Mational Aeronauticsjand Space Admini

NASA/SP-2011-597

www.nasa.gov

THE ENSEMBLE

PROJECT ICON

REPRESENTS THE

COLLABORATIVE

SPIRIT OF

INDIVIDUAL

ELEMENTS

WORKING

TOGETHER TO

PROVIDE A MORE

USEFUL WHOLE.

e Owned — Each Ensemble member will develop some capabilities that fall within an area that they
consider their principal focus. The plugins that make up these capabilities are considered to be ex-
clusively owned by the member and are clearly marked in the Ensemble repository with the reverse
domain name of the team at the beginning, for example, gov.nasa.arc.teamname.foo.bar. The source
code of these plugins is always available for reference by other Ensemble participants, but all modifi-
cations are submitted to the member that owns the plugin. These modifications are also considered
the property of the member. In other words, contributions to an owned plugin do not grant the con-
tributor any ownership of the plugin. Ensemble members may use an owned plugin in a project only
with the permission of the member that owns it.

e Shared — Some capabilities (for example, parsing an activity dictionary) are utilitarian in nature and
should be developed only once and maintained centrally. The plugins that make up these capabilities
are developed cooperatively by Ensemble members and are marked in the Ensemble repository
with names of the form gov.nasa.ensemble.foo.bar. All Ensemble members may modify and use
these plugins for any purpose, regardless of whether they contributed any code to its development.

Owned plugins can become shared at the discretion of the member that owns them, but shared plugins
cannot become owned without the approval of all Ensemble members. If a member decides to leave the
Ensemble project, they retain the right to use all shared plugins according to the terms above and may
remove all of their owned plugins from the Ensemble repository.

Conclusion

Ensemble is enabling NASA missions to derive greater results from their investment in mission operations
software. Instead of stringing together a series of largely isolated and independent tools, missions are free
to assemble precisely the tools they need by drawing components together from different development
teams. Mission operators become more efficient, which improves the overall performance of their mis-
sions. Finally, operations software developers are free to focus more on developing great tools and less on
frustrating integration issues.

Contact Information

The Ensemble Project is a collaborative effort of its member organizations. As currently constituted, the
member Agencies and Centers are represented by their Ensemble Point of Contact:

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive, Pasadena, California 91109
www.jpl.nasa.gov

Ensemble Point of Contact: David.S.Mittman@nasa.gov

NASA Ames Research Center

Moffett Field, California 94035
www.nasa.gov/centers/ames

Ensemble Point of Contact: Michael. McCurdy@nasa.gov

NASA Johnson Space Center

2101 NASA Parkway, Houston, Texas 77058
www.nasa.gov/centers/johnson

Ensemble Point of Contact: Timothy.A.Hall@nasa.gov

This publication was prepared by the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration. © 2011. All rights reserved.

The Ensemble Canon

... IMPROVEMENTS

IN THE STATE

OF THE ART

IN SOFTWARE

ENGINEERING

AND INCREASING

DEMANDS FROM

NEW MISSIONS

HAVE EXPOSED

SEVERAL AREAS

THAT DESERVE

ATTENTION.

Introduction

Ensemble is an open architecture for the development, integration, and deployment of mission opera-
tions software. Fundamentally, it is an adaptation of the Eclipse Rich Client Platform (RCP), a widespread,
stable, and supported framework for component-based application development. By capitalizing on the
maturity and availability of the Eclipse RCP, Ensemble offers a low-risk, politically neutral path towards a
tighter integration of operations tools.

The Ensemble project is a highly successful, ongoing collaboration among NASA Centers. Since 2004,
the Ensemble project has supported the development of mission operations software for NASA's Explora-
tion Systems, Science, and Space Operations Directorates.

Background Information

Though Ensemble is based heavily upon Eclipse, a full description of this environment is well beyond the
scope of this document. Numerous online and printed resources are available that describe Eclipse in
great detail and should be considered a supplement to the brief description provided below.

Eclipse is most well known as an integrated development environment (IDE) for the Java programming
language. Although Ensemble members often elect to use Eclipse as their IDE, Ensemble is not based on
the Eclipse Java IDE but on the RCP. The Eclipse RCP is a set of Java classes that defines an architecture
for general component-based applications. New applications are built on top of the RCP as a set of com-
ponents called plugins that augment and extend its functionality. The Eclipse IDE for Java programming,
for instance, consists of the RCP plus a set of plugins that add capabilities like compiling and debugging
Java programs. A mission activity planning application would consist of the RCP plus a set of plugins
responsible for visualizing, editing, and modeling activity plans. Applications built on top of the RCP also
gain access to a variety of generally applicable capabilities such as a help system, update manager, and
an extensible graphical user interface (GUI).

The Eclipse RCP is designed primarily as a framework for Java applications. Although it is possible to
integrate components written in C or C++ using the Java Native Interface, this strategy is only feasible for
components that don’t have a GUI component. There is no straightforward way to tightly integrate a GUI
written in a different language with the Eclipse GUI.

Problem Statement

The current approach used to develop mission operations software has produced a set of powerful tools
that have enabled stunning successes for NASA. Many parts of the current development process are
functioning well and should be preserved. However, improvements in the state of the art in software engi-
neering and increasing demands from new missions have exposed several areas that deserve attention.
The five problems that Ensemble has been designed to address are outlined below.

Brittle interfaces

Historically, mission operations software has consisted of a set of largely independent tools communicat-
ing with each other using files or socket-based interfaces. For example, the Mars Exploration Rover (MER)
Activity Planning and Sequencing Subsystem (APSS) is made up of five tools that pass information among
each other primarily using files and translators. The interfaces between the tools were added late in the
development process and were the source of numerous problems. MER lessons learned workshops have
identified these interfaces as an area that needs immediate improvement.

... ENSEMBLE’S

RELIANCE ON

ECLIPSE PROVIDES

A COMMON GUI

FRAMEWORK ...

Too many GUIs

The number of separate tools used in the MER APSS is also the source of a popular complaint because
it requires mission operators to interact with many different user interfaces to get their work done. This
slows the overall pace of mission operations and increases training requirements.

Difficult integrations

Development teams often need to build interfaces between their tools; a process that is often complicated
by the fact that they have developed their tools in different environments using different standards. Teams

have difficulty understanding the architecture of each other’s tools, leading to poorly conceived integration
plans.

Duplication of effort

The tools used in existing mission operations systems are designed to address the needs of a certain
phase of the operations process. One tool is designed to accomplish science planning while another is
used for command sequencing. However, certain capabilities are needed at multiple stages in the opera-
tions process. Unfortunately, the architectures used in current mission operations tools do not allow capa-
bilities from different tools to be reused at multiple steps in the process. As a result, redundant versions of
these capabilities are developed by multiple teams and inserted into separate tools.

Lack of agility

Most development teams strive to make their tools applicable to multiple missions. This is a positive goal
because it enables future missions to capitalize on the investment made by prior missions. However, it
can also force a mission to accept and maintain capabilities that it doesn’t need. The popular “core and
adaptation” model is an attempt to insulate different customers from customer-specific requirements, but
what if one customer only needs a fraction of the core? Currently, that customer is simply forced to ac-
cept the rest of the core anyway, along with the risk and costs associated with its maintenance.

The Solutions Offered by Ensemble

Ensemble addresses the five problems listed above by offering a superior environment for mission opera-
tions tools development. The details of Ensemble’s approach to these problems are described below.

Replace network and file interfaces with direct application interfaces

File and socket-based interfaces are notoriously difficult to test and debug. As a result, these kinds of in-
terfaces tend to fail often. The most reliable interface between two tools is usually accomplished by direct
use of the respective tools” application programming interface (API). This approach ensures that many
problems in the interface are discovered at compile time.

Unfortunately, direct APIs are very difficult to implement when the tools being integrated were developed
in different environments. Because most Ensemble members agree to develop their tools as Eclipse
plugins, these issues are minimized. In addition, Ensemble draws upon capabilities provided by the
Eclipse RCP (Extension Points, Plugin Dependencies, etc.) to document and enforce interfaces between
different components.

In some cases it is not possible or prudent to develop a tool as an Eclipse Java plugin. These compo-
nents can still be integrated with the Ensemble architecture. We have developed a general, robust method
for non-Eclipse tools to interact with other Ensembile tools. By reusing a single interface point for multiple
external tools, it is expected that the reliability of these interfaces will be increased.

Provide a unified GUI for all operations tools

The complexity of mission operations makes it infeasible to develop a single operations tool capable of
accomplishing all necessary tasks. However, Ensemble’s reliance on Eclipse provides a common GUI
framework that can contain GUI components from multiple tools developed by different teams. The result
is a GUI that feels like a single tool to the user, but draws upon the resources of many development
teams.

... THE ENSEMBLE

PROJECT PROVIDES

ADDITIONAL

DEVELOPMENT

INFRASTRUCTURE

RESOURCES

THAT FURTHER

INTEGRATE EFFORTS

BETWEEN TEAMS.

Ensemble uses a task-oriented GUI that is based heavily upon Eclipse perspectives. A perspective de-
fines which GUI components will be visible to a user at a particular time. As users move through the tasks
required for planning, they click through a set of icons devoted to each task. For instance, a user might click
on an icon to make active a perspective devoted to browsing downlink data and then move on to a per-
spective devoted to building a set of activities for planning.

Ease integration with a standardized development environment

Much of the difficulty met with in intertool integration occurs because development teams are using dis-
similar development environments. Ensemble encourages its members to develop within the Eclipse IDE to
minimize these differences.

The Ensemble project provides additional development infrastructure resources that further integrate efforts
between teams. For instance, a common bug tracking system makes it straightforward to transfer tasks
between teams, and a common code repository makes code integration much more straightforward. A
continuous integration server builds and tests Ensemble-based products and provides continuous feedback
to team members on the status of their product builds.

Enable reuse of components throughout the operations process and between missions

The component-based development model and the perspective-based GUI that Ensemble inherits from
Eclipse enables a mission to easily reuse any component at multiple stages of the operations process. For
instance, a data view that was historically available only during the sequencing phase of operations can be
displayed and used at any time if that view is developed as an Eclipse plugin.

This reuse is possible because of the manner in which Ensemble plugins deal with the spacecraft plan. In
the past, the spacecraft plan has been handed from one tool to the next in a serial fashion. At each step, a
single tool had exclusive control over the plan. In contrast, Ensemble plugins interact as a group with a com-
mon model of an evolving spacecraft plan. Each plugin can contribute to the plan whenever it is necessary,
and each plugin must respond appropriately to modifications made by other plugins.

As a multimission architecture, Ensemble also supports extensive reuse of components among missions.
The vast majority of Ensemble plugins are mission-independent, and mission-specific plugins are clearly
identified. Ensemble-based mission operations tools were used in support of the Phoenix Mars Lander and
the Mars Exploration Rovers, and are being developed for the Mars Science Laboratory mission as well as
several technology programs. Each of these projects shares a large amount of source code.

Support delivery of only those components that a customer requires

An Eclipse (and therefore Ensemble) application consists merely of the core RCP plus a set of plugins. The
set of plugins that are included completely defines the functionality provided by the program. Because plugin
dependencies are clearly documented and checked through the Eclipse IDE, it is possible to release only
those plugins to a customer that provide the functionality they need. For instance, if a particular customer
doesn’t need spectral visualization support, the plugins that provide that capability can simply be omitted
from their release. Plugin selectivity provides a tool that is easier for the customer to test and learn to use.

The plugin model provided by Eclipse enables Ensemble members to access a vast array of capabilities as
needed while retaining the agility necessary to provide small, targeted releases that precisely meet a cus-
tomer’s needs. The Ensemble project’s continuous build and test system has been designed to support this
model.

Guide for Ensemble Members

This section describes a few standards and practices that Ensemble members follow while working within
the Ensemble project.

Ownership

Inevitably, any project built on the concept of sharing must eventually address real issues of ownership.
To reduce the possibility of misunderstandings in this area, Ensemble has adopted two classifications for
plugins developed by Ensemble members:

Form Approved
REPORT DOCUMENTATION PAGE OMB N B o168

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters
Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should
be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-07-2011 Special Publication

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Collaborate: The Ensemble Canon NAS7-03001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Mittman, David S.

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Jet Propulsion Laboratory REPORT NUMBER

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91009

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration NASA

Washington, DC 20546-0001 11. SPONSORING/MONITORING

REPORT NUMBER
NASA/SP-2011-597

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified—Unlimited

Subject Category 61 Computer Programming and Software

Availability: NASA CASI (301) 621-0390 Distribution: Nonstandard

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Ensemble is an open architecture for the development, integration, and deployment of mission opera- tions software.
Fundamentally, it is an adaptation of the Eclipse Rich Client Platform (RCP), a widespread, stable, and supported
framework for component-based application development. By capitalizing on the maturity and availability of the
Eclipse RCP, Ensemble offers a low-risk, politically neutral path towards a tighter integration of operations tools.

The Ensemble project is a highly successful, ongoing collaboration among NASA Centers. Since 2004, the
Ensemble project has supported the development of mission operations software for NASA’s Explora- tion Systems,
Science, and Space Operations Directorates.

15. SUBJECT TERMS

mission planning, sequencing, computer programming, software engineering, applications programs (computers),
Iappllc:i\jtlon programming interface, standardization, graphical user interface, Java (programming language), lessons
earne

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER OF | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT |c. THIS PAGE Ulj) F ABSTRACT A PAGES STI Help Desk at help@sti.nasa.gov
U U U 19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

JPL 2659 R 10/03 W Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

