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Abstract 

NASA has been supporting design studies and technology development that could provide power to 
an outpost on the moon, Mars, or an asteroid. One power-generation system that is independent of 
sunlight or power-storage limitations is a fission-based power plant. There is a wealth of terrestrial system 
heritage that can be transferred to the design and fabrication of a fission power system for space missions, 
but there are certain design aspects that require qualification. The radiation tolerance of the power 
conversion system requires scrutiny because the compact nature of a space power plant restricts the dose 
reduction methodologies compared to those used in terrestrial systems. An integrated research program 
has been conducted to establish the radiation tolerance of power conversion system-component materials. 
The radiation limit specifications proposed for a Fission Power System power convertor is 10 Mrad 
ionizing dose and 5×1014 neutron/cm2 fluence for a convertor operating at 150 °C. Specific component 
materials and their radiation tolerances are discussed. This assessment is for the power convertor 
hardware; electronic components are not covered here. 

Background 

A fission reactor combined with a Stirling engine power convertor is one technology option being 
explored for generating space-mission power. Fission power offers robust, environment-independent 
flexibility and adaptability for a broad range of space mission power requirements. A detailed lunar/Mars 
design concept has been developed previously by a joint NASA and DOE team (Ref. 1), and serves as a 
foundation for system-level technology development that can be readily adapted to a broad range of 
missions. The Fission Surface Power System (FSPS) concept developed for the moon and Mars would  
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provide 40 kWe (kilowatt electric) power for an eight-year service life. The power conversion system 
would utilize multiple, dual-opposed, free-piston Stirling engines with linear alternators providing 
nominally 6 kWe power output per alternator. The system was designed with convertor engines assuming 
heater head and heat rejection temperatures of approximately 525 and 125 °C, respectively. This 
reference design suggested a radiation shield between the reactor system and power conversion system 
that would limit radiation to 5 Mrad (gamma dose) and 2.5×1014 neutron/cm2 (neutron fluence) at the 
power convertor components (Ref. 1). One risk reduction task for this program was to examine the power 
system component materials and establish more rigorous radiation-limit specifications for the power 
conversion system.  

The study of space-mission radiation effects on materials is not new. Guidelines for determining 
radiation tolerance have been presented previously for space vehicle design (Ref. 2). The recommended 
three-step approach for assessing spacecraft radiation protection is to first define the environment, then to 
review the anticipated radiation response on representative component materials, and finally to determine 
that each design subsystem will perform as required in the predicted environment. The FSPS definition 
document (Ref. 1) provided the baseline mission and environment definition. Previous reports identified 
candidate materials-of-construction that may be sensitive to the radiation environment resulting from a 
fast-spectrum fission reactor (Refs. 3 and 4). The Stirling engine-based power conversion system 
structure is primarily fabricated from metallic alloys. Metallic alloys experience inconsequential changes 
in mechanical properties for neutron fluences of less than 1017 neutron/cm2 based on established 
guidelines and are not structurally affected by ionizing radiation (Refs. 2 and 5). However, there are 
components within the power conversion system that rely on polymeric and magnetic materials and these 
materials require radiation hardness scrutiny.  

Polymeric Components 

Polymeric materials are employed for a number of applications in Stirling power convertors including 
insulation, bonding, sealing, and surface treatment. In terrestrial Stirling convertors, polymer selection is 
driven primarily by the upper-temperature limit. Polymer stability can be characterized in a number of 
ways including mechanical properties, outgassing, and physical properties such as the glass-transition 
temperature, Tg. The mechanical properties of interest depend on the specific component application. 
Outgassing refers to the loss of volatile species from the polymers. The Tg refers to the transition from a 
low-temperature glassy state to a high-temperature rubbery state and is a common gauge of both the 
chemical stability and the changes in mechanical properties.  

Polymeric materials can be used in a variety of bonding applications in a free-piston convertor/ 
alternator system including lamination and permanent magnet attachment, and sensor attachment. 
Similarly there are potting applications such as coil fixation and feed-through reinforcement. Durability is 
key to the bonding material functionality in the alternator. The bonding materials must retain thermal and 
dimensional stability, as well as maintain tensile and/or shear strength. Bonding materials must obtain a 
highly-cured state at temperatures compatible with the components being bonded. This is a particularly 
relative concern for adhesively-bonded permanent magnets for which the bonding-material cure 
temperatures cannot induce demagnetization. In potting applications, dimensional and thermal stability is 
crucial while the tensile or shear strength is less important. Low resin viscosity also may be required to 
obtain adequate coverage. Due to the need to keep the assembly temperatures below the demagnetization 
temperatures, epoxies are the baseline choice for bonding and potting.  

Although metallic or close-clearance seals dominate Stirling designs, there are instances were 
polymeric seals can provide additional functionality. Dimensional stability, extrusion resistance, and 
resistance to embrittlement are required in these sealing applications. Rubbery elastomers, such as silicon, 
are needed for these seals. 

Electrical insulation is required for various wires and electrical connections, especially in the 
alternator section of a power convertor. Although dielectric strength is the primary requirement of an 
electrical insulation, the insulation coating must be flexible enough at the beginning of life to 



NASA/TM—2011-216996 3  

accommodate assembly and launch loads. Over the long-term operation of a FSPS mission, impact and 
vibration loads are minimal, but severe embrittlement and spallation must be avoided. As with other 
polymeric materials, chemical stability must be such that there is minimal outgassing induced by elevated 
temperature, radiation, or a combination thereof. In terrestrial Stirling systems, polytetrafluoroethylene 
(PTFE/Teflon, Dupont), polythermaleze, and polyimide wire coatings are common choices. 
Commercially available heat-shrink coatings are typically based on vinylidene fluoride. 

Modern Stirling convertors perform without contact at piston and displacer running surfaces during 
normal operation. Typically, solid lubricant coatings are applied to these running surfaces to minimize 
friction or stiction at start-up or under severe service conditions. The lubricant coating system must 
maintain adhesion, lubricity, impact resistance, and scratch resistance to function in the power convertor. 
The coatings must not generate debris that could interfere with the close clearance seals. There are a 
number of high temperature, ceramic-based solid lubricant systems, but polymer-based coatings such as 
Teflon fluoropolymer (DuPont), Emralon fluorocarbon (Acheson Colloids), and Xylan fluoropolymer 
(Whitford Corporation) are available for the temperatures currently required. 

Stirling convertor designs can use composites, such as glass-reinforced epoxies, as structures within 
the convertor. Dimensional stability, electrical insulation and minimal outgassing would be the primary 
performance requirements for this type of application.  

The definition of the radiation environment and the irradiation response in polymeric component 
materials is important for the FSPS because polymers can be damaged by radiation levels that are much 
lower than the levels affecting metallic and ceramic materials. Organic polymers are long, complex chains 
of covalently bonded atoms. The precise molecular structure including chain length, atom arrangement, 
and side-bonding (also known as cross-linking) determines the physical properties of the polymer. 
Ionizing radiation, which includes high energy protons, electrons, heavy particles, gamma-rays, and 
x-rays, can interact with polymers in several ways. The typical primary event is the ionization of an atom 
which locally breaks a covalent bond and creates a free radical that can then recombine somewhere else in 
the molecule (Ref. 6). In fact, the propensity for secondary and tertiary events from each primary 
radiation interaction is one of the reasons that radiation can be so damaging in all organic materials. The 
physical manifestation of the polymeric radiation damage is either scission or cross-linking of bonds. The 
scission or cross-linking can result in either softening or embrittling. The temperature of the polymer 
during irradiation is important since chemical mobility is a function of temperature. Furthermore, the 
gaseous environment surrounding the polymer is also key because the free radicals can combine with 
oxygen and accelerate material wastage. 

A perusal of the polymer irradiation literature suggested that the component radiation tolerances 
should be acceptable for this application. However there were certain concerns. The general radiation 
tolerance of polytetra-fluoroethylene (PTFE/Teflon) has been demonstrated to be quite low, especially in 
the presence of oxygen (Ref. 7). Though it has been shown that the specific chemistry of the PTFE can 
have a significant impact on the radiation resistance (Ref. 8). Also it is important to note that most of the 
irradiation literature is based on experiments performed in air and at room temperature. Drawing 
conclusions for the Stirling system radiation tolerance from the literature was problematic since both 
oxygen and temperature impact the radiation response. Furthermore, numerous studies have shown that 
additives or changes in formulation of the same basic polymer have a notable affect on the radiation 
resistance (see for example Refs. 9 and 10). It was deemed appropriate to confirm the radiation tolerance 
of mission-relevant polymeric materials under the correct environmental conditions of elevated 
temperature and inert cover gas, as recommended in the third-step of the approach for assessing 
spacecraft radiation protection (Ref. 2). Moreover, the changes brought about by irradiation were 
characterized both in terms of general chemical and physical response and in terms of component-specific 
characterization, such as shear-testing or compression-set, where applicable. 
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Magnetic Components 

Magnetic materials are necessary in the alternator section of the Stirling engine where the relative 
motion of permanent and soft magnets generates an alternating current. A hard, or permanent, magnetic 
material is one that requires a large magnetic field to induce magnetization and then retains this 
magnetization in the absence of the applied field. However, magnetic permanence is a bit of a misnomer 
because certain combinations of elevated temperature and reverse magnetic field will erase the electron-
spin alignment that produces magnetism. The permanent magnetic materials required in the FSPS 
alternator must have high coercive force strength (coercivity) and high remanent magnetic flux density 
(remanence) since the alternator performance is maximized for high values of both coercivity and 
remanence. A soft magnet is a material that will be magnetized in the presence of a magnetic flux and 
thereby affect the shape and strength of the overall magnetic field. Yet the remanent magnetic field in the 
soft magnet will be low once the applied field is removed. Soft magnetic materials thus are characterized 
by high permeability and low coercivity such that the material can be magnetized and demagnetized with 
minimal energy loss or hysteresis energy (Ref. 11).  

The primary irradiation damage mechanism in all metals is atomic displacement that can occur when 
a neutron or heavy ion strikes a metal atom with sufficient energy to cause an elastic or non-elastic 
reaction within the crystal structure. The recoiling atom is referred to as the primary knock-on atom and 
its energy is distributed to other nearby atoms by a series of secondary collisions in what is called a 
displacement cascade. This produces empty lattice sites (vacancies) and atoms injected into the interstices 
between lattice sites (interstitials). Fortunately, most vacancies and interstitials recombine along the 
original lattice structure. Those that do not recombine are responsible for radiation-induced 
microstructural and property changes. Materials with metallic bonding are insensitive to ionizing 
radiation because the electron cloud easily redistributes in response to electron orbit changes. As 
mentioned previously, mechanical property changes in metallic alloys do not become significant until 
neutron fluences exceed 1017 neutron/cm2. However, permanent magnets can be affected by irradiation at 
levels as low as 1012 neutron/cm2 with both temperature and demagnetization field being important 
correlating factors (Ref 12). Numerous studies have shown that SmCo-based magnets also have greater 
resistance to neutron irradiation than NdFeB-based magnets possibly due to a combination of thermal and 
radiation-induced degradation (Refs. 12 to 14). Gordon and Sery reported the onset of degradation in Ni-
based soft magnetic material around 1017 neutron/cm2 and the onset of degradation around 1018 
neutron/cm2 in a Fe-49Co alloy (Ref. 15). The review of literature irradiation data was deemed sufficient 
for ensuring that Fe-based soft magnetic materials and SmCo-based permanent magnets would perform as 
required in FSPS radiation environments. 

Radiation Hardness Testing 

The linear alternator candidate materials must be capable of tolerating a mixed neutron and gamma-
radiation environment to successfully complete the envisioned mission scenarios. The objective was to 
evaluate the performance of candidate polymeric materials used in the alternator by subjecting material 
coupons to similar neutron fluences and ionizing doses at the appropriate operating temperature and gas 
environment. A mixed, neutron and gamma, irradiation environment best simulates the anticipated FSPS 
mission environment. However, the neutron activation of certain materials greatly increases the safety 
risk, handling protocols, and hence the cost of those experiments. Therefore, experiments using a 
combination of test facilities generated a broad range of information in a cost-effective approach. 
Individual material coupons were exposed to ionizing radiation at a Oak Ridge National Laboratory 
(ORNL) gamma irradiation facility (GIF). The ORNL coupon-test matrix was augmented with a smaller 
matrix of samples exposed to a mixed-fluence environment at the Texas A&M University (TAMU)  
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Figure 1.—Gamma flux variation along the axial length of the test canister. 

Highlighted regions show the target specimen dose examples. 
 
research reactor. Also a prototypic alternator, the Stirling Alternator Radiation Test Article (SARTA), 
was tested at a Sandia National Laboratories (SNL) GIF. Accelerated dose rates could be used in these 
experiments since oxidative processes are the major contributor to time-dependent radiation degradation 
in polymers and an inert-gas environment is relevant for the FSPS power convertor system. 

The first coupon irradiation testing was conducted at ORNL’s High Flux Isotope Reactor (HFIR) 
GIF. The HFIR spent-fuel assemblies decay in a water holding facility. Adjacent locations in the pool are 
available for gamma exposure testing. The advantage of this test facility is that the flux distribution along 
the length of the test chambers allows for the accumulation of more than one dose in a single 
experimental run. Figure 1 illustrates the relative gamma flux profile along with approximate sample 
locations used to achieve three target doses at once. Dose rates in the irradiation canister vary with the age 
of the fuel assembly, but can be as high as 105 rad/hr. Radiachromic film dosimeters were used to 
measure the actual gamma dose at the test specimen locations in the sample holders. The inner 
dimensions of the canister available for irradiation testing are approximately 7.5 cm diameter and 63 cm 
length. The cap of the irradiation canister was fitted with gas handling and electric power feed-through 
junctions to incorporate the environmental requirements for the irradiation tests. The canister insert 
consisted of a multi-zone heater cartridge to which the sample holder assemblies were attached. The 
canisters were filled with argon to provide an inert cover gas. The sample holder assemblies were made of 
aluminum to maximize thermal conduction and minimize radiation absorption. Different sample holders 
were fabricated to accommodate various material specimens.  

Table 1 lists the coupon descriptions, the exposure temperatures, and the dose calculated from the 
dosimetry calibrations and Monte Carlo N-Particle Transport Code (MCNP) calculation with respect to 
position, exposure time, and maximum dose. All exposures were performed under inert, argon cover gas. 
Two types of epoxy, Hysol (Loctite) and Duralco (Cotronics), were tested. Two types of elastomer 
o-rings, silicon and Kalrez (DuPont), were tested. Commerically available coated wires were tested. Viton 
(DuPont) and Kynar (Arkema Group) heat shrink materials were teste. A Xylan (Whitford Corporation) 
solid lubricant was tested. 

A second set of coupon irradiation tests was conducted at the TAMU TRIGA (General Atomics) 
Mark I reactor. The samples were exposed in the confinement building, which is a dry, irradiation cell 
adjacent to the reactor pool. The reactor core is coupled to the irradiation cell through an irradiation cell 
window. The average thermal and fast neutron fluxes in the vicinity of the irradiation cell window were 
experimentally characterized through the use of threshold activation foils. The use of several types of 
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TABLE 1.—TEST MATRIX FOR ORNL IRRADIATED  
COUPONS AND CALCULATED DOSE 
Coupon Type Temperature,

°C 
Dose,  
Mrad 

Epoxy and epoxy shear assembly 125, 150 3, 12, 14 
 125 15, 71 
Elastomeric o-rings 125, 150 3, 12, 14 
PTFE-insulated wire 125, 150 3, 12, 14 
 125 15, 71 
Polyimide-insulated wire 125 3, 12, 14 
Heat shrink tubes over Al rods 125, 150 3, 12, 14 
Solid Lubricant Coating 125, 150 3, 12, 14 

 
 

TABLE 2.—TEST MATRIX FOR TAMU IRRADIATED  
COUPONS AND CALCULATED DOSE  

Coupon type Temperature,
°C 

Dose,
Mrad 

Fluence,  
n/cm2 

Epoxy shear assembly 125, 150 1.4, 5.4 1×1014, 5×1014 

Elastomeric o-rings 125, 150 1.4, 5.4 1×1014, 5×1014 

PTFE-insulated wire 125, 150 1.4, 5.4 1×1014, 5×1014 

Polyimide-insulated wire 125, 150 1.4, 5.4 1×1014, 5×1014 

Heat shrink tubes 125, 150 1.4, 5.4 1×1014, 5×1014 

Solid lubricant coating 125, 150 1.4, 5.4 1×1014, 5×1014 

 
 
activation foils allowed the neutron spectrum to be estimated at discrete energies. The spectra were then 
used to benchmark the existing MCNP models in the vicinity of the irradiation cell window. Two types  
of gamma dosimeters were used to characterize the spatial dose rates as a function of distance from the 
window. A location 11 cm from the window face was selected as best to achieve the required opera- 
tional neutron fluence while staying within a mission-relevant dose limit of 10 Mrad. The combined 
measurements and modeling provided an average total neutron flux estimate of approximately 
2.9×1011 neutrons/cm2/sec and a corresponding gamma-ray dose rate estimate of 0.12 to 0.14 Mrad/min  
at the test location. Aluminum pressure vessels were used to house the specimens during irradiation. 
The pressure vessels were evacuated then charged with high purity helium and heated to the desire 
exposure temperature. Additional details on the test configurations are given in References 16 and 17. 
Table 2 lists the coupon material types exposed in the TAMU testing.  

The final series of experiments involved irradiation of a motoring test article which captured the 
functionality of a Stirling linear alternator. The Stirling Alternator Radiation Test Article (SARTA) was 
fabricated by Sunpower, Incorporated. The potentially radiation-sensitive polymeric materials and magnetic 
materials were represented in their expected component applications. The SARTA utilized typical hard-
magnetic material, soft-magnetic-material lamination cartridge, cylinder, and cylinder o-rings. Two, metal-
sheathed, type-K thermocouples were bonded within the alternator. The motor was encased in a stainless 
steel pressure vessel mounted on a transition plate with power, gas, and thermocouple feed-through 
junctions. Motoring control for the SARTA was provided by a manually-operated, variable-frequency 
power supply. Temperature control was provided by a combination of external cooling and closed-loop 
heating. The operating conditions of alternator power, alternator current, alternator voltage, stroke 
magnitude, pressure, internal temperature, and external temperature were continuously recorded during 
motoring. Engine noise was monitored through a microphone for audible feedback. 
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Figure 2.—SARTA mounted in low-dose-rate configuration, source down (left). SARTA mounted in 

high-dose-rate configuration, source up (right). 
 
 

TABLE 3.—TEST MATRIX SUMMARY FOR SARTA EXPOSURES INCLUDING  
CALCULATED DOSE RATE AND CUMULATIVE DOSE 

Irradiation runs Temperature,
°C 

Dose rate, 
rad/s 

Approximate dose/step, 
Mrad 

Cumulative dose,  
Mrad 

1 to 4 90 80 0.14 to 0.35 0.98 
5 to 7 90 80 1 to 1.3 4.0 
8 to 9 90 850 0.25 4.5 

10 to 13 90 850 2 to 10 22.4 
14 125 80 0.3 22.7 

15 to 18 125 850 1 to 10 40.1 

 
 
The SARTA hardware was irradiated at SNL. This facility uses a 155.6 kCi 60Co source (source 

strength at the time of exposure) that consisted of a 20 pin, 32 cm diameter circular array. Two different 
locations were used in the test cell to provide two different dose rates. The SARTA test article was placed 
in the test cell approximately a meter outside the Co60 array for the low-dose-rate configuration. The test 
article was positioned inside the array for the high-dose-rate configuration. Figure 2 shows the test article 
in each configuration; the high-dose-rate configuration is shown as viewed through a leaded-glass 
window. CaF2 thermo-luminescent dosimeters were used to measure the actual dose for six, short-
duration test runs. The calculated average dose rate was 78.9 rad/sec for the low-dose-rate configuration 
and 854 rad/sec for the high-dose-rate configuration. 

The operating performance of the alternator was measured continuously during irradiation. Between 
each irradiation test the inductance, resistance, and resistance-to-ground were measured for the alternator 
coil and the fast linear displacement transducer coil. Table 3 summarizes the operating temperature and 
dose accumulated for the SARTA irradiation testing runs (Ref. 18). Itterative step changes were made to 
increase the test condition severity based on the component temperature, the dose rate, and the 
accumulated dose per step. Although the variation in operating parameters between the baseline testing at 
NASA Glenn Research Center (GRC) and the testing at SNL were greater than anticipated, the operating 
conditions measured during all 18 irradiation experimental runs appeared to be quite stable. Differences 
in the support systems at GRC and SNL resulted in larger pressure leak rates during the testing at SNL, 
presumably due in part to leakage around thermocouple fittings and at the pressure regulator. In fact, the 
biggest influence in electrical performance found during the irradiation runs appeared to result from the 
fluctuation in system pressure.  
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Post-Irradiation Evaluation Techniques 

A range of techniques were used to evaluate possible physical and chemical changes due to the 
combined thermal and radiation exposures. Specimen weights were measured before and after irradiation 
using standard, calibrated scales to assess possible weight loss or gain due to mechanisms such as 
oxidative processes. Specimen dimensions were measured before and after irradiation using standard, 
calibrated calipers to assess possible shrinking or swelling. A standard drying process was used prior to 
weight or dimension measurement. Visual changes were assessed using manual inspection as well as 
optical microscopy up to 1000× magnification. Scanning electron microscopy was used for higher 
magnification visualization of select samples as well as qualitative surface chemistry using energy 
dispersive spectroscopy. The bonding strength of the candidate epoxies was assessed using sub-scale, 
lap-shear tensile specimens. Lap-shear tests were performed at 120 °C in air with a standard, screw-
driven, universal load frame. The o-ring samples were evaluated through a combination of leak testing, 
compression set, and residual tensile strength. Various micro and nano-scale tests were employed to 
determine potential radiation-induced mechanical property changes in the polymers used as insulation 
sleeves, insulation coating, shrink tubing, and rub-surface coating. The nano-scale coating tests were 
performed by Nanovea, Irvine, California. A Thermo Electron Nicolet 380 FTIR was used to obtain 
surface chemical spectra for material samples. This technique provides a good indication of the changes 
in surface chemistry, as indicated by the presence of different peaks, peak shifting, or large changes in 
peak intensity. A TA Instruments Q-1000 Differential Scanning Calorimeter (DSC) was used to produce 
heat-flow-difference curves from specimens weighing 5 to 10 mg. This technique identifies exothermic or 
endothermic reactions, phase transitions such as melting, glassy-rubbery transitions, and the degree of 
curing. A TA Instruments Q-500 Thermo Gravimetric Analysis (TGA) system was used to measure 
outgassing through weight change as a function of temperature and the thermal degradation temperature 
(Td). For all physical and chemical measurements, control specimens were tested which had experienced 
thermal aging comparable to the time-at-temperature experienced in the elevated-temperature irradiation 
testing. 

Post-Irradiation Evaluation Results 

Epoxy coupons experienced no systematic or statistically significant changes in weight, dimensions, 
appearance, or physical/chemical properties as a function of irradiation under the conditions studied. The 
epoxy-bonded lap-shear test results exhibited a high degree of variability, which made trends in strength 
or strain-to-failure difficult to isolate. There did appear to be a slight decrease in both strength and strain-
to-failure as the result of thermal aging and, possibly, an additional decrement due to irradiation at 
elevated temperature. However, it must be emphasized that the changes between average values were less 
than the scatter as defined by standard deviation. 

Elastomeric o-ring samples experienced no systematic or statistically significant changes in weight, 
appearance, or physical/chemical properties as a function of the irradiation under the conditions studied. 
There was a slight compression-set for the o-rings irradiated under load (ORNL gamma testing) and  
slight swelling for o-rings irradiated not under load (TAMU mixed-fluence testing). In post-irradiation 
inspection of the SARTA hardware, there was considerable compression-set observed for a silicon o-ring, 
but no loss of sealing was apparent. In the ORNL gamma-irradiated coupons there was no loss in sealing 
as a result of irradiation but there were slight changes in residual tensile strength. In post-irradiation 
tensile testing of the o-rings, gamma radiation appeared to decrease the strain-to-failure and increase the 
tensile strength for silicon o-rings. However, gamma radiation exposure decreased both the strain-to-
failure and the tensile strength for Kalrez o-rings. Tensile testing was not performed after mixed fluence 
exposures.  

Compression-set of the elastomers was a particular area of concern based on the previous irradiation 
literature. The compression-set property, CB, was defined by CB = (to – tf)/(to – tshim), where: to = original 
specimen thickness, tf = final specimen thickness, and tshim = shim thickness (i.e., tshim = 0.75 to). The 
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residual compression set was measured at 30 min after unloading and also measured at other times up to 
48 hr after unloading to monitor recovery. Figure 3 shows the compression-set results for the two types of 
elastomeric o-rings tested. Here open symbols represent post-gamma-only irradiation and filled symbols 
represent post-mixed-fluence irradiation. Cross symbols represent as-received or after thermal aging. 
Scatter bands are shown for the as-received material data set. The silicon material experienced less 
compression-set than the Kalrez. For the silicon, there might be some increase in compression-set for 
exposures at the highest temperature, but more data would be required to confirm that the trend is real and 
not an artifact of scatter within the data. The irradiated Kalrez samples experienced relatively the same 
compression-set as the controls specimens.  

The PTFE-coated wires were the component most affected by irradiation. Although there were no 
systematic or statistically significant changes in weight or dimensions, visible cracks were seen after 
15 Mrad at 125 and 150 °C in gamma-only ORNL testing. Cracks were also found in the PFTE-insulated 
wires during SARTA disassembly and inspection (Ref. 19). This cracking can be seen most readily when 
the wires are cut. Examples are shown in Figure 4. DSC results appeared to indicate an increase in heat-of-
melting which would suggest an increase in crystallinity after 3 Mrad exposure, but the data variation was 
too large to be conclusive. Limited nano-indentation data suggests an increase in hardness due to thermal 
history alone, followed by an additional increase in hardness due to irradiation. The limited data 
generated between 3 and 15 Mrad makes it difficult to assign a safe radiation limit based on these results. 
PTFE insulation is not recommend for FSPS applications above 5 Mrad without additional experimental 
verification. 
 

    
Figure 3.—Percent compression-set versus relaxation time for (a) silicon and (b) Kalrez o-rings. 

 

     
Figure 4.—Cracks developed in PFTE wire insulation are readily observed when irradiated 

wires were cut after (a) 15 Mrad gamma exposure at 125 ºC and (b) the cumulative 
SARTA exposure. 
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Polyimide-coated wires had very thin coatings which were difficult to interrogate by visible 
inspection. Limited nano-indentation data on the polyimide-coated wires suggested an increase in 
polyimide hardness due to thermal history alone, followed by a slight decrease in hardness after 3 Mrad, a 
larger decrease after 12 Mrad and then an additional increase after 14 Mrad. More analysis is underway to 
attempt to understand this apparent change in mechanism. Load-to-initiate delamination appeared to 
increase as a function irradiation for the polyimide-coated wires. The SARTA performed within expected 
variation through motoring up to 40 Mrad. However, a short-circuit was detected in post-radiation 
inspection after the unit was removed from the test cell. Post-irradiation disassembly suggested that the 
short-circuit occurred in the SARTA alternator windings, which are conductive wires coated with 
polyimide insulation. The alternator wire could not be unwound for detailed inspection because the wire 
was encased in potting material. It was determined that removing the potting material might damage the 
coating and it would be impossible to discriminate between disassembly damage and irradiation damage. 
Therefore the source of short-circuit could not be identified. It should be noted that the SARTA was a 
one-offering, proto-type designed specifically for this test and the steady-state operational life of the unit 
in absence of irradiation is likewise unknown. Even though literature data suggests that polyimide 
materials in general have high radiation resistance, the current work suggests that alternator windings 
with thin polyimide coatings should not be used for FSPS applications above 10 Mrad without additional 
experimental verification. 

The heat-shrink materials irradiated in the ORNL gamma-exposure testing had been pre-shrunk on 
aluminum rods under controlled furnace conditions. These heat-shrink samples experienced no systematic 
or statistically significant changes in weight, appearance, or physical/chemical properties as a function of 
irradiation after ORNL gamma exposures. The heat-shrink samples irradiated in the TAMU mixed 
fluence testing were not thermally aged before irradiation. The thermal changes experienced during 
irradiation at elevated temperature overwhelmed any additional changes due to irradiation. Heat shrinking 
in SARTA assembly was performed using a heat gun. This standard assembly practice introduces 
variation in the amount of heat applied to the heat shrink material. Therefore, it was problematic to make 
physical-state comparisons between the SARTA, post-irradiated heat shrink materials and various 
controls. 

The solid lubricant-coated samples experienced no systematic or statistically significant changes in 
weight, appearance, or physical/chemical properties as a function of irradiation under the conditions 
studied. 

Conclusion 

Acceptable levels of radiation tolerance have been established for a candidate set of FSPS power 
convertor materials through a combination of coupon testing and experiments with an alternator-like test 
article. Experiments were performed in inert gas and at elevated temperatures up to 150 °C. Extensive 
data was collected up to 15 Mrad of ionizing radiation from different sources and limited data was 
generated at higher doses. Most of the samples were functionally unaffected by the irradiation conditions. 
Ionizing radiation up to 10 Mrad and neutron exposures up to 5×1014 neutron/cm2 produced insignificant 
degradation for all of the materials tested except the PTFE-based wire insulation. Therefore, it is 
recommended that future space fission power concept design iterations can proceed with higher neutron 
and gamma fluence limits for the power conversion units than those previously proposed (Ref. 1). Power 
conversion system designers must be cognizant of the fact that the radiation response of polymers can be 
greatly affected by specific additives (Ref. 9) and deviations from the specific materials tested must be 
made judiciously. 
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