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A set of conservation equations is utilized to derive balance equations in the reconnection 

diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to 

have the function to maintain the current density in the diffusion region, and to impart 

thermal energy to the plasma by means of quasi-viscous dissipation.  Using these 

assumptions it is possible to derive a simple set of equations for diffusion region 

parameters in dependence on inflow conditions and on plasma compressibility. These 

equations are solved by means of a simple, iterative, procedure. The solutions show 

expected features such as dominance of enthalpy flux in the reconnection outflow, as well 

as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a 

maximum reconnection electric field of E*=0.4, normalized to the parameters at the 

inflow edge of the diffusion region. 
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I. INTRODUCTION 

 

Magnetic reconnection is one of the most fundamental plasma processes in 

laboratory, space, and astrophysical plasmas. Reconnection operates by converting 

magnetic energy into particle energy, which manifests itself in form of heat or pressure, 

and in form of bulk motion1. Reconnection also facilitates plasma transport across 

topological magnetic boundaries, and it may change the overall topology of the magnetic 

field2. 

Reconnection is a meaningful concept only if plasma component species are frozen 

into the magnetic field in the vast majority of the physical volume under consideration. If 

this condition is not fulfilled the system is referred to as diffusive. In the former case, 

reconnection is facilitated by a localized region, wherein the frozen-in condition is 

violated. This region is usually termed the diffusion region.  

A further distinction concerns the processes effecting the violation of the frozen-in 

condition in the diffusion region. In a collisional plasma, such as found in some 

laboratory experiments, the lower ionosphere of the Earth, the lower solar atmosphere 

and in some astrophysical plasmas, inter-particle collisions effectively scatter particles 

off magnetic field lines. Macroscopically, collisional processes of this kind heat the 

plasma, and they produce a resistivity. 

In a collisionless plasma, the means of demagnetizing particles is not as immediately 

obvious. Since most space plasmas and many laboratory plasmas fall into this category, 

this question has received considerable attention as a research focus, primarily based on 
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numerical simulations, and also by data analyses of laboratory and space measurements. 

Candidate processes include wave-particle interactions, as well as particle inertia-based 

processes. Numerical simulations exhibit evidence for both, and a resolution of which 

process dominates when remains outstanding. 

Owing to the complexity of the problem, the vast majority of kinetic reconnection 

research has been based on modeling, with accompanying theoretical estimates. 

Analytical theory has focused primarily on MHD, Hall-MHD, or multi-fluid studies3-8, 

some of which assume, for simplicity, a resistive evolution in the diffusion region. A 

recent study employed a viscous term7 in a pair plasma model to generate analytical 

estimates for diffusion region properties. While these studies have been extraordinarily 

successful, they do not fully address the kinetic nature of the diffusion region.  

Numerical simulations of pair plasmas have provided ample evidence of fast 

reconnection, and dissipation has been most commonly attributed to pressure tensor 

effects9-12. There is, however, disagreement in the literature as to why reconnection 

remains fast even in the absence of Hall-type effects. 

A significant step toward an analytical, kinetic theory of collisionless magnetic 

reconnection has recently been undertaken by Tsiklauri13. This work recognizes the 

relation between the reconnection electric field and the nongyrotropic components of the 

electron pressure tensor. By assuming incompressibility, the authors show that fast 

reconnection may result from reasonable assumptions of the extent of the diffusion 

region. 

In this paper, we provide a complementary step toward a kinetic model of the 

diffusion region. We will adopt previous assumptions and theory results13, such as a 
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diffusion region width given by particle bounce motions and pressure tensor-based 

dissipation, which appears to be consistent with numerical models. We will, however, 

primarily use conservation-based arguments for both momentum and energy to derive 

equations, which specify the dimensions of the diffusion region completely, and which 

therefore yield estimates of the reconnection rate. 

In order to proceed with this theory, we adopt a number of assumptions, some of 

which (1-3) are basic requirements for magnetic reconnection. Some further assumptions  

(4-11) are adopted to simplify the problem. These are: 

 

Basic properties of magnetic reconnection: the role of the reconnection electric field 

 

1. The first function of the reconnection electric field is to sustain the current density 

in the diffusion region. Incoming plasma typically does not exhibit drift velocities, which 

support the current flow required by the external magnetic field. At the same time, losses 

through convection and outflow reduce the current density. The reconnection electric 

field thus serves to accelerate the incoming plasma such that sufficient current is flowing 

in the diffusion region. 

2. The second function of the reconnection electric field is to heat the incoming 

plasma populations such that pressure balance with the outside system is maintained. The 

reconnection electric field must have this role in order to replace the convective loss of 

hot plasma through the reconnection outflow.  

3. Items 1) and 2) imply that the energy imparted by the reconnection electric field 

will manifest itself in part as bulk flow in the current direction for positively charged 
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particles, and against it for electrons, and in part as increase of the plasma thermal 

energy. 

 

We contend that items 1)-3) need to be fulfilled in any kinetic reconnection process. 

In addition to these axioms, we need to make a set of simplifying assumptions. These are: 

 

4. We consider a symmetric, two-species, plasma, consisting of electrons and 

positrons only, with equal temperatures and densities. Extensions to more complex 

plasmas will be discussed but will remain a topic of future studies. 

5. The plasma will be treated as polytropic, with small, nongyrotropic, deviations in 

the diffusion region. These deviations will be derived from a perturbation-type analysis. 

6. The thickness of the diffusion region in-between the magnetic fields in the inflow 

region, is given by the particle bounce width. 

7. The system is in steady state.  

8. The system is translationally invariant in the out-of-plane direction. 

9. Both sides of the inflow region are symmetric, and there is no guide field in the 

model. 

10. Pressures, densities, and current densities in the diffusion region are very similar 

to the adjacent outflow region. 

11. Heat flux effects in the energy equation are neglected. 
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We will use these assumptions in an analysis of conservation equations, in particular 

of momentum and energy equations. In the next section, we will discuss preliminaries. 

Section III will focus on the momentum equation, and section IV will analyze the energy 

equation. Section V will combine all results to derive a complete set of equations for 

diffusion region properties. Section VI will discuss results, and section VII will provide a 

summary and discussion. 

 

 

II PRELIMINARY CONCEPTS 

 

We assume that the diffusion region is a rectangular box of width 2L and thickness 

2d. Outside of this box, the plasma is assumed to be frozen into the magnetic field, 

whereas inside the plasma is demagnetized. Quantities at the inflow boundary are 

denoted by the subscript ‘i’ and outflow boundary quantities are denoted by the subscript 

‘o’. Using assumption 10), we also denote by the latter subscript pressures and densities 

in the diffusion region. 

We normalize all quantities in the following way: The magnetic field is normalized 

to its value at the inflow boundary of the diffusion region, Bi, the pressure by Bi
2/!o, the 

velocity by the single-species Alfven speed at the inflow boundary vAi "
Bi

!omni

, the 

electric field by the product vAiBi, the mass by the electron (or positron) mass, the density 
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by its value at the inflow boundary ni, and the length scale by an inflow boundary inertial 

length L "
c
# i

" c
e2ni

$om
%&
'&(&

)&
*&+&

,1/ 2

. 

A standard continuity equation then relates, for each species, inflow and outflow 

densities, velocities, and dimensions: 

vi " vono
d
L

  (1) 

The steady-state assumption implies that the reconnection electric field E* equals the 

external electric field, both on the inflow and outflow side. This implies: 

E * " voBo " vi  (2) 

Combining (1) and (2) leads to: 

Bo " no
d
L

  (3) 

 

III MOMENTUM EQUATION 

 

The momentum equation plays a critical role in this theory. Specifically, it will be 

applied to provide two estimates for current sheet width (subsections III A and III C), as 

well as one for the outflow velocity (subsection III B). These results will later be 

combined with an energy-equation-based derivation to obtain estimates of the 

reconnection rate.  
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III A Current sheet pressure and sheet thickness 

 

Using assumption 6), the sheet thickness is given by the bounce width of thermal 

particles in the field reversal established by Bi. The bounce width, on the other hand, 

involves the thermal velocity of the particles in the diffusion region. The force balance in 

the z-direction determines the diffusion region thermal pressure, which equals the sum of 

inflow magnetic force, and plasma thermal and kinetic pressures: 

jyBx - 2
.p
.z

- 2
.
.z

nvz
2/ 0" 0  (4) 

where the factors of two reflect the combined pressures and velocities of both 

species. This is readily written as: 

1
2
.Bx

2

.z
, Bx

.Bz

.x
- 2

.p

.z
- 2

.
.z

nvz
2/ 0" 0  (5) 

Replacing derivatives by finite differences and integration over z yields: 

1
4
,

1
4

Bo
d
L
- pi - vi

2 " po  (4) 

where po is the constant value of the current sheet pressure. Using assumption 10) 

we find for the thermal velocity in the diffusion region: 

vth,o "
2po

no

  (5) 

In dimensionless units, the bounce width d "
mvth,o

eBi

 becomes immediately: 
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d "
2po

no

  (6) 

 

This expression will be used below. In the next step, we analyze the force balance in 

both x directions.  

 

 

III B Outflow velocity 

 

 

The assumed symmetry of the particle populations implies that there is no electric 

field in the x-z plane (x denotes the outflow and z the inflow direction). Using assumption 

10), we neglect pressure gradients in the outflow direction. Accordingly, the only force 

capable of accelerating the plasma in the outflow direction is the Lorentz force. We 

therefore write the x-component of the momentum equation as follows: 

!!212 no
r v r v / 0, r 

j 3
r 
B 4 52 r e x " 0 (7) 

where j denotes the total current density. Note that the inertial contribution of each 

species balances one half of the total Lorentz force. Replacing derivatives by finite 

differences and using (3), the current density can be expressed as: 

jy " 2novy "
1
d
,

Bo

L
%&
'&

)&
*&
"

1
d
, no

d
L2

%&
'&

)&
*&

 (8) 
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Insertion into (7) and integrating over ¼ volume of the diffusion region leads to: 

novo
2d ,

1
2

1, no
d2

L2

%&
'&(&

)&
*&+&

dx6 Bz " 0   (9) 

Assuming a linear variation of Bz with x and using (3) then yields: 

vo "
1
2

1, no
d2

L2

%&
'&(&

)&
*&+&

1/ 2

 (10) 

We see that a smaller current density, resulting from an aspect ratio d/L closer to 

unity, will lead to less acceleration and hence less outflow velocity. The inertia of larger 

current sheet density has a similar effect. 

  

III C Force balance in the current direction 

 

Using assumption 5), we write the total pressure tensor as: 

 

!
t 
P " p

t 
1 -

t 
7& (11) 

where the second term denotes a small, nongyrotropic, contribution. Without loss of 

generality we perform this analysis for the electron species; the ion equations result from 

a simple change of signs. Thus, the y component of the momentum equation becomes: 

!!
,12 nvy

r v / 0" n Ey - vzBx , vxBz/ 0- .
.x
7xy -

.
.z
7yz  (12) 
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In the diffusion region, the electron pressure tensor components are well 

approximated by14: 

7xy " ,
po

Bo

.vx

.x
8 ,

po

Bo

vo

L
  (13a) 

7yz " po
.vz

.z
8 , po

vi

d
  (13b) 

The essence of the diffusion region is that the plasma is unmagnetized, i.e., that it 

does not obey an ExB drift. Accordingly, we may ignore the convective (~vxB) term in 

(12). In addition, it is reasonable to assume that no y directed momentum flux enters the 

diffusion region from above or below.  

We can now integrate (12) over one quarter of the diffusion region. Using (13) and 

ignoring the inflow of y-directed momentum, we obtain: 

noE *dL , po
vo

Bo

d
L
- vi

L
d

%&
'&(&

)&
*&+&
" ,novyvod  (14) 

Eqn. (14) shows that the accelerative force of the reconnection electric field (first 

term) is balanced by quasi-viscous dissipation (second term), and by the loss of 

momentum through the outflow boundary (term on the RHS). 

Insertion of the (2), and expressing the product of density and velocity by the current 

density (8) yields: 

no
2d , po

1
BoL

-
vi

vo

L
d2

%&
'&(&

)&
*&+&
"

1
2

1
d
, no

d
L2

%&
'&

)&
*&

 (19) 
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This is formally solved for d: 

d2 "
1
2

2po
1
no

- no

%&
'&(&

)&
*&+&
-1, no

d2

L2

9&

:&
;&

<&

=&
>&

1
no

2   (20) 

Eqn. (20) shows that the diffusion region thickness is controlled by the compression 

ratio (lower inflow/outflow density ratio implies smaller sheet thickness) and current 

density (where larger current density implies a thicker current layer). 

 

IV. ENERGY EQUATION 

The energy equation describes how energy inflow is converted to energy outflow, in 

form of enthalpy, Poynting-, and kinetic energy flux. Using assumptions 4) and 11), we 

find, for each species, an energy equation of the form (see the appendix): 

!!
r v 21p " , 5

3
p12 r v , 2

3
t 
7&21/ 02 r v   (21) 

In order to represent some effects of anisotropy as well as some heat flux effects we 

generalize this equation slightly by means of a polytropic index ? : 

!!
r v 21p " ,?p12 r v , ? ,1/ 0

t 
7&21/ 02 r v   (22) 

Eqn. (22) shows how the magnetohydrodynamic, resistive heating term ? ,1/ 0@j 2 is 

replaced by a kinetic, quasi-viscous, dissipation term. A substitution of the form u=p1/? 

and an expansion of the last term (see appendix) provides further simplification: 
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!!
12 ur v / 0" , ? ,1

?
u1,? 7yz

.vy

.z
- 7yx

.vy

.x
%&
'&(&

)&
*&+&

  (23) 

Assumption 10) lets us neglect the x derivative of the current-directed velocity. Then 

integration over one box quarter provide: 

vouod " ,
? ,1
?

uo
1,? dxdz7yz

.vy

.z6 - viuiL   (24) 

Again, we will, without loss of generality, consider the electron species. Using (13) 

and (3) we find: 

d " , ? ,1
?

vyno -
vi

vo

ui

uo

L  (25) 

where we have used the equality 

uo
,? "

1
po

 

We use (8) to relate the current density to novy as well as the continuity equation (1) 

to obtain another equation for d2: 

d2 1, no
ui

uo

%&
'&(&

)&
*&+&
"
? ,1
2?

1, no
d2

L2

%&
'&(&

)&
*&+&

  (26) 

Eqn. (26) provides another estimate for the sheet thickness. In the following section, 

we will combine estimates (6) and (20) for this thickness from the momentum equation 

with (26) to derive a set of equations, which, among others, specify the reconnection rate. 

If the kinetic energy in the inflow is ignored, these equations can be solved analytically. 
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As we will see, inclusion of the inflow kinetic energy is necessary. The equations are 

then solved by a simple iteration. 

 

 

V. SOLUTION 

In this section, we combine results from previous sections for estimates of reconnection 

rates and other significant parameters. For this purpose, we insert the RHS of (19) into 

(26). Sorting then yields: 

d2 1, no
ui

uo

, no
2 ? ,1
?

%&
'&(&

)&
*&+&
" ,

? ,1
?

po

no

1
no

- no
%&
'&(&

)&
*&+&

 (27) 

The unknowns in this equation are the diffusion region parameters thickness d, density no 

and pressure po=uo
?. We can use assumption 6) to remove the thickness. Using (6) yields 

thus: 

1, no
ui

uo

, no
2 ? ,1
?

" ,
? ,1
2?

1
no

- no
%&
'&(&

)&
*&+&

 (28) 

We define for convenience: 

$ "
ui

uo

"
pi

po

%&
'&(&

)&
*&+&

1/?

 (29) 

Then (28) can be rewritten as an equation for no: 
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 no
3 -

?
? ,1

$ ,
1
A

%&
'&(&

)&
*&+&

no
2 ,

?
? ,1

no ,
1
2
" 0  (30) 

This equation can be solved by standard techniques. Furthermore, it is evident that (30) 

has at least one solution no>0. However, the solution still parametrically depends on the 

inflow total pressure, which depends on the inflow ram pressure. An analytical solution is 

possible only if the ram pressure is negligible; in the more general case, a solution is 

found by simple iteration. 

 

The next step is to determine the aspect ratio of the diffusion region. A suitable 

expression can be found by combining the energy equation (26) with the bounce width 

(6): 

4?
? ,1

po

no

1, no$/ 0" 1, no
d2

L2

%&
'&(&

)&
*&+&

  (31) 

This is readily solved for d/L: 

d
L
"

1
no

,
4 po?
? ,1

1, no$
no

2

9&

:&
;&

<&

=&
>&

1/ 2

  (32) 

It is noteworthy that this equation does not always have a real, i.e., physical, solution. 

This is the case if the required change of specific entropy [~(u / n)?] from inflow to 

outflow is too large to be provided by the available quasi-viscous heating.  

Using the outflow velocity (10) combined with (3), the reconnection electric field (2) is 

obtained from the above results: 
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E * "
1
2

1, no
d2

L2

%&
'&(&

)&
*&+&

1/ 2

no
d
L

 (33) 

As noted above, solving these equations requires iterations, since $ depends on the 

inflow velocity and the diffusion region aspect ratio. The solution process is thus as 

follows: As an initial assumption, we ignore the inflow velocity and the aspect ratio in 

(4). We solve eqns. (30)-(33), and then recalculate po and $B We then restart the cycle. 

The process is repeated until convergence has been achieved, which typically takes only 

about 20 iterations. 

 

VI. RESULTS 

Results for the reconnection electric field are shown in Figure 1, as a function of 

polytropic index. The different graphs represent different values of the plasma pressure 

parameter  C=4!opi/Bi
2 in the inflow region.  

Except for the case of vanishing pressure in the inflow region, all graphs predict a 

maximum reconnection rate of  

Emax
* 8 0.4   (34) 

irrespective of the values of C. For smaller values of C, solutions exist only for 

polytropic indices somewhat larger than adiabatic values. The lack of solutions for 

smaller values of the polytropic index is caused the required amount of heating, which is 

larger for smaller inflow pressure. The heating term in (22) is proportional to ? -1, 
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Therefore, larger values of the polytropic index are required for lower inflow pressure to 

assure the existence of solutions.  

Conversely, large values of the polytropic index represent lower compressibility. It 

is likely that the dynamics of an inflowing cold plasma is more complex than described 

by a polytropic pressure law, and likely involves the interaction and partial thermalization 

of counterstreaming beams. Such anisotropies are not included in this model, but the 

associated, quasi-one dimensional compression would be qualitatively represented by a 

larger polytropic index. 

 The maximum reconnection rate is approximately twice that reported, for example 

in the GEM challenge results. An obvious contender for explaining the differences is the 

fact that the kinetic GEM challenge calculations were performed for mass ratios other 

than unity. Another possible reason for this discrepancy lies in the adopted scaling. 

Whereas the GEM challenge results15, as well as most studies in the literature, are scaled 

by the asymptotic Alfven speed and magnetic field, the scaling adopted here is by the 

values of Alfven speed and magnetic field at the edge of the diffusion region. These 

values are typically reduced from their asymptotic values. In fact, a recent study of the 

electron diffusion region in a simulations with mass ratio 25 found similar values of the 

reconnection electric field if the scaling parameters were taken from the diffusion region 

edge16. Future studies will determine how results obtained for mass ratios other than unity 

relate to the ones in this study. 

Furthermore, it should be noted that the maximum rate shown here may not be 

assumed in reality or in simulations. In order for the system to exhibit a rate of E*=0.4, it 
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has to exhibit a very specific level of compressibility. In reality, the plasma may be better 

described by a different value of the polytropic index, e.g., by its adiabatic value. Since 

the theory treats the polytropic index as a free parameter it cannot predict which value 

would actually be obtained. In this broad sense our results should be seen as consistent 

with typical values of the reconnection electric field in the literature. 

The ratio of outflow to inflow density no is shown in Figure 2. The density increase 

exhibits the expected behavior: We find larger increases for smaller pressure in the 

inflow region, as well as larger increases for smaller values of the polytropic index. The 

physical reason behind these tendencies is that less compression is necessary for higher 

inflow pressure or larger polytropic index to provide current sheet pressure in addition to 

that obtained from nonideal heating. 

The last term of the RHS of (22) constitutes nonadiabatic heating, i.e., a deviation 

from entropy conservation. This deviation can be measured by the ratio 

S=pino
?/ poni

?& & & /DE0&

which compares the specific entropies in inflow and outflow regions. This parameter 

is shown in Figure 3. It is evident from the figure that the specific entropy in the outflow 

is considerably larger than in the inflow. Specifically, we find larger entropy increases 

(and, accordingly, more nonadiabatic heating), for smaller values of the pressure in the 

inflow region. Increasing the polytropic index produces larger values of S, consistent 

with the notion that adiabatic compression will become more important for larger values 

of ?.  
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The dimensions of the diffusion region vary with inflow and compressibility 

parameters. For example, Figure 4 displays the diffusion region thickness, determined by 

the bounce width (6). Here we find single maxima of d, and, as expected, generally larger 

values for higher inflow pressure.  

The diffusion region aspect ratio is shown in Figure 5. All curves start near zero for 

lower polytropic indices, and terminate at rather large aspect ratios. For fixed ? we find 

more oblong shape of the diffusion region for smaller inflow pressure. In a compressible 

plasma as discussed here the aspect ratio is not directly related to the reconnection rate. 

Furthermore, a large aspect ratio involves larger outflow magnetic fields, and 

consequently a lower current density and energy conversion rate. The combination of 

these factors leads to the single peak of the reconnection rate displayed in Fig. 1 rather 

than a rate peak for the largest aspect ratio. 

 The outflow velocity is shown in Figure 6. Here we find a trend of larger outflow 

velocities for lower inflow pressure, and for lower values of the polytropic index. A 

comparison with Fig. 5 demonstrates that larger outflow speeds are also related to more 

oblong shapes of the diffusion region, reflecting the impact of the continuity equation.  

For comparison with an alternative way of scaling used by many MHD modelers we 

express the outflow velocity in units of the (single-species) outflow Alfven speed, 

defined by 

vAo "
Bi

!omno

" vAi
ni

no

   (36) 
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Figure 7 displays the result of this scaling. It is noteworthy that all graphs provide 

values of order unity – a qualitative match with the simple Sweet-Parker scaling results.  

The total, i.e., combined, energy flux densities in the inflow region are in 

dimensionless form: 

Poynting flux 

Si " vi    (37a) 

enthalpy flux 

F i "
2?pi

? ,1
vi     (37b) 

kinetic energy flux 

Ki " vi
3    (37c) 

and they are dominated by Poynting flux. A typical example is shown in Figure 8, 

which depicts their variation with adiabatic index for inflow C=0.3. Enthalpy and kinetic 

energy fluxes are of considerably smaller magnitude, with the Poynting flux exceeding 

the others by factors between two and five. The dominance of the Poynting flux is a 

manifestation of the predominant energy conversion: from magnetic energy to plasma 

internal and kinetic energies. 

This conversion is further illustrated in Figure 9, which depicts the outflow energy 

flux densities, again for inflow C=0.3. These energy flux densities are given by: 

Poynting flux 
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So " E *Bo     (38a) 

enthalpy flux 

Fo "
2?po

? ,1
vo     (38b) 

kinetic energy flux 

Ko " novo
3     (38c) 

We see a dominance of outflow enthalpy flux over kinetic energy flux and Poynting 

fluxes, a fact not represented in traditional Sweet-Parker models17. The increase of 

Poynting flux for more incompressible conditions is a consequence of the larger aspect 

ratio of the diffusion region, which is associated with a larger value of the outgoing 

magnetic field. The lower outflow velocity leads to an overall reduced kinetic energy flux 

for larger values of ?.  

The dominance in the outflow of the enthalpy flux over the other two energy fluxes 

is typical, as is seen in Figures 10 and 11. Here we see that for all parameters of 

compressibility and inflow pressure the enthalpy flux dominates over kinetic energy flux 

by factors between two and four, and over Poynting flux by factors of two to five.  

An exception is the zero inflow pressure case, where enthalpy and kinetic energy 

flux are comparable. This is clearly a consequence of the singular, zero inflow pressure, 

condition, where no pressure can be obtained by compressing the inflowing plasma. 

Accordingly, the outflow enthalpy flux is somewhat smaller than those found for finite 

inflow pressure, even if the latter is quite small. The relatively large kinetic energy flux in 
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this case results from a combination of relatively fast outflow velocity (Fig. 6) combined 

with a larger current sheet density (Fig. 2). Because of the very special conditions 

inherent in the zero-pressure model, we feel that this model represents an exceptional 

case, which is likely not typical of reconnection processes. 

 

VII. SUMMARY 

In this paper, we developed an analytical theory of collisionless magnetic 

reconnection in a symmetrical pair-plasma system. We started by identifying the basic 

functions of the reconnection electric field: maintaining both the current density and the 

pressure in the reconnection diffusion region. Combining these basic concepts with a set 

of simplifying assumptions, we could use the moment equations to derive balance 

equations for mass, momentum or current density, and internal energy. In both energy 

and momentum equations, we implemented a dissipation model, which is derived from 

the evolution of the full particle pressure tensor, where only heat flux is neglected. This 

model appears to be consistent with a number of recent numerical simulations9-12. This 

dissipation model introduces irreversibility into the physical process. In order to mimic 

some effects of heat flux, we replaced the adiabatic index by a more general polytropic 

index, the variation of which also describes different compressibilities.  

Assuming a current sheet width determined by the bounce excursions of particles 

residing within the current layer, we succeeded in combining the set of equations into an 

expressions for the reconnection electric field and other, related, parameters. A solution 

of this system was obtained from a simple iterative procedure. 
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The solutions featured a number of expected properties: Density increases from 

inflow to outflow, pressure increases through a combination of adiabatic compression and 

nonadiabatic, quasi-viscous, heating, dominance of enthalpy flux in the outflow, and an 

outflow speed comparable to the Alfven speed based on outflow density and inflow 

magnetic field.  

The surprising result, however, is that we found a peak reconnection rate of 

approximately E * 8 0.4 , which is quite independent on the inflow parameters. This 

number is larger than the rates of 0.1-0.2 typically found in kinetic or Hall-MHD models 

– even though Hall-MHD approaches are not kinetic in nature. However, the rate 

obtained here is based on a normalization to magnetic field and density at the inflow edge 

of the diffusion region, the value of which was recognized earlier18. Here magnetic fields 

and Alfven speeds are usually reduced from the asymptotic values used to normalize 

kinetic and fluid numerical models. A recent investigation, which normalized the 

reconnection electric field to parameters as the edge of the electron diffusion region, 

found values similar to the ones here of the scaled electric field16. Accounting for the 

expected reductions of the product of Alfven speed and magnetic field, the rate found 

here is therefore qualitatively consistent with kinetic, numerical modeling. 

Within the scope of our theory, we have therefore shown that there is a limit to the 

value of the scaled reconnection electric field. It should be noted that the actual value 

may be different from the one derived here – the present theory had to employ 

simplifying assumptions and quantitative predictions should be seen in this light. Future 

investigations will extend this theory to different particle masses, to configurations with 

guide magnetic field, and perhaps employ more complex descriptions of particle 
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pressure. It may also be possible to connect this solution to a suitable outer solution. 

These will be challenges to be addressed as the next steps. For now, we hope that the 

present investigation provides some hope that the longstanding issue of the magnitude of 

the reconnection rate may be amenable to a solution after all. 
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APPENDIX: DERIVATION OF THE PRESSURE EQUATION 

 

The pressure tensor evolution equation is: 

!!

.
t 
P 
.t

" ,12
r v 

t 
P / 0, t 

P 21r v ,
t 
P 21r v 4 5T - q

m
t 
P 3

r 
B -

t 
P 3

r 
B 4 5T%&

'&
)&
*&, 12

t 
Q  (A1) 

The total internal energy of the plasma species under consideration is: 

!!
K :"

1
2

Trace(
t 
P )  (A2) 

From this we obtain: 

!!
.K
.t

" ,12
r v K/ 0, 1

2
trace(

t 
P 21r v ) , 1

2
trace

t 
P 21r v 4 5T , 1

2
trace(12

t 
Q ) (A3) 

We define a heat flux vector by: 

qi "
1
2

Qikk
k
G    (A4) 

Insertion and evaluation of the traces in (A3) yields: 

!!

.K
.t

"" , Pik
i,k
G .

.xk

vi , 12
r v K/ 0, 12 r q   (A5) 
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The pressure is now defined as p=2K/3. If we ignore the divergence of the heat flux, we 

obtain: 

!!

.p

.t
" ,

2
3

Pik
i,k
G .

.xk

vi , 12
r v p/ 0  (A6) 

Assumption 5 suggests to write: 

!!
t 
P " p

t 
1 -

t 
7&     (A7) 

Insertion into (A6) yields: 

!!
.p
.t
" ,

r v 21p , 5
3

p12 r v , 2
3

t 
7&21/ 02 r v   (A8) 

Finally, the pressure equation results from expanding the last term in (A8) and using the 

symmetry of the pressure tensor and the assumed translational invariance: 

!!
.p
.t
" ,

r v 21p, 5
3

p12 r v , 2
3
7yz.zvy - 7xy.xvy/ 0  (A9) 
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Figure captions 

 

 

Figure 1 (color online). Reconnection electric field depending on inflow plasma C 

and polytropic index ?. 

 

Figure 2 (color online). Ratio of outflow and inflow density, depending on inflow 

plasma C and polytropic index ?. 

 

Figure 3 (color online). Entropy ratio pino
?/ poni

? depending on inflow plasma C and 

polytropic index ?. 

 

Figure 4 (color online). Diffusion region thickness d depending on inflow plasma C 

and polytropic index ?. 

 

Figure 5 (color online). Diffusion region aspect ratio d/L depending on inflow 

plasma C and polytropic index ?. 
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Figure 6 (color online). Outflow velocity depending on inflow plasma C and 

polytropic index ?. 

 

Figure 7 (color online). Outflow velocity based on outflow density depending on 

inflow plasma C and polytropic index ?. 

 

Figure 8 (color online). Inflow energy flux densities for upstream C=0.3.  

 

 

Figure 9 (color online). Outflow energy flux densities for upstream C=0.3.  

 

Figure 10 (color online). Outflow kinetic energy flux density plotted versus enthalpy 

flux density for all parameters. The lower fluxes are obtained for larger values of the 

polytropic index ? , with the exception of the C=1 calculation. Here, lower values of ?  

yield larger kinetic energy but lower enthalpy flux densities. 

 

Figure 11 (color online). Outflow Poynting flux density plotted versus enthalpy flux 

density for all parameters. Here higher Poynting fluxes are obtained for smaller values of 
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the polytropic index ? , again with the exception of the C=1 calculation. Here, lower 

values of ?  yield larger kinetic energy but lower enthalpy flux densities. 
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