesting behavior. Consequently, the experimental EMD nucleus-nucleus

cross section data are not a good representation of a typical reaction. In addition, many

of these experimental results have large errors, which demand better statistics for more

accurate comparisons. It is important to consider all of these caveats when comparing EMD

nucleus-nucleus cross section results, using WE and energy independent branching ratios,

to experiment. For all the reasons listed above, the following results should not be used for

making recommendations for NUCFGR2, but can offer insight into EMD nucleus-nucleus

cross sections results that would be predicted by WE and energy independent branching

ratios.

It can be seen that the EMD cross sections with decay channels 11C + 1n and 11B +

1p, for a 12C projectile, calculated using WE and energy independent branching ratios,

are within the experimental error estimates for mostly all target and energy combinations,

as shown in Figures 6-9. This also occurs with 15O + 1n and 15N + 1p decay channels,

for 16O projectiles, as shown in Figures 10 and 11. It is surprising that the EMD cross

sections calculated with WE branching ratios agree so well with the experimental data

because 12C and 16O reactions proceed mainly through a direct reaction. The WE theory

is specifically designed for compound nucleus decay and not intended for direct decay, as

mentioned previously. Note that for the 15N + 1p decay channel for a 16O projectile has a

negative experimental cross section, which is due to the large error bars.

It is obvious that discrepancies exist between the calculated EMD cross sections and

experimental data for 18O projectiles, as shown in Figures 12 and 13. The EMD cross sections

calculated with WE and independent branching ratios will show disagreement because the

parameterization of the absorption cross section, equation (2), was designed for only stable
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nuclei. Before comparisons can be made for 18O projectiles, a parameterization for the

absorption cross section for unstable nuclei will need to be developed.

Unexpected behavior can be observed for the 28Si projectile. The EMD cross sections

are calculated with a parameterized absorption cross section. As mentioned previously, this

parameterization is not intended for a deformed nuclei, such as 28Si [22]. It is surprising

that the results predicted with a WE or energy independent branching ratio, give reasonable

results for single neutron, proton, and alpha particle decay, as shown in Figures 14-16. In

addition, WE results will be affected by the predominately direct GDR decay in the proton

channel [21]. Therefore, the proton channel will be calculated incorrectly; this will ultimately

effect the rest of the channels, as mentioned in the previous section.

Currently, NUCFRG2 does not have the capability of calculating alpha particle re-

moval EMD cross sections. The energy independent branching ratio, currently employed

in NUCFRG2, can calculate neutron and proton emission. In addition to neutron and

proton removal, the WE branching ratio offers not only the calculation of alpha particle

removal, but also deuteron, helion, and triton removal. The EMD cross sections for alpha

particle removal of 28Si on various targets, displayed in Figure 16, show results that are

predicted by WE theory. It would be advantageous for NUCFRG2 to calculate additional

channels, such as the alpha channel. Therefore, it is important to take a closer look at

the predicted EMD cross sections for alpha particle removal. In Figure 16, it is observed

that the theoretical cross sections, calculated with a WE branching ratio, compare well to

experiment for 27Al, 64Cu, and 120Sn targets. Although, WE theory gives a much larger

cross section than experimentally predicted for a 208Pb target. It is proposed here that this

experimental EMD cross section for single alpha particle removal of 28Si is too small. The

scattering cross section should be proportional to the square of the atomic number of the
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target. Using the principle of detailed balance, a simple estimate of the EMD cross section

for single alpha particle removal of 28Si on a 208Pb target can be calculated. From the rela-

tion σ208Pb ∝
(
Z208Pb

Z∗

)2

σ∗, where σ208Pb and Z208Pb are the cross section and atomic number

for a 208Pb target, respectively. For σ∗ and Z∗, the cross section and atomic number values

of 27Al, 64Cu, and 120Sn targets are used (the cross section data are taken from Table III).

This simple and quick estimate gives a cross section value of approximately 836 mb, 136

mb, and 156 mb when using 27Al, 64Cu, and 120Sn, respectively. The range of the estimated

EMD alpha particle removal cross section of 28Si on a 208Pb target is 136-836 mb, which

is higher than the experimental value of 72 ± 32 mb. It would be premature to invalidate

the EMD alpha particle removal cross section of 28Si on a 208Pb target, calculated with WE

theory (264.33 mb), because its value lies well within the estimated range of 136-836 mb.

Until better statistics or more experimental data becomes available, accurate comparisons

cannot be made. Consequently, there is no reason to discredit using WE theory to calculate

alpha particle removal EMD cross sections.

Problems calculating EMD cross sections with WE branching ratios can be observed

for the 88Y + 1n decay channel, Figure 17. This occurs for every projectile and energy

combination. The energy independent branching ratio offers reasonable estimates, while the

WE branching ratio experiences problems. Complications arise in 89Y because 75% of the

photoproton cross section between 14 and 24 MeV decays directly [23–25]. The partial direct

decay behavior in the proton channel will not be accounted for by the WE theory, which

calculates decay rates for compound nucleus reactions. Just as in the case of 28Si projectiles,

the erroneously calculated proton channel will affect all of the other decay channels.

For the decay channels, 58Co + 1n and 197Au + 1n, the WE and energy independent

branching ratios give similar results for mostly all of the projectile and energy combinations,
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Figures 18 and 19-20, respectively. It is important to note that out of all the EMD cross

sections in this work, these two decay channels are the only channels that follow compound

nucleus decay and do not have one or more channels that follow direct decay. This means that

these are the only decay channels in this analysis that the WE theory is intended to apply.

Both the WE and energy independent branching ratio calculate EMD cross sections, for the

58Co + 1n and 197Au + 1n decay channels, that agree reasonably well with experiment.

VII. CONCLUSION

The nuclear fragmentation model NUCFRG2 currently calculates EMD nucleus-nucleus

cross sections using energy independent branching ratios. Results indicate that the WE

theory provides photonuclear cross sections that are comparable, but in most cases, better

than the results obtained with energy independent branching ratios. Consequently, the WE

theory should be considered as a good alternative to the energy independent branching ratio,

which is currently employed in NUCFRG2. It was argued that the NUCFRG2 model should

incorporate WE theory for the calculation of EMD cross sections and should consider the

sensitivity of the results over computational time. The energy independent branching ratio

allows for faster computation times of EMD nucleus-nucleus cross sections, due to its energy

independence and simple formalism. The ability of the WE branching ratio to calculate

not only neutron and proton emission, but also deuteron, triton, helion, and alpha particle

emission make WE theory more advantageous.

Future work will include the investigation of a branching ratio formalism that can be

applied to direct channels for future implementation into NUCFRG2.

23



TABLE I: Values for the width of the electric dipole giant
dipole resonance.

Nucleus Γ (MeV) Reference

12C 8.0 [5]
16O 10.0 [5]
18O 12.0 [5]
28Si 10.0 [5]
59Co 9.0 [26]
89Y 3.95 [27]

197Au 3.5 [5]
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TABLE II: Values for the 10% Charge Density Radius found
from various models.

Nucleus 10% Chage Radius (fm) Reference

12C 3.33 [5]
16O 3.77 [5]
18O 3.88 [5]
20Ne 4.06 [5]
27Al 4.21 [5]
28Si 4.18 [5]
32S 4.53 [5]
48Ti 5.00 [5]
56Fe 5.28 [5]
59Co 5.33 [28]
64Cu 5.45 [5]
89Y 6.02 [28]

108Ag 6.32 [5]
120Sn 6.58 [28]
139La 6.89 [29]
197Au 7.56 [5]
208Pb 7.83 [5]
209Bi 7.78 [28]
238U 8.13 [5]
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TABLE III: Electromagnetic Cross Sections for Single Neu-
tron, Proton, and Alpha Particle Removal. σEMD

expt are the
experimental EMD cross sections from references [30–36].
σEMD

(24) are the theoretical EMD cross sections using the en-
ergy independent branching ratio, equation (24). σEMD

(23) are
the theoretical EMD cross sections using a WE branching
ratio, equation (23). Note that all data from this table are
graphically displayed in Figures 6-20.

Projectile Target Tlab (GeV/N) Decay Channel σEMD
expt (mb) σEMD

(24) (mb) σEMD
(23) (mb)

12C 208Pb 2.1 11C + 1n 51 ± 18 42.9964 35.2666
12C 208Pb 2.1 11B + 1p 50 ± 25 70.2699 38.6367
12C 208Pb 1.05 11C + 1n 39 ± 24 25.2166 19.8329
12C 208Pb 1.05 11B + 1p 50 ± 25 41.8808 22.1407
16O 208Pb 2.1 15O + 1n 50 ± 24 62.051 50.2401
16O 208Pb 2.1 15N + 1p 96 ± 26 102.91 83.5714

12C 108Ag 2.1 11C + 1n 21 ± 10 16.7542 13.8676
12C 108Ag 2.1 11B + 1p 18 ± 13 27.2921 15.1292
12C 108Ag 1.05 11C + 1n 21 ± 10 10.5761 8.44344
12C 108Ag 1.05 11B + 1p 25 ± 19 17.4608 9.36414
16O 108Ag 2.1 15O + 1n 26 ± 13 23.9174 19.532
16O 108Ag 2.1 15N + 1p 30 ± 16 39.4881 32.1429

12C 64Cu 2.1 11C + 1n 10 ± 7 7.06394 5.87764
12C 64Cu 2.1 11B + 1p 4 ± 8 11.4855 6.39671
12C 64Cu 1.05 11C + 1n 9 ± 8 4.65276 3.74663
12C 64Cu 1.05 11B + 1p 5 ± 8 7.65609 4.13926
16O 64Cu 2.1 15O + 1n 9 ± 8 10.0187 8.2224
16O 64Cu 2.1 15N + 1p 15 ± 8 16.499 13.4477

12C 27Al 2.1 11C + 1n 0 ± 5 1.6516 1.3846
12C 27Al 2.1 11B + 1p 0 ± 5 2.67839 1.50157
12C 27Al 1.05 11C + 1n 1 ± 6 1.15605 0.942364
12C 27Al 1.05 11B + 1p 1 ± 7 1.89353 1.03538
16O 27Al 2.1 15O + 1n 0 ± 5 2.31977 1.91739
16O 27Al 2.1 15N + 1p -1 ± 9 3.80662 3.10831

Continued on Next Page. . .
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TABLE III – Continued

Projectile Target Tlab (GeV/N) Decay Channel σEMD
expt (mb) σEMD

(24) (mb) σEMD
(23) (mb)

12C 12C 2.1 11C + 1n -2 ± 5 0.393841 0.331945
12C 12C 2.1 11B + 1p -1 ± 4 0.637513 0.359076
12C 12C 1.05 11C + 1n -2 ± 5 0.287878 0.236711
12C 12C 1.05 11B + 1p -2 ± 5 0.470029 0.259044
16O 12C 2.1 15O + 1n -1 ± 4 0.549095 0.456151
16O 12C 2.1 15N + 1p -1 ± 4 0.898782 0.734837

18O 238U 1.7 17O + 1n 140.8 ± 4.1 87.5476 211.602
18O 238U 1.7 17N + 1p 25.1 ± 1.6 101.782 0.419803
18O 208Pb 1.7 17O + 1n 136 ± 2.9 71.7717 173.512
18O 208Pb 1.7 17N + 1p 20.2 ± 1.8 83.6706 0.34833
18O 48Ti 1.7 17O + 1n 8.7 ± 2.7 7.05503 17.0903
18O 48Ti 1.7 17N + 1p -0.5 ± 1.0 8.43365 0.0383709

28Si 208Pb 14.6 27Si + 1n 241.0 ± 4.2 409.25 153.513
· · · · · · · · · · · · 263.5 ± 15 · · · · · ·
28Si 208Pb 14.6 27Al + 1p 676.4 ± 7.6 516.844 646.874
· · · · · · · · · · · · 672.2 ± 25 · · · · · ·
28Si 208Pb 14.6 24Mg + 1α 72 ± 32 N/A 264.33

28Si 120Sn 14.6 27Si + 1n 100.0 ± 2.0 160.077 60.1917
· · · · · · · · · · · · 101.9 ± 8.2 · · · · · ·
28Si 120Sn 14.6 27Al + 1p 274.0 ± 4.4 201.801 252.733
· · · · · · · · · · · · 290.6 ± 13 · · · · · ·
28Si 120Sn 14.6 24Mg + 1α 58 ± 30 N/A 102.647

28Si 64Cu 14.6 27Si + 1n 40.4 ± 1.7 56.5488 21.3114
28Si 64Cu 14.6 27Al + 1p 111.0 ± 3.3 71.17 89.1858
28Si 64Cu 14.6 24Mg + 1α 17 ± 19 N/A 36.0171

28Si 27Al 14.6 27Si + 1n 13.11 ± 0.59 12.0398 4.54909
· · · · · · · · · · · · 10.8 ± 2.8 · · · · · ·
28Si 27Al 14.6 27Al + 1p 31.6 ± 1.2 15.1243 18.9656
· · · · · · · · · · · · 34.2 ± 4.7 · · · · · ·
28Si 27Al 14.6 24Mg + 1α 21 ± 16 N/A 7.6096

Continued on Next Page. . .

27



TABLE III – Continued

Projectile Target Tlab (GeV/N) Decay Channel σEMD
expt (mb) σEMD

(24) (mb) σEMD
(23) (mb)

12C 197Au 2.1 196Au + 1n 75 ± 4 36.9002 34.2595
12C 89Y 2.1 88Y + 1n 9 ± 12 11.9561 0.152798
12C 59Co 2.1 58Co + 1n 6 ± 9 5.37801 3.21086
16O 197Au 60 196Au + 1n 280 ± 30 214.465 201.668
16O 197Au 200 196Au + 1n 440 ± 40 278.427 262.135

20Ne 197Au 1.7 196Au + 1n 151 ± 13 97.2338 90.2015
20Ne 197Au 2.1 196Au + 1n 153 ± 18 88.6733 82.084
20Ne 89Y 2.1 88Y + 1n 43 ± 12 31.1781 0.392326
20Ne 59Co 2.1 58Co + 1n 32 ± 11 13.9518 8.3017

40Ar 197Au 1.8 196Au + 1n 348 ± 34 279.913 259.048
40Ar 89Y 1.8 88Y + 1n 132 ± 17 88.5417 1.06924

56Fe 197Au 1.7 196Au + 1n 601 ± 54 545.735 504.356
56Fe 89Y 1.7 88Y + 1n 217 ± 20 170.922 2.01472
56Fe 59Co 1.7 58Co + 1n 88 ± 14 75.779 44.447

139La 197Au 0.15 196Au + 1n 447 ± 28 604.729 510.793
139La 197Au 1.26 196Au + 1n 1970 ± 130 1994.08 1830.42
139La 59Co 1.26 58Co + 1n 280 ± 40 263.184 150.123

32S 197Au 200 196Au + 1n 1120 ± 160 1099.77 1035.37
197Au 197Au 1.0 196Au + 1n 3077 ± 200 3207.16 2927.37
209Bi 197Au 1.0 196Au + 1n 3244 ± 205 3469.23 3165.08
238U 197Au 0.96 196Au + 1n 3160 ± 230 4037.1 3677.04
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FIG. 1: Comparison of theoretical and experimental photoneutron cross sections for 16O. The
theoretical photoneutron cross sections are calculated using WE (red) and energy independent
branching ratios (green). Experimental data are from Figure 14(c) of reference [27].
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FIG. 2: Same as Figure 1, except for 28Si. Experimental data are from Figure 15(b) of reference
[27].
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FIG. 3: Same as Figure 1, except for the photoproton cross section for 28Si. Experimental data
are from reference [19] (p. 110).
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FIG. 4: Same as Figure 1, except for 88Sr. Experimental data are from reference [19] (p. 168).
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FIG. 5: Same as Figure 1, except for 91Zr. Experimental data are from reference [19] (p. 171).
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FIG. 6: Comparison between theory and experiment for the single neutron removal EMD cross
section of 12C for various targets at 2.1 GeV/N. Experimental data [displayed as black circles] are
from reference [32]. Theoretical cross sections are calculated using WE [displayed as red squares,
using equation (23)] and energy independent [displayed as green triangles, using equation (24)]
branching ratios. Note that this is a graphical representation of the data in Table III.
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FIG. 7: Same as Figure 6, except for single proton removal.
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FIG. 8: Same as Figure 6, except at 1.05 GeV/N.
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FIG. 9: Same as Figure 6, except for single proton removal at 1.05 GeV/N.
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FIG. 10: Same as Figure 6, except for 16O at 2.1 GeV/N.
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FIG. 11: Same as Figure 6, except for the single proton removal of 16O at 2.1 GeV/N.
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FIG. 12: Same as Figure 6, except for 18O at 1.7 GeV/N. Experimental data [displayed as black
circles] are from reference [34].
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FIG. 13: Same as Figure 6, except for the single proton removal of 18O at 1.7 GeV/N. Experimental
data [displayed as black circles] are from reference [34].
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FIG. 14: Same as Figure 6, except for 28Si at 14.6 GeV/N. Experimental data [displayed as black
circles] are from references [30, 31, 37].
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FIG. 15: Same as Figure 6, except for single proton decay of 28Si at 14.6 GeV/N. Experimental
data [displayed as black circles] are from references [30, 31, 37].
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FIG. 16: Same as Figure 6, except for single alpha particle decay of 28Si at 14.6 GeV/N. Experi-
mental data [displayed as black circles] are from reference [30]. Note that there are no theoretical
cross sections calculated with an energy independent branching ratio since an energy independent
branching ratio has not been formulated for alpha particle removal.
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12C at 2.1 GeV�N 20Ne at 2.1 GeV�N 40Ar at 1.8 GeV�N 56Fe at 1.7 GeV�N
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FIG. 17: Comparison between theory and experiment for the single neutron removal EMD cross
section of a 89Y target for various projectile and energy combinations. Note that this is a graphical
representation of the data in Table III. Experimental data [displayed as black circles] are from
reference [35]. Theoretical cross sections are calculated using WE [displayed as red squares, using
equation (23)] and energy independent [displayed as green triangles, using equation (24)] branching
ratios.
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12C at 2.1 GeV�N 20Ne at 2.1 GeV�N 56Fe at 1.7 GeV�N 139La at 1.26 GeV�N
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FIG. 18: Same as Figure 17, except for a 59Co target for various projectile and energy combinations.
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12C at 2.1 GeV�N 16O at 60 GeV�N 16O at 200 GeV�N 20Ne at 1.7 GeV�N 20Ne at 2.1 GeV�N
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FIG. 19: Same as Figure 17, except for a 197Au target for various projectile and energy combina-
tions. Experimental data [displayed as black circles] are from references [36] and [35].
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32S at 200 GeV�N 40Ar at 1.80 GeV�N 56Fe at 1.7 GeV�N 139La at 0.15 GeV�N
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FIG. 20: Same as Figure 17, except for a 197Au target for various projectile and energy combina-
tions. Experimental data [displayed as black circles] are from references [36] and [35].
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