1/\!f Noise in the superconducting transition of a MgB\textsubscript{2} thin film

B. Lakewa,, S. Aslama,*, H. Jonesb, T. Stevensonc, N. Caoc,d

a NASA/Goddard Space Flight Center, Planetary Systems Laboratory, Code 693, Greenbelt, MD 20771, USA
b NASA/Goddard Space Flight Center, Microwave Instrument Technology Branch, Code 555, Greenbelt, MD 20771, USA
c NASA/Goddard Space Flight Center, Detector Systems Branch, Code 553, Greenbelt, MD 20771, USA
d IM3 Technologies Inc., 4525 Bay Area Blvd., Houston, TX 77058, USA

Abstract

The noise voltage spectral density in the superconducting transition of a MgB\textsubscript{2} thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz to 1 kHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f (excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB\textsubscript{2} thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (\(\approx 10^{-1} \) W/K) that the measured noise voltage spectrum is 1/f limited and exhibits 1/f dependence with \(\alpha\) varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is \(\approx 61 \text{nV}/\sqrt{\text{Hz}}\), using this value an upper limit of electrical \(\text{NEP} = 0.67 \text{pW}/\sqrt{\text{Hz}}\) is implied for a practical MgB\textsubscript{2} bolometer operating at 36.1 K.

1. Introduction

The signal-to-noise performance of a bolometer that uses the resistive transition of a superconducting film as a temperature sensor (thermistor) is limited by incoherent noise sources. Ideally a fully optimized bolometer should be designed such that the dominant noise sources are Johnson and phonon noise \cite{1}. However, superconducting films that are used in bolometer construction are generally polycrystalline and granular in nature and can give rise to large current dependant excess noise, it is therefore important to assess the 1/f noise contribution from the film itself. Many reports in the literature have shown that in high-\(T_c\) superconducting granular ceramic thin films, e.g. YBCO, that the excess noise approaches zero in the superconducting state and that it rises sharply in the transition region with a 1/fb type spectrum with \(\alpha \approx 1\) over a wide range of frequencies \cite{2}. Gandini et al. \cite{3} have reported similar findings for a granular MgB\textsubscript{2} thin film sample, they postulate a percolation process between grains in the film for the origin of the noise and show 1/fb noise dependence with \(\alpha \approx 1.5\) in the range 1 to 100 Hz. In addition to the film intrinsic noise, the thermal coupling between the film and the substrate also plays an important role in determining both the noise magnitude and the shape of the spectrum \cite{4}. In this paper we present results of a noise voltage spectral density measurement in the superconducting transition of a high resistance MgB\textsubscript{2} thin film on a bulk SiN-coated Si thick substrate in order to establish whether or not the level of excess noise from the film alone will limit the ultimate detection sensitivity when used in a bolometer construction.

2. High-\(T_c\), superconducting bolometer noise

In a high-\(T_c\) bolometer incoming radiation, \(P_{\text{rad}}\,[\text{W}]\), heats up an absorber and changes the electrical resistance, \(R\,[\Omega]\), of a thermistor with a temperature coefficient of resistance (TCR), \(\alpha = (1/R)\text{d}R/\text{d}T\,[\text{K}^{-1}]\). The absorber with heat capacity \(C\,[\text{J/K}]\) is weakly coupled through a link with a thermal conductance \(G\,[\text{W/K}]\) to a cold thermal reservoir at temperature \(T_0\). The resulting thermal time constant is \(\tau = C/G\,[\text{s}]\). The electrical resistance change modifies the Joule heating, \(P_{\text{bias}} = i_{\text{bias}}^2V\,[\text{W}]\), giving rise to an Electro-Thermodynamic Feedback (ETF) \cite{5,6,7} into the bolometer that produces an effective thermal conductance \(G_{\text{e}} = C(1 - L_0)\,[\text{W/K}]\) and an effective time constant of \(\tau_{\text{e}} = \tau/(1 - L_0)\,[\text{s}]\) where \(L_0 = \alpha P_{\text{bias}}/G\) is a dimensionless parameter that can be considered as the loop gain in the ETF mechanism. Assuming that photon noise from background radiation, measurement system noise sources and noise due to acoustic bubbling in the liquid He cooling bath are small enough to be ignored \cite{1}, then the three main fundamental uncorrelated noise sources in the bolometer are Johnson and 1/f (current or excess) noise of the thermistor resistance and phonon noise of the link to the cold thermal reservoir. Mather \cite{5} has noted the effect of the ETF on the noise properties of the bolometer, using his treatment the noise voltage spectral density due to Johnson noise, \(S_J(\omega)\), can be derived as,
The thermistor thin film resistance and its quality (e.g. grain size, non-uniformities, etc.) also gives rise to 1/f noise [4]. The exponent, a, generally for e.g. high-Tc YBCO thin films is in the range between 0.6 and 0.9 [8]. Assuming that the 1/f noise power spectral density, $S_{1/f}(\omega) [V^2/Hz]$, follows a frequency dependence of ω^{-1} and that $S_{1/f} \propto \omega_0^{a}$ [9], then the corresponding 1/f noise voltage spectral density, $V_{1/f}(\omega) [V/\sqrt{Hz}]$ after some computation can be expressed as,

$$S_{1/f}(\omega) = \frac{\sqrt{4k_{B}C_{G}T(1-\theta_{0})}}{\omega_{0}}$$

(2)

Fluctuations in the thermal equilibrium mean square energy in the thermistor thin film give rise to a phonon noise voltage spectral density, $S_p(\omega) [V/\sqrt{Hz}]$, given by [7],

$$S_p(\omega) = \frac{\sqrt{4k_{B}T^2G \cdot \Omega(\omega)}}{\omega_{0}}$$

(3)

In the above equations, k_{B} is the Boltzmann constant and $\omega = 2\pi f$ [Hz] is the angular frequency. The second term in Eq. (3) is the voltage responsivity, $\Omega(\omega) = \eta J_{0}/(\omega_{0}(1-\theta_{0})\sqrt{1+\theta_{0}^{2}\omega^2})$ [V/W] where $\eta = 1$ for 100% radiation absorption efficiency and in Eq. (2) $\omega_0 = 2\pi f_0$ [Hz] is the angular corner frequency, i.e. the transition from 1/f to phonon noise for a fixed f_0, determined from the log-log plot of the measured noise voltage spectral density. It is noted that 1/f noise of Eq. (2) and phonon noise of Eq. (3) is not measurable without a bolometer bias current, whereas Johnson noise from Eq. (1) is always present. Since, the contributions of Johnson, 1/f and phonon noise are uncorrelated, the mean-square values will add to give the total equivalent noise voltage spectral density, $S_e(\omega) [V/\sqrt{Hz}]$,

$$S_e(\omega) = \left[(S_{1/f}(\omega))^2 + (S_p(\omega))^2 + (S_j(\omega))^2\right]^{1/2}$$

(4)

Eq. (4) is used to define the Noise Equivalent Power, $NEP [W/\sqrt{Hz}]$, of a bolometer, i.e. $NEP = S_e(\omega)/\Omega(\omega)$ [11]. A plot of NEP, as a function of thermal conductance, C, is shown in Fig. 1a for a low noise MgB2 thin film based bolometer that has a corner frequency of $f_0 = \omega_0/2\pi = 2$ Hz and the following realizable parameters, $C = 1 \text{ mK}^{-1}$, $L_0 = 0.3$, $\alpha = 1.67 \text{ K}^{-1}$, $R = 1 \text{ K}\Omega$, $T = 36.1 \text{ K}$ and $I_{nom} = \sqrt{4k_{B}TG\Omega}$, operating at a video frame rate frequency $f = 30 \text{ Hz}$. Also shown in this figure are the NEP contributions from Johnson, 1/f and phonon noise to highlight the fact that for this case NEP is phonon and Johnson noise limited. However, for the case of a noisier film, i.e. if the corner frequency is increased to $f_0 = 2 \text{ KHz}$ then with all other parameters remaining the same, NEP increases and becomes 1/f noise limited, see Fig. 1b. This figure also shows that the upper limit of 1/f noise in a thin film on a substrate with large C can be established with some confidence.

3. Experiment

3.1. Sample preparation

MgB2 thin film of thickness 200 nm was deposited by the reactive evaporation growth technique [10] onto a 4-in. SIN-coated silicon wafer. The MgB2 thin film was then patterned into high resistance elements using standard photolithography and a nitric acid etch technique [11]. A photograph of the patterned line structure with dimensions is shown Fig. 2. The typical resistance of a patterned element was nominally 4.25 $\text{K}\Omega$. Four resistance elements were stitched together in series using gold wire bonding to make a total resistance of 17.35 $\text{K}\Omega$ (at room temperature). The larger resistance is needed in order to ensure that the noise generated from the resistive sample is above the noise floor of the LNA used in the measurement system, this avoids using a blocking capacitor and matching transformer. The sample was mounted onto a thermal stand off in a blanked off He cryogen cooled dewar. Resistance as a function of temperature was measured using the standard four-wire technique.

3.2. Noise measurement system

A block diagram of the noise measurement system is shown in Fig. 3a, it consists of a SRS 560 Low Noise Amplifier (LNA) at a gain of 10,000 and a HP3567A spectrum analyzer to read and calculate...
the power spectral density of the MgB2 thin film resistor. A battery in series with a low-noise wire wound resistor in a shielded box provides a near-constant current to the MgB2 bolometer for most measurements, i.e. when \(R_s \gg R_b \). The noise measurement system is housed in a Faraday room to cut down extraneous 60 Hz pick-up. The sample is mounted onto a thermal standoff in a blanket of He-cryogen dewar which also provides extra shielding. The LNA runs on internal batteries, however the shielded 120 V 60 Hz power and a GPIB communication cables are routed inside through an aperture in the shielded room to the spectrum analyzer. A computer outside the shielded room controls and captures data from the spectrum analyzer. The measurement system was assessed for accuracy prior to noise voltage data collection on the sample, this included: (i) performing swept sine frequency responses at various input resistances (from 10 mΩ to 10 KΩ) to obtain amplitude gain versus frequency curves; (ii) establishing the LNA noise performance, by taking 3000 averages on the spectrum analyzer when the LNA input is shorted to obtain the equivalent noise voltage and also when the LNA is terminated with a 1 GΩ impedance to obtain the equivalent current noise and finally (iii) calibrating the measurement system by using Johnson noise sources, i.e. 1 kΩ and 10 kΩ terminations at room temperature thus establishing no more than a 4% deviation from calculated Johnson noise values.

3.3. Noise spectral density data correction due to bias circuit

When the source resistance \(R_s \) (bias resistor at room temperature) is the same order as the bolometer resistance \(R_b \), then the measured noise voltage across the bolometer collected by the spectrum analyzer has to be corrected to account for this. Fig. 3b shows a schematic of the bias circuit set-up and shows the battery-driven current through \(R_b \) and \(R_s \) with the high impedance LNA in parallel. Shorting the battery and inserting noise generators, \(E_b \) and \(E_s \), in series with \(R_b \) and \(R_s \) respectively helps to determine the noise contribution from the source resistance. With the amplifier, \(Z \) element, in the center, a familiar mesh circuit is revealed that can be solved easily by the superposition method. The equivalent voltage noise, \(E_m \), generated by element \(Z \) is known through measurement. Applying the superposition method and after some computation and converting the measured noise voltage, \(E_m \), bolometer noise voltage, \(E_b \), and source noise voltage, \(E_s \), into spectral densities, \(S_m(\omega) \), \(S_b(\omega) \), \(S_s(\omega) \), respectively and assuming that \(|Z| \rightarrow \infty \) and that \(S_b(\omega) \) is strictly Johnson noise (i.e. no 1/f noise component from the source resistance), gives \(S(\omega) \) the noise voltage spectral density of the bolometer itself.

\[
S_b(\omega) = \frac{1}{Z} \left(S_m(\omega) \cdot \frac{R_s}{R_b} \right)^2 - \left(S_m(\omega) \cdot \frac{R_s}{R_b} \right)^2 \right)^{1/2}
\]

In Eq. (5), \(R_b \), \(R_s \) \(S_m(\omega) \) and \(S_b(\omega) \) are known through measurement and post processing, \(S_b(\omega) \) then represents the corrected noise voltage spectral density. For the condition \(R_s \gg R_b \), Eq. (5) simplifies to \(S_b(\omega) = S_m(\omega) \); and when \(R_s = R_b \) then \(S_b(\omega) = \sqrt{4S_m(\omega) - S_b(\omega)} \).

4. Measurement results

4.1. MgB2 thin film transition curve

The MgB2 thin film resistance as a function of temperature in the superconducting transition region together with its first derivative, \(dR/dT \), is shown in Fig. 4. The resistance was measured using a bias current of \(I_{bias} = 10 \mu A \). The transition curve shows an extra inflection point near the mid of transition, the \(dR/dT \) curve consequently shows an uncharacteristic minima at 36.3K, this is due to the sample being constructed from four resistive element's connected in series to form a high resistance sample. This anomalous feature is most likely due to each of the four elements having slightly different critical transition temperatures. The room temperature sample resistance was \(R_{300K} = 17.35 \Omega \) and at near superconducting transition, 40 K, was \(R_{40K} = 9.87 \Omega \) giving a resulting residual resistance ratio of \(R_{300K}/R_{40K} = 1.8 \). Near the mid-point of transition, at a temperature \(T_{mid} = 36.1 \) K the sample resistance is \(R_m = 4.5 \Omega \), \(dR/dT = 7.54 \) KΩ/K and the TCR is \(\alpha = 1.67 \) K⁻¹.

4.2. Calculation of MgB2 thin film heat capacity and thermal conductance of substrate

The sample consists essentially of a MgB2 thin film of thickness 200 nm lying on a SiN-coated Si substrate of thickness 380 µm attached, using GE varnish, to a circuit board made out of G10 material of thickness 1 mm; the G10 board is attached to the heat sink using self-adhesive copper tape. For the case of a thin metallic film
 (>100 nm) on a dielectric coated thick substrate at a temperature
=40 K the phonon modes in the combined system are strongly cou-
pled and the Kapitza boundary resistance between the film and
substrate can be considered small [12] hence the heating and cool-
ing of the film is largely dependent on the thermal conductivity
properties of the substrate. In the experimental set-up the contri-
bution from radiation transfer is assumed negligible since the sam-
ple is housed in a cold enclosure. Carr et al. [13] have observed that
the time constant, \(\tau \), for YBCO thin films is proportional to the film
thickness, this indicates that the thermal capacity contribution
from the thin film itself is sufficient for a first-order calculation.
For bulk sintered MgB\(_2\) the specific heat capacity is \(c \approx 20 J/kg\)K
at 40 K [14] and the density is \(\rho = 2550 \text{ Kg/m}^3 \) [15]; these values
were used since no reliable cryogenic thermo-physical data for
MgB\(_2\) thin films in the literature is known. For the four resisitive
elements in series that constitutes the sample the total volume
of the MgB\(_2\) thin film is \(V = 3 \times 10^{-14} \) m\(^3\) giving a total thermal
capacity \(C = \rho V \approx 4 \times 10^{-8} \text{ J/K} \). Comparing the thermal conduc­
tance values at 40 K for Si, Sn and G10, i.e. \(k_{Si} = 3530 \text{ W m}^{-1} \text{ K}^{-1} \),
\(k_{Sn} = 1.58 \text{ W m}^{-1} \text{ K}^{-1} \), \(k_{G10} = 0.21 \text{ W m}^{-1} \text{ K}^{-1} \), respectively, it is
clear that the thermal impedance, \((C^{-1}) \), to the heat sink is domi­
nated by the G10 board. Using the G10 thermal conductivity value
yields a thermal conductance of \(G_{G10} = 7.66 \times 10^{-2} \text{ W K}^{-1} \). The
gold wire bonds that make electrical connections and self-adhesive
copper tape for fixing the G10 board to the heat sink also add to the
thermal conductance, the estimated contribution is \(G_{noise} \approx
3.8 \times 10^{-3} \text{ W K}^{-1} \), giving a total thermal conductance of \(G \approx 1.1 \times 10^{-1} \text{ W K}^{-1} \). This gives a very fast response with a ther­
mal time constant of \(\tau = 3.5 \times 10^{-8} \text{ s} \). However, the total thermal
conductance, \(G \), is very large resulting in a relatively low voltage
responsivity \((R \propto \alpha \cdot G^{-1}) \) and a high noise equivalent power
\((\text{NEP} \propto \sqrt{G}) \) resulting in a poor performance bolometer. These
results are not surprising since the sample under study was not fab­
ricated as a high sensitivity bolometer with optimal performance
but rather to quantify the upper limit of excess noise in the
MgB\(_2\) thin film.

4.3. Noise voltage spectral density of MgB\(_2\) thin film at mid-point of
transition

The noise voltage spectral density was measured just below the
mid-point inflexion point at temperature \(T_m = 36.1 \text{ K} \) where \(dR/dT
\approx 7540 \text{ } \Omega \text{ } \text{K}^{-1} \) and \(\alpha = 1.67 \text{ K}^{-1} \). The spectrum analyzer averaged
250 spectral density measurements in the frequency range 0.1 Hz
to 1.5 KHz. The collected raw data was smoothed using interpola­
tion and median filters to within <5% error and subjected to gain
correction and subtraction in quadrature of the measurement sys­
tem equivalent noise and bias circuit noise contribution. Fig. 5a
shows the smoothed and corrected noise voltage density, \(S_i(\omega) \),
spectra between 1 Hz and 1 KHz. The noise voltage exhibits \(f^\alpha \)
dependence, with \(\alpha \approx 0.5 \) between 1 Hz and 40 Hz and \(\alpha \approx 0.3 \) be­
 tween 40 Hz and 1 KHz. In Fig. 5b the theoretical noise voltage
spectra due to contributions from phonon noise of the thermal
conductance, \(S_i(\omega) \), Johnson noise due to the bolometer resistance
\((\sqrt{4kT/R_B} \approx 3 \text{ nV} / \sqrt{\text{Hz}}) \), \(S_i(\omega) \), 1/f noise of the film, \(S_f(\omega) \), and
the theoretical total noise voltage density, \(S_t(\omega) \), are plotted using
Eqs. (1)-(4) and superimposed on the corrected voltage spectral
density. This figure shows that the frequency dependence of the measured noise voltage is very well described by Eq. (4) and that the measured noise is close to the theoretical limit of 1/f noise of the film. A power law curve fit gives the noise voltage level between 2 Hz and 100 Hz, i.e. $S_n(f) = (3.325 \times 10^{-7}) \cdot f^{-0.65}$ and thus from Fig. 5b the level of excess noise above the theoretical Johnson noise can be deduced. Table 1 gives the ratios of Johnson-to-1/f and Johnson-to-measured noise at modulation frequencies 10 Hz, 30 Hz, and 50 Hz and for comparison the values of theoretical Johnson, phonon and 1/f noise are also tabulated. Since the noise voltage spectrum was measured on a substrate with high thermal conductance to the heat sink, the noise level measured represents an upper bound for any practical bolometer that has a thermal conductance orders of magnitude lower, see Fig. 1b. The measured noise voltage spectrum, see Fig. 5b, can therefore be used to establish an upper bound of NEP. Fig. 6 shows a plot of the NEP as a function of frequency using the measured noise voltage spectrum and the following bolometer parameters, $C = 1 \text{nJ/K}$, $R = 4.5 \text{k\Omega}$, $L_0 = 0.3$, $\alpha = 1.67 \text{K}^{-1}$, $T = 361.1 \text{K}$, $f_0 = 2 \text{kHz}$ and $I_{\text{base}} = (L_0G_0R_0)^{1/2}$ operating at a modulation frequency, $f = 30 \text{Hz}$. On the same plot the total theoretical NEP, using the same parameters as above is also shown calculated from Eq. (4) for comparison. It is seen that the measured excess noise of the film at 30 Hz increases the NEP by just over a factor of two from the theoretical value, i.e. from $0.31 \text{pW}/\text{Hz}$ to $0.67 \text{pW}/\text{Hz}$ for a film with a corner frequency $f_0 = 2 \text{kHz}$.

5. Summary

The noise voltage spectral density in a MgB$_2$ thin film with resistance $R_{\text{in}} = 4.5 \text{k\Omega}$, near the mid-point of superconducting transition, at $T_{\text{in}} = 361.1 \text{K}$ was measured between 1 Hz and 1 kHz with a constant current bias of $I_{\text{bias}} = 0.5 \text{mA}$. The noise voltage spectrum showed a 1/f$^{0.5}$ dependence between 2 and 100 Hz, a corner frequency of $f_0 = 2 \text{kHz}$ and a noise voltage spectral density of $S_n = 60.12 \text{nV}/\sqrt{\text{Hz}}$ at a video frame rate frequency of 30 Hz. The upper bound for the electrical NEP of a practical bolometer constructed from a MgB$_2$ thin film with this noise level was calculated to be $\text{NEP} = 0.67 \text{pW}/\sqrt{\text{Hz}}$. Assuming a radiation absorbing area of $A = 1 \text{mm}^2$ with an absorption efficiency of $\eta = 0.5$ (space matched coating) in the spectral range 20–100 μm, then gives a specific detectivity, $D' = (\eta/\sqrt{\text{A}})/\text{NEP} = 7.5 \times 10^{10} \text{cm}\sqrt{\text{Hz}}/\text{W}$. For comparison, Portesi et al. [16] have reported on a MgB$_2$ bolometer operating at 32.4 K with no separate absorber with a $D' = 2 \times 10^{10} \text{cm}\sqrt{\text{Hz}}/\text{W}$, when measured with a chopped 785 nm radiation source at 8 Hz. It is predicted that as MgB$_2$ polycrystalline thin film growth techniques improve to give smooth films with nanometer grain sizes that exhibit a 1/f noise corner frequency of 2 Hz or less, then the relative contribution of 1/f noise will be greatly reduced and an optimized phonon noise limited bolometer with a $D' = 1.6 \times 10^{11} \text{cm}\sqrt{\text{Hz}}/\text{W}$ or better will be realized.

Acknowledgements

The authors wish to thank W.-T. Hseih (NASA, GSFC) for fabrication processing advice and B. H. Moeckly (Superconducting Technologies Inc.) for the deposition of MgB$_2$ thin films.

References