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ABSTRACT 

We present a study of the long-term evolution of the cloud of aerosols produced in the 

atmosphere of Jupiter by the impact of an object on 19 July 2009 

aI., 2010. The Impact of a Large Object on Jupiter in July 2009, ApJL, 715, 

The work is based on images obtained during 5 months from the impact to 

2009 taken in visible continuum wavelengths and from 20 July 

taken in near-infrared deep hydrogen-methane absorption U"llU""~i::"'; 

impact cloud expanded zonally from - 5000 km (July 

about 1800 in longitude), remaining meridionally I 

53.5°S to 61SS planetographic latitude. Durinl~J~j~~'st two months after its formation 

~~'t:';~::~:m: 
fieI1J'!"became more homogeneous due to clump 

00-1000 km sized embedded spots. the site showed heterogeneous 

Later the reflectivity of the 

mergers. The cloud was cn~l!-c,·rI in longitude by the dominant zonal winds and 

their meridional initial stages, localized motions may have been 

induced by meTill,/;W;.,per IirolltlOlll caused by the impact's energy deposition. The tracking 

impact cloud shows that the westward jet at 56SS 

its eastward velocity with altitude above the tropopause by 5-10 ms·l. 

vertical wind shear is low, about 1 ms·1 per scale height in 

"i~:;;k~eernellt with previous thermal wind estimations. We found evidence for discrete 

localized meridional motions with speeds of 1-2 ms· l. Two numerical models are used 

to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the 

winds and their shears. The other uses the EPIC code, a nonlinear calculation of the 

evolution of the potential vorticity field generated by a heat pulse that simulates the 

impact. Both models reproduce the observed global structure of the cloud and the 



dominant zonal dispersion of the aerosols, but not the details of the cloud morphology_ 

The reflectivity of the impact cloud decreased exponentially with a characteristic 

timescale of 15 days; we can explain this behavior with a radiative transfer model of the 

cloud optical depth coupled to an advection model of the cloud dispersion by the wind 

shears_ The expected sedimentation time in the stratosphere (altitude levels 5-100 

for the small aerosol particles forming the cloud is 45-200 days, thus "",.-nei/':i:+<, 

removed vertically over the long term following their zonal dls.perslIJn._,,;~:o 

the cloud was detected 10 months after the impact. 



1. INTRODUCTION 

On July 19, 2009 an object with an estimated size of - 500 m collided with 

Jupiter generating a debris cloud (thereafter called "the impact cloud" or IC) 1t"lX,rn,,',,' 

upper atmosphere with an east-west length of -4,800 km 

2010) .. The debris cloud was subsequently dispersed by the Jovian 

latitude of 58.5°S (planetographic) (Hammel et aI., 2010). The 

globally resembled that observed for the individual SL9 (Hammel et 

aI., 1995; West et aI., 1995; Clarke et aI., 1995; ... "",lvIJv",~~a aI., 1995; Simon and 

Beebe, 1996; Banfield et aI., 1996). However, we 

2009 and SL9 impacts. 

For SL9, Sanchez-Lavega et studied the long-term evolution of the aerosols 

caused by dispersion, U~~U~I!Y vertical sedimentation. They found that after two 

years, a thin ~v •• u'",u a wide band that fully covered the whole latitude 

"<@~;~~; 
, ~persion in latitude by the action of the usually elusive meridional 

sedimentation rates consistent with small aerosol particles. The 

dispersion of each individual element of the 1994 cloud debris (i.e. 

VQiI.lv,""u by each impact) was complicated by the mixing of material between adjacent 

;;"~1,,;,,~Ull-""V' sites. In contrast, for the 2009 event we had a single impact and the dispersion 

and spreading of the IC was easier to track, allowing for a better interpretation of the 

phenomenon. The study of the dispersion and evolution of the IC gives information on 

the physical state of the Jovian atmosphere allowing a direct inference of the vertical 

structure of the winds in the stratosphere, in particular at its upper parts where the 



aerosols can be used as tracers of the flow. It also gives information on the 

microphysical processes that too~ place within the cloud and led to sedimentation of the 

debris. Impact events such as this one and Shoemaker-Levy 9 in Jupiter allow us to 

compare the disperson and transport of energy and material left in the atmospheres of 

both planets, the induced local dynamics and aerosol microphysics 

sedimentation, coagulation and coalescence). For the Earth, such studies are .\o(kl'~l.,",u::"lJ 

observations of cloud ashes produced during volcanic eruptions that 

the upper troposphere and lower stratosphere (see e.g. Boville 

1992; Trepte et ai. 1993; McCormick and Veiga, 1992; 

1999). A comparison of these processes in the Earth . is enabled only by 

observations of these rare impact events. 

In this paper, we concentrate on the. 

first detection on July 19 through Dec l~hen the cloud was barely visible .. The 

work represents a large effort b ~/ .temational team that gathered images of the event 
<l 

a battery of telescopes and observatories, most of 

them listed in on the impact (Sanchez-Lavega et aI., 2010; Hammel et 

aI., 201Oa; Fletcher et aI., 2010; Orton et aI., 2011), as discussed in 

this study on images taken in two wavelength ranges: (1) visual 

- 250 - 950 nm; and (2) near-infrared hydrogen and methane absorption 

an.!s (2.12 - 2.3 !-tm). Within each range we analyzed images taken with a variety of 
-~#~~' 

filters that have different bandwidths. The aerosol cloud can be well separated as a dark 

feature from the quiescent background atmosphere due to the high particle absorption in 

continuum wavelengths (Hammel et al., 2010; de Pater et aI., 201Oa), or as a bright 

feature on images taken in the gas absorption bands due to the high particle altitude. 

From the evolution and motions of the Ie's aerosol cloud elements reported in Section 



3, we derive the global wind structure in the Jovian stratosphere at the impact latitude 

and discuss the presence of local regional dynamics. In Section 4 we present two 

dynamical models to explain the aerosol cloud evolution: a pure advection of the cloud 

by the winds and their shears, and non-linear EPIC code simulations that served to put 

an upper limit to the energy deposition in Jupiter's stratosphere. Finally, 

reflectivity measurements and a radiative transfer model we calculate the <lPt·"",r':I'I'YJ"\T 

depth evolution that is compared to that expected from the zonal 

sedimentation. 

2. OBSERVATIONS AND IMAGE ANALYSIS 

The images obtained in the visual r 

sets. The first set is comprised of im'l~K{ftjtn July 19 to September 20 provided by a 

large team of contributors to,t)i€1~.ernational Outer Planet Watch (IOPW) and the 

high-resolution observations obtained by the Hubble Space 

Field Camera 3 (WFC3) during three runs in July 23, August 3 

and September 23, previously analyzed by Hammel et al. (2010). 

The IOPW data set was obtained with a variety of telescopes, typically with 

apertures of 0.3-0.6 m but with some observations obtained in larger telescopes with 

apertures of 0.81-m (lAC80, Canary Islands) and one set from the 1.0 m (Pic du Midi 

Observatory). At the small telescopes, fast imaging techniques (30-60 frames per 

second) with well-developed image processing techniques were used to improve the 



resolution compared to single long-exposure (seconds) frame CCD cameras used in the 

larger telescopes (Cidadao, 2001; Grafton, 2003). Diffraction and seeing conditions 

limit the resolution to a maximum of about - 700 km/pixel for the best cases. Most 

images were sent to the IOPW-PVOL data base as processed color composites made 

with broadband filters in the range - 400-650 nm, and therefore they are not ,",",''V,,,,, 

in intensity (Sanchez-Lavega et aI., 2010). In addition to these "continuum 

composite images", a small set of single images was obtained U111~h,"".~ 

methane absorption filter at 890 nm. The IC is darker than 

visible continuum, from the ultraviolet to the red region 

mentioned above, due to the intrinsic absorption of (Sanchez-Lavega et 

aI., 2010; Hammel et aI., 2010; Orton et aI., 2011· d 

images, however, the IC is bright relative U,<,'",UUV'UUUU'F," indicative of a relatively 

high altitude as previously indicated. servations are important for two reasons. 

First, they provide an extended.,f;ltf~ral coverage. Second, there are some instances in 

which images were 

distinguish between"~~ll 
,$(:;>' '<:;f~;~~~::> 

/f 

erent observers on the same day, allowing us to 

cloud details and artifacts created by the image 

HST imaging was used to complement the IOPW 

as a guide for the long-term cloud tracking of the IC features. They 

"'u •• : .... ,,"'u to measure the sizes of the small dark spots, as well as the edges of the 

extended diffuse IC very accurately: the resolution was of the order of 200 

mJpixeI. The details of these observations are presented in Hammel et ai. (2010). 

The second large set we have analyzed for this paper covers the NIR spectral 

window from -1 to 2.3 11m. The observations were performed by a large international 

collaboration involving larger telescopes around the world, as summarized in Table 1. 



Further details for some of these observations were presented by Orton et al. (2011) and 

de Pater et al. (2010a). We selected images taken in the NIR absorption bands at 2.12 by 

molecular hydrogen and at 2.23-2.3 ~m by methane, both sensing the IC at higher 

altitudes due to the limited photon penetration in these bands. They allow us 

distinguish the IC from the background even more than at 890 nm, because the IC 

bright relative to the surrounding background. 

All IOPW, HST and NIR images were processed 

software LAIA based on the VICAR code (Cano, 1998). The me~i(1or~, 

perform position measurements (longitude-latitude) of the LV"""'''~'''YJLU time and extract 

motions from their tracking is detailed in Garcia-Melen 

The NIR images 

reflectivity of the IC, 

analyze the optical 

in intensity to determine the absolute 

in section 5. These reflectivity data were used to 

VL"'UV'U of the IC during the observing period. Additionally 

of individual features in the images from July 20 to 

this date, although large cloud condensations were still visible, 

was difficult and only the east and west "edges" of the extended IC 

were tracked. This was possible until October 29. Afterwards and until 

':t/December 31, the IC became homogeneous and largely extended and only area 

reflectivity measurements were possible. In summary, the reflectivity measurements 

cover the whole period from July 20 to December 31, 2009. The best coverage was 

during the first post-impact dates, from July 20 to August 13, when most observatories 



contributed to the study. After this date, most images come from the IRTF-NASA team. 

Details on the exact dates of coverage are given in Table 1. 

3. EVOLUTION OF THE CLOUD DEBRIS AND WIND MEASUREMENTS 

The first image of the Ie on July 19 (Sanchez-Lavega et aI., 

higher-resolution HST images of July 23 (Hammel et al., 2010) 

with two main components: a main dark streak surrounded in 

halo or crescent that spans between planetographic latitudes 

Planetographic latitudes (fPg) are used along the text. and planetocentric 

(fPc) latitudes are related by tan fPc = (Rp / RE)2 t chez-Lavega, 2010), being the 

polar and equatorial radii of Jupiter Rp = and RE = 71492 km (Lindal et aI, 
<tf;::?~:s 

1981). Afterwards, the Ie expanded'i:~ ~rentially in the zonal direction by the 

dominant zonal winds. a temporal map series, based on the IOPW and 

HST images as spectral range, where the Ie appears dark and 

July 19 and September 20. Figure 2 shows the temporal map 

July 20 and October 29 as observed in the near infrared 2.12-

(NIR, Near Infrared) where the Ie appears bright. The same 

of the Ie is observed in the images taken in the 890-nm methane 

tion band. A simple comparison immediately shows that the same features are 

.. observed within the Ie in the continuum and methane bands but with reversed 

brightness. The identical cloud patterns within the Ie observed at these wavelengths 

suggest either (a) both visible and near-IR wavelengths sense the same altitudes; or (b) 

the debris material is distributed uniformly over a range of altitudes (de Pater et a. 

201Oa). In this paper we assume that we detect the Ie at the same altitude levels in the 



visible and near-IR. Since the debris is detected in the 2.3flm absorption bands, the IC 

must be located at and above the tropopause (Hammel et aI., 2010; de Pater et aI., 

20 lOa). Thus the differences in darkness (absorption in the visible continuum) or 

brightness (reflectivity within the methane absorption bands) within 

indicate differences in optical thickness, but not large altitude differences. 

[Figure 1] 

[Figure 2] 

Just as in the observations of the 1994, the clouds spread 

preferentially in the zonal direction i.e. th 

aerosol transport by the zonal winds tes the evolution of the IC morphology. 

However, the cloud is not hOIl},~~~)Us in its reflectivity (i.e. in its optical thickness) 
;:;>'<'" ":~?;. 

but shows a distinct 

particularly eVident;~ng 
::>~' '<::~~fl:>· 

>lP' 
f of clumps or spots with higher aerosol density, 

first month after the impact. These spots were used as 

tracers of measuring their longitude and latitude versus time. But 

debris cloud was dispersed by the winds, it also showed an intrinsic 

oM!mC)Th~wIt:n new spot formation and in other cases with some of the spots dividing 

H(~'?TU]" or more elements (Figures 1 and 2). This aspect will be discussed in section 

3.1 Longitude tracking 



The evolution of the Ie was determined by direct latitude and longitude 

measurements of the features on the navigated images and on cylindrical map 

projections. The tracking of the condensation spots was performed by visual 

identification of the same feature on successive images. We separate the tracking into 

three main sets, two corresponding to the zonal drift of the features and one to 

meridional motion. To determine the zonal drift rate, we used two """"thr,,; 

method, we measured the East and West longitude limits (the "edges")/~f 
;;'?;>v 

two wavelength ranges (visible and NIR) as a function of time. 

3. The IOPW-HST tracking data cover the period July 

tracking data cover the period July 20 - Oct. 29, 2 ards, only brightness 

studies were performed until December 31, 200?, a 

to observe due to its proximity to the Su 

28.). The expansion rate of the Ie ed be reasonably fitted by a linear function 

L(lII) = OJM + 4 with tl:ii5("~ltI:ct","" ill longitude, OJ the zonal angular velocity 

(deglday) and M 1iI'"1"-'-""'V is the reduced Julian Date, where J.D. = 2455032 

edge: L(III) = 0.51- Ilt - 2259 (1) 

ern ("trailing") edge: L( Ill) = -1.02 - Ilt + 5431 (2) 

According to these edge displacements, the prediction is that the east and west edges of 

the Ie, which moved in opposite directions, should have encountered one another at 

longitude - 67° and onM - 5258 that corresponds to early March, i.e. during the solar 

conjunction. After solar conjunction, similar NlR observations were made in May, 



2009, but by then the reflectivity at the IC latitude was indistinguishable from that of 

the pre-impact atmosphere. 

The averaged zonal velocity, <U>, as retrieved from these linear fits have low 

errors er( < U » - ax /!J..t that for positioning precision ax::; 1000 Ian and tracking time 

!J..t - 60-100 days giveer« U » - 0.5-1 ms-!. 

[Figure 3] 

In the second method, we tracked the lOflgl1:uae-law:uae:"JJOSlUC)llS of individual 

spots within IC in the visible continuum (July 19 - S 

(July 20 - October 29). The longitude drift ch individual tracked features are 

shown in Figure 4 for the visible and in F or the near infrared. Each tracer was 

typically measured at least in 5 differe ges at different times. The minimum time 

interval to follow a tracer is we found that a single tracer does not usually 

or else can not be identified as the same feature. In 

total, we tracked For completeness, we added to the tracking chart those points 

previously from our HST measurements (Hammel et aI., 2010). It must be 

__ ¢~racers were measured simultaneously in the IOPW, HST and NIR, but 
:;?f 

"~"'UU-'Uf", different time intervals, making the results consistent. The longitude 

of each feature was fitted to a linear function obtaining the zonal angular velocity 

~~of the feature in System III and the zonal velocity (Ui). As before we expect from the 

tracking zonal velocity errors for each individual feature er(u) ::; 1-3.5 ms-! 

(positioning precision ax::; 1000 Ian and typical tracking times !J..t ~ 3 - 15 days). 



[Figure 4] 

[Figure 5] 

3.2 Latitude tracking 

Although the spreading of the Ie occurred mainly in the ~~ .. _.//_ •. _~ 

idion.;!,h~!lxt)u~IOln for some the dominant zonal winds and its meridional shear, a 

features was also detected. Measurements of the HST HHU.<;'-" 

that whereas the northern limit of the Ie remained at 

the southern limit was at latitude -61.4°±OS 

observed. This indicates that a poleward 

11.£'""''''''' 3 and 8 showed 

latItude of -53.5°±OS, 

the pole than initially 

weeks at an approximate rate of Our long-term measurements of the 

meridional limits of the Ie - December 30) indicates that the Ie aerosols 

remained confined latitudes -53° and -61° where two eastward jets 

have their peak spe,~~&nld the gradient of the potential vorticity becomes large 

we detected a faster meridional motion, both in the visible and NIR 

for a single spot that formed in the first days after the impact (Figure 6). 

its motion (longitude and latitude) from July 23 to August 5 revealed that it 

translated from latitude -56.00 to -53S. Navigation errors in the high resolution HST 

and NIR images translate in latitude uncertainty measurements of 0.2°. The total 

meridional displacement of the feature was - 2S (equivalent to 3120 km) between July 

23 to 30, equivalent approximately to a meridional drift rate of +0.3°/day. In summary, 



Ie aerosols were observed to drift both poleward and equatorward, specifically during 

the early stages of the Ie evolution. 

[Figure 6] 

3.3 Wind measurements 

The measured longitudinal drift of each individual was 

transformed to the zonal wind speed at its mean latitude. we present the 

zonal wind profile that we derived for all the features < ~:I._'''UJlvU within the Ie and 

compare it with one measured using regular Jovian es using HST images obtained 

two years before the impact in 2007 and i 

the Ie features but this time using dis tures outside it. A parabolic fit to the Ie 

velocity points is shown in Figy¢>~~ght) to serve as comparison with the background 
/7."/ );~::., 

HST profile and to 
,w'· 

~gf the velocity dispersion of the Ie elements. Two 

results emerge UV<l1~,~'1\I! First, it is evident that the wind velocities of the Ie 

than those of the reference background wind profile. Since the 

l~IJl"',vU at a higher altitude than the background cloud (Hammel et aI., 

et aI., 20IOa), these measurements indicate that the winds increase with 

,.uu~",~'V within the latitude band where the impact aerosols formed (latitudes -530 to -

The speed increase is within 5 to 10 ms-1 (which is above our estimated 

measurement errors). According to Hammel et aI. (2010), de Pater et al. (2010a) and 

Orton et aI. (2011), the cloud debris extended vertically from 1-20 mbar to 200-300 

mbar (about 4-5 scale heights H; 1 H = 22 km). Assuming that the background wind 

profile is determined from cloud tracking at the 500-mbar pressure level, the vertical 



shear of the zonal wind is expected to be of the order of + 1 ms -1 per scale height which 

is in agreement with the thermal wind speeds derived from Voyager-IRIS and Cassini

CIRS measurements at these latitudes (Simon-Miller et aI., 2006). 

[Figure 7] 

Second, all the tracking points show a significant velocity 

latitude with values varying by up to 10-15 ms-1 (e.g. at latitu<it:t'8~E;"*!~~;ure 

dispersion is well above the time-averaged velocity which we 

estimated before to be a-(ui )::; 1-3.5 ms-1 from the tracking of each 

feature. Since we estimate the averaged error position of each feature 

to be ± 0.5°, this indicates that although followed the mean atmospheric 

flow as nearly passive tracers of the they also showed intrinsic local 

,,~ .. rt"'~"" of clump formation (condensation spots) 

',;H\l~tAn with clump size of order 500 - 1000 km (Figure 8). 

motions. In particular, there 

Similar clump tornNl-(l1 fast initial motions were observed in some of the ICs 

9 impacts (Sanchez-Lavega et aI., 1995; Simon et aI., 1996). The 

fPof this clump formation and their motions within the IC will be 

We also note that this velocity dispersion is similar in magnitude to 

'l1'-'~,~"U;U'-'lUa.l_iVl'" in zonal speeds as measured on timescales ranging from a Jovian 

lf~:'\~i~f*,3~'rr.t.,t-i{"\n up to weeks or months (Asay-Davis et aI. 2011). 

Finally the latitudinal drifts of some features that were measured during the first 

two weeks after the impact were converted to meridional wind velocities. At latitude -

60° the motion was poleward with a velocity of 0.8 ms-1 whereas in the middle of the IC 



at -550 the motion was equatorward with a velocity of 2 ms- I
. As indicated above, no 

further meridional spread was seen, and the Ie remained confined between latitudes -

53.5°±OS and -61.4°±0.5° until the last observation in which it was detectable. 

[Figure 8] 

3.4 Reflectivity measurements in the NIR absorption band 

In order to study the aerosol content evolution wil:hilf~~le::~t<=, we performed a 

long-term measurement of its brightness reflectivity methane absorption 

band at 2.2 - 2.3 )lm. We used for this study '~,~ZE,>,~~"'" 

which corresponds to the contributing numbered (3) to (9) in the first 

column of Table 1. According to coefficients derived by Karkoschka and 

Tomasko (2010), the optical the gas absorption at these wavelengths is unity 

at pressure levels - 1- v/~ .. u, ... we are sensing the top of the Ie. The reflectivity 

was measured of close latitudes, not affected by the impact, to account 
h1t.~~> 

for the geome~ilnability across the Jovian disk, most importantly the center to limb 
'<:~;~1~~5 

reflectivity calibration was performed by reference to the 

curves in de Pater et al. (20 lOa). Since the cloud brightness structure was 

<;<i:~q(spatiallY homogeneous, in particular during the first two months (Figure 2), an 
?:,y 

,;:;:" 

'averaged Ie reflectivity was obtained for each date from measurements across different 

points of the Ie between July 19 and September 20. For most of the data points, the 

geometrical configuration corresponds to the cosine of the incident and emission angles 

with values 11 - 110 - 0.6 (corresponding to the central meridian at about -580 latitude). In 



Figure 9 we show the measured data point reflectivity for the IC as a function of time in 

this methane band together with a simple decaying exponential fit 

where /).t is the reduced Julian date (Julian Date 2,450,000; 

2009 12:00 UT = 2,455,032) and tD is the e-folding timescale 

which we found to be - 15 days from the fit. 

4. ANALYSIS OF THE DEBRIS CL 

cture and evolution of the IC we must first review 

piter region. As shown in Figure 7, the impact occurred in 

a band where ow is weakly westward, bounded on the north and south by two 
"~k;, 

eastward~~;~wf~eak speed of - 30 ms-1 at latitude -610 and - 45 ms-1 at latitude -520 

"';:~%J~f?'" 

-M:elendo and Sanchez-Lavega, 2001). The southern polar region is 

by the presence of planetary scale waves that manifest in the morphology 

li::";;'~~::::i':;;~,cOI the high altitude hazes and cloud field as a wavy pattern that encloses the polar 

region (Sanchez-Lavega et al., 1998b; Vincent et aI., 2000; Barrado-Izagirre et aI., 

2009). There are different waves whose latitudinal location depends on the observing 

wavelength. The contrast is largest in the ultraviolet where they appear dark due to haze 

absorption. They are bright in the methane absorption bands (890 nm, 2.23 2.3 /lm) 



where they vary in brightness, following a trend similar to that of the Ie. Sanchez-

Lavega et al. (l998b) and Barrado-Izagirre et al. (2009) demonstrated that the observed 

dynamics is consistent with Rossby wave activity, based on their motion and dispersion 

relationship. These waves serve as a diagnostic tool to test the atmospheric response to 

the impact at nearby latitudes. 

Figure 10 is a series of map projections of the southern IJVJl<U,.","""j=;'"V 

wavelengths showing the IC and the south polar waves. The 

latitude between two waves: the poleward main wave that 

band images centered at latitude -65°, and an equ 

prominent in the ultraviolet and is centered at A8 . 
;;,-"/ 

HST UV images at wavelengths 225 -

detected in thermal-IR imaging of s ric CH4 emission near 7.9 !lm by VLT 

",.;,~»;~'" amplitudes and structure of these two waves in 

the HST images VV'.UH,''''",,7J.1%?''' August 3 and 8, it seems that they were not 

affected at all by wavy pattern was always present at the impact 

'1:;t{~5:; 
longitudes, wit;j~~'hpparent significant changes in the meridional amplitude and zonal 

/;;:;;~> <::~f~t~, 
wavelen~itidii~ting that the impact did not affect the dynamics of these permanent 

*~~~,~:~:~;7 

response of the atmosphere to the impact was restricted in latitude to the 

'n<Of'tP'rI band that had a meridional width of - 8°. 

[Figure 10] 

4.1 Global dispersion of the cloud debris by the zonal winds 



The observed dominant zonal spread of the Ie and the exponential decay of its 

2.23-2.3~m reflectivity were originated by the aerosol dispersion and subsequent 

decrease in the particle number density and optical depth as a result of various 

processes. The most obvious is the dispersion produced by the prevailing zonal winds 

and its shear (meridional and vertical). The typical temporal scale for the 

dispersion due to the zonal wind shears is t D :::: (au / ay t ,(au / az t 
according to the measurements reported in section 3.3 and Figure 7. 

15 faster than that indicated by the e-folding value for the mea~!tf~~~~J1;:f1 

suggesting that dispersion by wind shears was the main nn,o. .. "U 

To test this, we have run a simple ao'vec;t1Otn 

by the zonal winds and their shears. The mC'~~:~Ql~ the advection equation for a 

on latitude and height. In this 

simple approximation no diffusion is >tn{"\T,,·tpri and the only equation to solve is: 

(1) 

where q is the u\.".~,,."""" is the zonal wind depending on the 

he numeric code is a straightforward simplification of the two-

sed by Hueso et al. (2002). In this case the model domain consists of 

... -"(lV" ....... '" ·grid points for longitude and latitude and 11 vertically detached layers are 

1i'C()mpUited simultaneously to incorporate effects of a vertical wind shear. The horizontal 

::~::":":::::2~:,::,.J:;,H~ points are separated by 40 km while the vertical layers are representative of close-

in levels in the stratosphere. For the zonal wind we impose the parabolic fit to the zonal 

wind profile shown in Figure 7 in the central layer, with the winds vertically varying 

from one layer to the next by 1 ms· l faster or slower when above or below the central 

layer. Therefore the model incorporates a total vertical wind shear of 10 ms· l with each 



vertical layer decoupled from the rest. We started the simulations by placing a double 

oval-shaped cloud that mimics the main streak and the halo or crescent area of the 

observed Ie (Sanchez-Lavega et aI., 2010), oriented in the longitude-latitude plane as 

observed (Figure 11) and with the same structure in all 11 vertical layers. The cloud 

density is uniform within the two areas that compose it but differing in their value 

the streak to the halo in a grey scale that represents the observed initial r 

Figure 11 shows snapshots of the simulations with the cloud advected 

the winds for a time period of 40 days. The simulation 

cloud whose vertically integrated density decreases with time of 10 days 

produced by the combination of both zonal and Stripes in the figure 

appear from the limited number of vertical each vertical layer moving 

with a slightly different zonal wind '-'V'UI-'<'U"""", 

Although the zonal expansion of the dense parts resemble those 

observed for the Ie (Figures 1 there are still differences with what is observed, 

as for example the the north-south "horn-shaped" form of the 

[Figure 11] 

To explain the differences between the simulated and the observed evolution of 

'~'?:";j;':;3:%$8:;;l};)lUC global Ie expansion, we must invoke other mechanisms than simply the structure of 

the zonal winds. Among them are the action of local thermal winds that could have 

developed from the temperature anomaly originated by the energetic impulse of the 

impact. From the wind data at this latitude the geostrophic balance can be assumed 

since the Rossby number Ro = u / f L - 0.005 (here u 10 ms- I
, L - 7000 km, 



approximately the westward jet width, and f = 2Qsin rp = 2.88xtO-4 
S-l). Orton et aI. 

(2011) measured temperature differences of - 3 - 6 K between the impacted area and 

surroundings a few days after the impact. Assuming that this temperature contrast 

occurred over the same pressure level, the induced local thermal wind should reach a 

speed difference between pressure levels Po and PI of the order of \,-'~'U"'U"""-L.'" 

2010) 

Here R; =3740 Jkg-1mor1K1 and aT / ax km and thus for 

In (Po / ~ ) - In(300 / 10) we have LtV - . This value represents probably an 

upper limit to the induced local above background winds that should 

manifest both zonal and mponents. Their action could have been added to 

the ambient regular s to disperse the aerosols within the IC. More detailed 

calculations ; for example, the spatial and temporal structure of the spot 

required to try to reproduce the expansion characteristics. 

qa~i)s (spot) formation within the Ie 

The high-resolution images of the IC obtained in July and August 2009 showed 

the formation of clumps or compacted spots with a typical size of - 500 - 1000 km 

within the background of a quasi-homogeneous aerosol field (Figs. 1-2 and 8, Hammel 

et aI., 2010). The spots stand out in the UV by their darkness and in the methane bands 

by their brightness, indicating they have a higher optical depth (particle density) than 



the surrounding Ie aerosols. The spots were concentrated in the anticyclonic part of the 

wind profile and their total number was about 14 on August 3. They disappeared in a 

matter of days probably by mergers between them, whereas others were dispersed by 

the wind shears, mixing with the background aerosol field. 

Their distribution within the Ie and their structure suggest that '~~---.. ""'1"'.",.'-

be vortices resulting from local instabilities. The high resolution HST 

et aI., 2010) do not show well defined spot boundaries, but lU"~.;l.U 

elongated with irregular edges and filaments. The ambient 

of the Ie has a local vorticity ( = duldy = -4.2xlO~6 orders of magnitude 

lower than the planetary vorticity f = 2,Q S~l. The interaction of the 

background flow with the spots will prod tangential speed at its periphery of 

the order VT - ~R/2= 1-2 ms~l, with e (effective radius). However, these spots 

could have other vorticity thus be highly speeding rotating vortices . 

. "';<~«.W'U does not allow us to track features rotating around 

them. 

the action of possible instabilities in generating these 

';itompare their size with some characteristic dynamical scales that are 

H ...... ,."U L"~:YUjlH'"'."'.U flow instability mechanisms. For example, one important scale for 

of baroclinic eddies in quasi-geostrophic (QG) theory of a continuously 

atmosphere is the first (internal) Rossby deformation radius LD = NH/j (see 

e.g. Gill, 1982; Vallis, 2006) where a factor 1t in the denominator has been omitted, as 

usually done. This scale has been shown to be important in models of regular Jovian 

vortices (Shetty et aI., 2007; de Pater et aI., 2010b and references therein). Here N is the 

Brunt-VaisaUi frequency that in the Jovian stratosphere is - 1.9xlO~2 s~l and H is usually 



taken to be the scale height - 22 km, which gives LD - 1400 km. Simple scaling will 

give baroclinic eddy velocities (Vallis, 2006) ve -(LeILD)<U>-4-8 ms- I where we 

have taken an eddy scale Le - 500 - 1000 km (that of the clumps) and a mean flow 

velocity <u> - 10 ms- I
. The corresponding eddy time scale is t"e - (Le Ive)-

Weaker vortices are obtained if, instead of this value for H, we use the vertical V""'~i!<'~H"~~" 

the IC, i.e. we assume that the spots extend vertically along the layer VV"'~'~'!}v;,T 

IC, then HIC = H In (300 mbarll-1O mbar) - 3.5-5.58, LD - 5000-

- 1 ms- I
. 

Since the vertical shear of the zonal flow is low, 

considered is that associated to the barotropic insta westward jet where the 

IC formed. Ingersoll et al. (1981) showed that J, ' stward jets violate the Rayleigh 

- Kuo barotropic stability criterion fJ.~ ~ being fJ = df I dy = 2,Q cos rp I Rp 
:~W:;@;' 

the gradient of the Coriolis par<!lJl~ter Y'~Sanchez-Lavega, 2010). The characteristic 
.:<{:s~;:;g<~~f~* 

horizontal scale ';'~fg~tabi1ity is -trLp =tr~ul fJ with growing times 

see also Stone, 1976). For u - 10 ms- I and fJ = 2.9xlO-

e we get Lp = 1800 km and t"p - 20 days. The size of the clumps are 

/~of magnitude of LD and Lp . This simple scale analysis indicates that 

or barotropic instabilities could plausibly have played a role in the clump 

4.3 Numerical simulations of thermally induced instability in the stratosphere 

We have studied the dynamical response of the Jovian atmosphere with the 

properties of the impact latitude to an instantaneous and localized thermal pulse using 



the EPIC code ("Explicit Planetary Isentropic-coordinate", Dowling et aI., 1998). Our 

purpose is to see how the potential vorticity (PV) field resulting from an impact and 

assumed to represent a passive tracer of the flow, mimics the shape, extent, structure 

and evolution of the Ie. Details of EPIC model simulations of the Jovian atmosphere 

have been extensively described in our previous papers (e,g. Morales-Juberias 

2003; Garcia-Melendo et aI., 2005; Legarreta and Sanchez-Lavega, 

Lavega et aI., 2008). 

We introduce a localized thermal pulse in an EPIC ~~el,::a;mn'OSr)here 

to simulate the thermal anomaly produced by the series of 

numerical simulations to draw maps of the 

selecting two atmospheric levels for the located at - 45 and 400 mbar, 

that corresponds to the IC formation altiIM!~' 

The model .,tn~"Q1"\""'''''''''> ... ".,,,w .. ,, on several free parameters, the most important 

being the vertical .• " ...... vu •. u structure of the zonal wind velocity U(y,z) and the 

<?;;::$:~> 
vertical the11l1.!4:<Y~cture represented here by the static stability or Brunt-Vaisala 

ee-dimensional structure of the wind field is separated as a product of 

U(y,p)=Uh(Y)Uv(P) where Uh(Y) is the wind profile at the cloud tops 

is a nondimensional vertical amplitude factor. For the meridional wind profile 

at cloud-top level we used that derived from HST images in 2007 (Figure 7) 

locating it at a pressure level Po = 500 mbar. For the vertical structure we used a two-

segment linear dependence in lnP as in Garcia-Melendo et aI. (2007). For Po< 500 mbar 

we tested winds that slightly decrease, are constant or slightly increase with altitude 

according to the expression uv(P) = 1 + m In (PI Po) with an e-folding scale m in 



steps from +7, 0, -10 scale heights, i.e. winds that change their speed in lie in these 

scale height values. This range covers the observed vertical wind shear at the impact 

latitude (i. e. a westward jet that increases its eastward speed with altitude) as well as 

other possibilities to test the sensitivity of the atmospheric response to the vertical 

sign. For P > 500 mbar, we assume that the winds remain constant with depth. I-""'''':I'~,'''''''' 

thermal structure, for pressures lower than Po we used the thermal profile "hj',> .. isoi¥M 

radio occultation experiments (Lindal et aI., 1981); below cloud tops 

than Po), the thermal profile was extrapolated by a wet adiab:a~i:~malr.~ize~d 

value of the static stability of the lower levels (see details 

2005; Legarreta and Sanchez-Lavega, 2008; Sanchez-

Two groups of simulations were 
;~$> 

to -680 using 8 vertical layers: (1) A 10 "hon set with a model domain that covers 

60° in longitude and with 256 . d elements in longitude and latitude respectively 

model domain that covers 60° in longitude and 150 

elements In this second set, the spatial resolution was 

nt equivalent to 149 km in latitude and 80 km in longitude (the 

for the domain we used is 60 km to 100 km). We performed a total of 

each of which extended between 25 and 50 days in time. The 

"tN"rh"n('p produced by the impact was simulated by introducing an instantaneous 

:;::i1"'''''~:'?:'''85, .. HHlli:ll heat source in the EPIC code with a power ranging from 10 to 10,000 Wm-2
, and 

occupying a size of 10° in longitude by 3° in latitude (approximately that of the initial 

IC, also similar to the temperature anomaly in Orton et aI., 2011) and extending 

vertically from the upper troposphere to the lower stratosphere (pressure range from 1 

mbar to 1 bar). We used an hyperviscotity coefficient (Dowling et aI., 1998) v 6 = 



0.S7xlO27 m6s-1 that for a scale LJL = 400 Ian gives a diffusion time scale 

D.tD = (M)6 /v6 :::: 100 Earth days which is above the length of our simulations. 

The results, in the form of the evolution of potential vorticity (PV) maps at 

two selected levels (specify levels), show that the most important parameter con 

the PV -field is the impact power. For input powers - SOO Wm-2 the PV -fi~ 

follows a pattern that resembles one produced by the passive 

discussed in section 4.1. The simulated PV field reproduces t:«~}¢S~nltl 

evolution, i.e. its zonal expansion along the anticyclo 

Figure 12 we show the result of one of the best for which the PV field 

evolution at the lS0-mbar altitude level most the observations of the 

aerosol reflectivity evolution. When powers are introduced (above SOO 

Wm-2
) the PV -field tendency is to form rotating in anticyclone sense following 

the ambient wind shear vortex tends to produce wave instabilities and 

turbulence around it adjacent latitudes (those corresponding to the polar 

waves introduction of section 4), that are not evident in the 

cloud and thermal fields. The simulations produce spots of PV 

wit~tl;?z 
i:~, 

(QJ~~fis that they result from the interaction of the IC with pre-existing, underneath 

e vortex, rotating around its centre. One possibility for the clump 

':~;:*~~>i,4P''"' IC, regular Jovian meteorological features (e. g. vortices and waves). Our EPIC 

model cannot capture this since these meteorological phenomena were not introduced in 

the initial simulations. 

The potential vorticity field as drawn from the EPIC calculations (Figure 12) 

shows large values of its gradient at latitudes -S2° and -61°. This potential vorticity 

gradient could have acted as a barrier to the meridional transport of the IC aerosols (see 



section 3.3), as seen for example in the compound transport in the Earth's stratospheric 

ozone hole (McIntyre, 1989). 

[Figure 12] 

4.4 Aerosol optical depth evolution and sedimentation. 

In order to reproduce the observed variation of reflectivity 

methane absorption band, we used the same vertical structure 

was used in previous studies for dates closer to the impact 

that work, the impact site reflectivity was fitted from to the near infrared 

with essentially two layers of aerosols. The 

radius a = 0.75 flm, a particle density of 1 , and with a vertical range of 10 

110 mbar; the lower layer has particles' same mode radius, but a particle density 

of 5.6 part/cm3 and distributed~J*;~$her pressure range of 110 - 200 mbar. Since the 
,.;z::, :;:~tf~;;>k .:;,/~' 

contribution of the layer~:~~)o0::r~00 mbar to the observed reflectivity at 2.3 flm is 
N ;$/ {.f:?~ 

al dependence of the reflectivity by varying the particle optical 
:~ 

;*~j(;"g~IY two aerosol layers above this altitude in de Pater et al. (2010) 

. ?~~y free parameter in the model was therefore the particle concentration at 

layers. We assumed three different scenarios for the density evolution: (A) 

from both layers were removed simultaneously and at the same rate; (B) the 

upper particle layer was emptied first, followed by the lower second layer; and (C) the 

lower layer was emptied first, followed by the upper one. Dynamically, scenario (A) 

seems more realistic, but scenarios (B) and (C) provide upper and lower limits for the 

particle concentration retrieval at each layer. 



Results are shown in Fig. 13. Both layers have to be drained to explain the 

observed reflectivity decay (Figure 9), and all three scenarios provide a similar decay 

law. The second lower layer (which was also initially denser) is about one order 

magnitude denser at the final stages, with a particle concentration lower than nlower 

part/cm3, whereas the first upper layer reaches densities not higher than nun"~<" 

part/cm3
• Scenario (B) provides a fast depletion of the upper layer "nI1L""""',,,,, 

depletion of the lower one, just the opposite of what scenario (C) "u",."",,,,,,,,,," 

According to this model, the total thickness decay within the Ie 

can be fitted by an exponential functio 

~)l (5) 

14.5 days, similar to the 15 days that we found from our fit to the 

3). This decay law is also similar to that observed in the long-term 

SL9 impact clouds whose evolution was more complex due to the 

between close but different impact clouds and their subsequent dispersion 

(Sanchez-Lavega et aI., 1998a). For the particle concentration at each layer we get 

[ ( 
(Llt-5046))] nupper(t)=0.028+ 0.84 exp to (6) 



[ [ 
(L1t-5046»)] nZower(t)=O.13+ 4 exp tD (7) 

where time is given in days in the reduced Jovian date scale (section 3.1) 

particle concentration is given in part/cm3
. The exponential decay law is COlt1s.t~nP~t:h 

a horizontal spread of the aerosols by the wind shears as described in :Sa)~leZ'$~iVe:ga 

al. (l998a). Assuming that the total number of particles in a vca.~,,~'''l u~'9nn remained 

constant during their transport, the column density nand site A obey the 

continuity equation 

Idn IdA 1 
(8) --=---"'-

n dt A dt tD 

whose solution is eqllatllon,,;{{l similar relationship can be formulated for the 

optical thickness , with Q the scattering efficiency factor, with a solution 

e sedimentation can also contribute to the evolution of the Ie optical 

have studied the particle density evolution due solely to sedimentation as in 

et al. (1998a). The aerosol sedimentation time depends on the particle 

size and atmospheric properties that can be characterized by two dimensionless 

numbers, the Knudsen number (Kn) and the Reynolds number (Re). In the Jovian 

stratosphere (altitude levels 10-20 mbar) we have Kn = f/ a - 2 and Re = (2paw)/ 17-

1.3xlO-6
, with £the gas molecular mean free path, a = 0.75 !lm the particle radius, p the 



gas density, w the vertical fall velocity and 'l7 the dynamic viscosity. The values for the 

latter parameters have been taken from Sanchez-Lavega et a1. (1998a). These values 

bound the dynamical mechanisms that act on the aerosols between those of the laminar 

and gas kinetic regimes, giving a sedimentation time for the particles ts - 45 - 200 days. 

This suggests that the aerosol sedimentation is only important over long time ~~"Ll~~';"'315~ 

removing aerosols via sedimentation well after the Ie debris has been 

winds, thus effectively after November 2009. 

5. CONCLUSIONS 

The evolution of the Ie's debris from on 19 July 2009 mimics that 

seen for the SL9 impacts in 1994, a in 2009 it was easier to determine the 

evolution as it was generated impact. The structure and long-term evolution 

of the Ie showed that in (up to - 1-10 mbar altitude level) and within 

the latitude band 0 
:i}-

the Ie (from 53SS to 6S1S), the zonal motions were 

gh they were decreasing their eastward motion. 

westward flow at the impact latitude became weaker with altitude, i. e., it 

111~1'!'ia~~u its eastward velocity upward above the tropopause. The two bounding north 

:~:r:"~i~;\~,;:,a,no south eastward jets appeared to be less intense in their velocity peak. Thus globally, 

the zonal flow became weaker with altitude. This confirms previous studies on the wind 

vertical structure based on the temperature measurements in the stratosphere and 

application of the thermal wind relationship (Simon-Miller et aI., 2006). 



In addition, this study confIrms that the meridional motions in the stratosphere 

were also weak and, at least at this latitude, confined between the two contiguous 

directionally opposed zonal jets. This is consistent with the thermal-IR analysis (Orton 

et aI., 2011; Fletcher et aI., 2010), which also indicates horizontal divergence over the 

impact latitude. However we note that this is at odds with the SL9 impact 

meridional motions that spread much more in latitude, moving nnlrT",,,,,,"r£1" 

by Sanchez-Lavega et aI. (1998a) and by HeN measurements (Griffith 

The evolution of the Ie was mainly produced by 

zonal wind flow, with the particles advected accordi· wind shear. However, 

explaining the details of the Ie structure, such as th 

spot), is not easy and deserves further stu 

by the wind shear under the action of s d of dynamical instability. Local motions 

induced by the temperature an,. ; produced by the impact, superimposed to those 
Ya 

related to 

evolution. 

{'z; 

the Jovian ba,~~~~r~ynamicS, could have also contributed to the Ie 
,:::i;.'::t~&A~· 

Because.,,:4i/. the·",::10vian stratospheric properties and small particle size 
-:;!Y "'::~ti~t> 

residence time of the aerosols is large, with sedimentation acting 

them after several months. This is in agreement with the 

showed the aerosol particles still present almost 6 months after impact 

dr~ndetectable 6 months after the impact. 
~~ft*~;2l~l 

Since we did not detect changes in the system of circumpolar waves located 

north and south of the impact region we conclude that the dynamical effect of the 

impact remained confined in latitude. This indicates that the response of the atmosphere 



to the energy deposited by the impact was merely local, not affecting the dynamics of 

the closest latitudes. 
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TABLE 1. Observatories contributing with images to this study 

Observatory Telescope 
(diameter) & 
Instrument (*) 

IOPW (1) 
network (1) 

HST(2) WFC3 
Calar Alto (3) 3.5 m -

Orne a 2000 
ESO-VLT (4) 
TNG (5) 
WHT (6) 
Keck (7) 
IRTF-NASA 
(8) 

TCS (9) 

Notes: 

8m-NACO 
3.6 m - AdOpt 
4.2 m Ingrid 
lOm-NIRC2 
3 m - SpeX 

Wavelengths 

350- 950 nm 

234- 924nm 
1.6-2.17 !lm 

1.6-2.48 

1.6-2.12 !lm 
2.12-2.23 !lm 

!lm 

Date coverage 
Month (days) 

Jul (21,22,23,24,25,26,27,29,30, 
Aug(1,2,3,4,5,6,7 ,8,9,10,11,12; 
19,20,22,24,26,27,29,30), 
Sep (1,5,6,8,10,11,13,15; 
Jul (23), Aug (3, 8), 
Jul (20,22) 

, 5), Sep. (7,10) 
, ,26) 
,4,13,14,15,16,18,19,23,25,30) 

.. (2,7,8,9,14,20,23,25,30) 
ct (1,19,20,25,27,29) 

Nov (44,8,18,22,23,24,25) 
Dec (4,5,29,30,31) 
Ma (14,28) [2010] 
Oct (7, 23) 

(*) Telesc~ 
,/;fY' 

and instrument/detector employed. Details for the 

if: ~~an be obtained in the websites of the Observatories. Other details 
•• ;j/" 

~"'~.~:~.'-' Pater et al. (2010) and Orton et al. (2011). 

(http://www.ehu.es/iopw) and database PVOL (http://www.pvol.ehu.es/). See 

et al. (2010). 

(2) Hubble Space Telescope. See details of the observations in Hammel et al. (2010). 

(3) Calar Alto Observatory, Centro Astron6mico-Hispano Aleman (Almeria, Spain) 

(4) European Southern Observatory - Very Large Telescope (Chile) 

(5) Telescopio Nazionale Galileo (Canary I., Spain) 



(6) William Herschel Telescope - ING (Canary I., Spain) 

(7) W. M. Keck Observatory (Hawaii, USA) 

(8) Infrared Telescope Facility-NASA (Hawaii, USA) 

(9) Telescopio Carlos Sanchez (Canary I., Spain) 



FIGURE CAPTIONS 

Figure 1. Series of cylindrical map projections showing the evolution of the impact 

cloud (IC) from July 19 to September 23,2009, in the visible continuum wavelen 

400-650 nm where it appears as a dark feature against the background Jup' 

Dates indicated. 

Figure 2. Series of cylindrical map projections showing of the impact 

cloud (IC) from July 20 to October 29, 2009, spectral range 

covering the wavelengths of the methane at 890 nm and 2.12-2.3 !lm 

where it appears as a bright feature. Dates 

Figure 3. Zonal expansion in ~v;@'t1~lTT longitude of the east and west edges (extremes) 

of the impact cloud and crescent. Circles: measurements in the near 

infrared (2.12-2.3 19 to October 29,2009; Crosses: measurements in the 

PW and HST images from19 July to 20 September 2009 . 

.<;Ji$:,*~ 

Fig"fe 4~Longitudinal drift of individual features within the IC tracked in the visual 
'~$$}:;5#;~;' 

from IOPW images. A linear least-square fit to the motion of each feature is 

Solid black circles correspond to a reference white spot (identified as W Spot 

placed at latitude -51.05°) not pertaining to IC that showed an oscillation in its longitude 

motion. 



Figure 5. Longitudinal drift of individual features within the IC tracked in the near 

infrared (2.12-2.3 /lm). A linear least-square fit to their motion is shown for each 

feature. 

Figure 6. Latitudinal drift from latitude _56.0° to -53.5° of a single cloud element w' 

the IC, from July 23 to August 5. The inset shows the IC and the arrow 

direction of the meridional motion of the cloud element. 

Figure 7. Left: Zonal wind speeds of each individual eleme "'tacked within the 

IC using the images obtained in the visual range from I 

in the near infrared (blue). Comparison is made zonal wind profile 

measured in 2007 using the HST HW""","''''''~ line with error bars) and with 

individual features (circles) tracked in images as the IC. The impact point 

is represented by a large All the IC individual cloud motions (dots) 

profile function (red curve) compared with the 

HST 2007 profile 

8t and west expansion of the IC and clump formation in its interior 

to Aug. 3 as observed in the methane absorption bands that sense the IC 
/:/;:;$/ 

$~iltop::jlerosollevel. The formation and tracking of different spots within IC are marked by 
·f~ 

:1i},the lines and arrows. From top to bottom: July 23 (HST, 890 nm), July 25 (Keck, 2.12 

/lm), July 27 (TNG, 2.3 /lm), August 3 (TNG, 2.3 /lm), August 3 (HST, 890 nm). 

Figure 9. Long-term evolution of the IC surface reflectivity in the near infrared 

methane absorption band at 2.2-2.3 /lm (crosses) showing the exponential decay fitted 



function (solid line). The rectangle marks the reference calibration (see text) and the 

horizontal line marks the cloud background reflectivity. 

Figure 10. Polar map projections of the south polar region of Jupiter from HST images 

in the ultraviolet (A, B, C) and methane absorption band (D, E, F) showing the 

(dark in UV, bright in the methane band) and the planetary waves at 

Dates and wavelengths: (A) July 23, 275 nm; (B) August 3, 225 nm; 

nm; (D) July 23, 890 nm; (E) August 3, 890 nm; (F) August 8, 

Figure 11. Snapshots of the temporal evolution of the 1n.:;;<;' ... ·\1 days resulting from a 

simulation of the IC spread by a purely advection using 11 vertically detached 

layers. Each panel shows the vertically t 

color code that maximizes the structur st panel shows material which is 10 times 

less bright than the first one. S~~~in this figure appear from the limited number of 
,»< 

vertical layers used to vertical wind shear. 

::;:*~;:;; 
aison between EPIC numerical simulations and HST observations of 

s of the potential vorticity (PV) at the altitude level corresponding to 

isobaric surface in the Jovian atmosphere resulting after 15 and 25 days 

an initial impulse thermal anomaly disturbance of 500 Wm-2
• Right: HST 

of the aerosol impact cloud after 15.1 and 20.5.days from the impact (see also 

Figure 1). 

Figure 13. (a) Total particle optical thickness from 10 mbar to 200 mbar as a function 

of time. Solid line is used for scenario A and dashed lines for scenarios B (upper line) 



and C (bottom line). (b) Particle density versus time for upper layer (nupper) and bottom 

layer (nlower). As in (a), solid line shows scenario A. Note that scenario B yields the 

bottom dashed line for nupper and the upper one for nlowen just the opposite to scenario C. 

See text for more details. 
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We present a study of the long-term evolution of the cloud of aerosols produced in the 
atmosphere of Jupiter by the impact of an object on 19 July 2009. 

The impact cloud expanded zonally from - 5000 Ian to 225,000 Ian (29 October), 
remaining meridionally localized within a latitude band from 53SS to 61SS 
planetographic latitude. 

We find that the westward jet at 56.5°S latitude increases its eastward velocity with 
altitude with vertical wind shear of 1 ms-1 per scale height above the tropopause. 

A pure advection of the aerosols by the winds and their shears and U~;~"~'H 

simulation (EPIC code) of the evolution of the potential vorticity field 
heat pulse, reproduce the observed global structure of the cloud, 
decrease, and the dominant zonal dispersion of the aerosols. 




