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Abstract: We investigate two common approaches to model development for robust control

synthesis in the aerospace community; namely, reduced order aeroservoelastic modelling based

on structural finite-element and computational fluid dynamics based aerodynamic models and

a data-driven system identification procedure. It is shown via analysis of experimental Super-

Sonic SemiSpan Transport (S4T) wind-tunnel data using a system identification approach it is

possible to estimate a model at a fixed Mach, which is parsimonious and robust across varying

dynamic pressures.

1 INTRODUCTION

Undesirable aeroservoelastic (ASE) interactions are a major concern in modern aircraft design.

ASE interactions between aircraft structure, aerodynamics and flight control systems can lead

to divergent oscillations resulting in catastrophic failure [1]. As such, analytical model devel-

opment is an important step in the design and certification of aircraft. Accurate models allow

for robust control design, which is critical for aircraft safety, gust-load alleviation, ride quality,

etc.

Finite element (FE) based models are used in the design process of aircraft to aid in the de-

scription of complex elastic and structural components [2, 3]. FE based models that accurately

characterise the aerodynamic and structural components are of very high order (e.g. thousands

of degrees of freedom) and computationally intensive. To reduce the ASE model order a modal

approach is used. This can reduce the state-space model order to several tens of states. The

robustness of this model type highly depends on the accuracy of the FE structural and aerody-

namic models and on the number of states applied to the modelling. Models of high complexity
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inhibit their use for control synthesis because their real-time implementation is difficult or not

possible [4]. This difficulty has led to considerable activity in the areas of model and controller

reduction techniques in the last decade. The literature is rich with many reduced order model

(ROM) techniques which would require a review paper to properly discuss them. As such, in

this paper, we limit ourselves to a handful of approaches.

A leading strategy to FE based model reduction is the proper orthogonal decomposition (POD),

which is also known as the Karhunen-Loeve procedure [5]. The so-called POD technique is

well known in the statistical literature as principal-component analysis [6]. The reduced basis

method was first proposed in [7, 8] for structural analysis and it has been used for structural

problems in [9–11]. This technique uses synthetic data from a high fidelity FE based model

to capture the dominant characteristic information utilising an orthogonalisation process. This

allows the POD approach to accurately describe a system using a few basis terms, which gives

it an advantage compared to other numerical procedures [12]. These reasons have allowed POD

to become a popular technique for the implementation of real-time control [13]. Moreover, it

has been successfully used in a variety of fields including signal analysis and pattern recognition

[14], fluid dynamics and coherent structures [15–17], control theory [18–20], civil engineering

[21] and inverse problems [22].

More recently the ROM techniques utalising POD were developed for aeroelastic systems anal-

ysis [23]. This methodology was introduced to the aerospace community for the reduction

of aeroelastic equations [24]. As a follow-on to this technique, frequency-domain approaches

were developed which efficiently compute POD basis functions for linearised aeroelastic sys-

tems [25, 26]. Due to its popularity and utility POD methodology has been proposed and im-

plemented for static and dynamic continuous-time nonlinear aeroelastic problems. Subsequent

development lead to extensions to encompass discrete Euler equations [27, 28]. Successful ap-

plication of this approach has been demonstrated for the analysis of limit-cycle oscillation of an

airfoil with a nonlinear structural coupling in the transonic regime [29].

Nevertheless, it has been observed that standard POD procedures are less robust for nonlinear

problems and typically require more basis functions as the function complexity increases [23,

30]. To address this limitation a linearisation strategy, the trajectory piecewise linearisation

(TPWL), was proposed [31,32]. The TPWL technique combines reduced-order modelling with

linearization of the governing equations as a solution to this problem [23].
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Although POD offers a significant reduction of the full FE based model, it is often too large to

lend itself to efficient control design. An alternative approach is to use data driven techniques

to let the data dictate what the optimal model should be. Such a procedure is commonly known

as system identification.

This area, as with ROM methods, also has an extensive base of literature for both linear and

nonlinear system identification techniques and is too large to give a proper review here. As

such we refer the reader to an often cited authoritative treatise in the area which provides an

excellent overview and references [33]. Below we provide a brief and incomplete introduction.

There are two broad classes of techniques that can be pursued to accomplish the task of sys-

tem identification: (i) nonparametric and (ii) parametric methods. The finite impulse response

function (FIR) has been widely used for modelling linear time-invariant systems. This type

of system description is known as nonparametric because it is a numeric representation of the

system’s impulse response or kernel [33–35]. Although nonparametric methods can be used to

represent many classes of systems, they do so at the expense of introducing an excessive num-

ber of unknown coefficients which must be estimated. Most expansions map the past inputs

into the present output and so require a very large number of coefficients to characterize the

process. Moreover, the parameters are not readily linked to the underlying system, except in

special cases where significant a priori knowledge of the system has been assumed.

Due to this shortcoming, parametric identification methods have been developed for use in

the design of better control systems. Parametric models have some advantages in applications.

They (i) are easier to understand and interpret, (ii) can simplify forecasts (e.g., obtaining forecast

intervals) and (iii) model comparison in a parametric context (i.e., parameter estimates, model

order and model structure) has been well studied. Hence, the difficulty of model comparison

encountered using nonparametric tools can be avoided [36].

A parametric model consists of a set of differential or difference equations describing the system

dynamics. Such equations usually contain a “small” number of parameters which can be varied

to alter the behavior of the equation. In this paper, we only consider the discrete-time case since

in any practical experimental situation the data available to the experimenter is in discrete-time.

As such, most systems for identification purposes are represented in discrete-time. In addition,

we assume the ROM with which we compare our data-driven model is available and as such we
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do not discuss its development.

The organization of this paper is as follows. In §2 we formulate the identification problem

addressed here. Section 3 describes the experimental S4T test-bed [37] and methods used for

model development. Section 4 illustrates the results of our study on three flight conditions;

namely, model robustness to fixed Mach but varying dynamic pressure. Section 5 provides a

discussion of our findings and §6 summarises the conclusions of our study.

2 PROBLEM STATEMENT

System identification is the process of developing or improving a mathematical representation

of a physical system based on observed data. Often the observed data consists of an external user

selected input, used to perturb the system and elicit an output response. In any experimental

situation the system output is a sum of the true unknown system output and observation or

measurement noise. Given this paradigm there are several model structures that can be explored

to model a system’s dynamics and noise.

2.1 Model Structures

After preprocessing the recorded data, the first step in system identification is to select a model

structure to describe the observations. There are a number of model forms to select from when

developing a data-driven model [33]. However, the problem often dictates the model form(s)

that are reasonable to consider. This insight may come from a priori knowledge of the physical

process or previous morphological modelling efforts. In this paper, we use knowledge gained

from previous work to limit the model sets considered, namely, linear, time-invariant processes

where both input-ouput are available to the user [38, 39].

2.1.1 ARX Model Structure

The simplest input-output polynomial model is the AutoRegressive eXogenous input (ARX)

model, represented as [33, 40, 41]

y(n) = − a1y(n− 1)− · · · − anay(n− na) (1)

+ b1u(n− 1) + b2u(n− 2) + · · ·+ bnb
u(n− nb)

+ e(n)
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where y(n) is the measured output, u(n) is an accessible input, and e(n) is an unobservable

white-noise disturbance. The current output depends on nb previous values of the input, na

previous values of the output and the current disturbance.

This structure can be represented more compactly as

A(q)y(n) = B(q)u(n) + e(n) or (2)

y(n) = G(q)u(n) + H(q)e(n) where (3)

G(q) =
B(q)

A(q)
, H(q) =

1

A(q)
(4)

where A(q) = 1 + a1q
−1 + · · ·+ anaq

−na , B(q) = b1q
−1 + · · ·+ bnb

q−nb , q−1 is the backward

shift operator and the a’s and b’s are the parameters of the output and input, respectively.

When there is evidence of significant noise in the system a more flexible noise model may be

required to model the dynamics and noise using different polynomials.

2.1.2 ARMAX Model Structure

For linear systems, the relationship between input-output and noise can be written as a linear

difference equation

y(n) = − a1y(n− 1)− · · · − anay(n− na) (5)

+ b1u(n− 1) + b2u(n− 2) + · · ·+ bnb
u(n− nb)

+ e(n) + c1e(n− 1) + · · ·+ cnce(n− nc).

This is known as the AutoRegressive, Moving Average eXogenous (ARMAX) model. In this

model structure the current output y(n) depends on an exogenous input, u(n), an innovation

process, e(n), and past values of the output. This structure can be represented more compactly

as

A(q)y(n) = B(q)u(n) + C(q)e(n). (6)

Substituting (6) into (3) yields

G(q) =
B(q)

A(q)
, H(q) =

C(q)

A(q)
(7)
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where C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc , and the c’s are parameters of the noise model numer-

ator. The extra polynomial, C(q), gives the ARMAX structure additional flexibility to model

additive disturbance. When additional complexity is needed to model noise H(q) can be fully

parameterised independent of the system dynamics.

2.1.3 Box-Jenkins Model Structure

A natural development of the ARMAX model structure is to parameterise the noise process as

an ARMA model

y(n) =
B(q)

F (q)
u(n) +

C(q)

D(q)
e(n) (8)

where F (q) = 1 + f1q
−1 + · · · + fnf

q−nf and D(q) = 1 + d1q
−1 + · · · + dnd

q−nd model the

poles of the system and noise separately. Note that nf = na. This model structure is known as

the Box-Jenkins model due to their seminal work proposing this model form [42].

2.2 Model Order Selection

Once a model structure is selected the dynamic order of the system needs to be determined.

Although there are many techniques that offer a solution to this problem, below we describe

three commonly used techniques to estimate model order.

2.2.1 Final Prediction Error

The Final Prediction Error (FPE) measure estimates the error in model fit when it is used to

predict new outputs [43]. FPE defines an optimal model as one that minimises

FPE = V

(
1 +

2p

N − p

)
(9)

where N is the number of data points, V is the prediction error, or the residual sum of squares

and p is the number of model parameters.

2.2.2 Akaike’s Information Criterion

Akaike’s Information Criterion (AIC) is a weighted estimation error based on the unexplained

variation of a given time series with a penalty term when exceeding the optimal number of
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parameters to represent the system [44]. Utalisng AIC, an optimal model is defined as one that

minimises

AIC = V

(
1 +

2p

N

)
. (10)

According to Akaike’s theory, the most accurate model has the smallest prediction error.

2.2.3 Minimal Description Length

Rissanen’s Minimal Description Length (MDL) approach is based on V plus a penalty for the

number of terms used [45]. With MDL, an optimal model is one that minimises

MDL = V

(
1 +

p ln N

N

)
. (11)

A model that minimises the MDL allows the shortest description of measured data.

2.3 Cross-Validation

Model validation is an important step in developing strategies for robust control. This step

is typically preceded by system identification. Model validation is concerned with assessing

whether a given nominal model can reproduce data from a plant, collected after some initial

experiments to obtain estimation data [46]. The model validation problem is really one of

model invalidation since a given model can only be said to be not invalidated with the current

evidence. Future evidence may invalidate the model.

We cross-validate the parameter estimates of the model dynamics using a 1-step-ahead predictor

[33]. Model goodness is assessed by computing the percent quality of fit (%QF) as

%QF =

(
1−

1
N

∑N
n=1(yn − ŷn)2

1
N

∑N
n=1(yn)2

)
× 100 (12)

where y is the measured system output and ŷ the predicted model output.

In the sequel, we show by implementing these well-known identification strategies it is possible

to develop a model which is parsimonious and a robust predictor of measured data and, hence,

represent the physical process more accurately.
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Figure 1: S4T model.

3 EXPERIMENTAL S4T WIND-TUNNEL DATA

The modelling and identification techniques were applied to experimental wind-tunnel data

from the S4T project conducted at NASA Langely Research Center [37]. Figure 1 shows a scale

model of the S4T testbed in the wind tunnel. The data analysed for this study used horizontal

tail position input and structural accelerometer response output.

3.1 Data Collection

Wind-tunnel data was gathered during transonic clearance of the S4T. At each flight condition

the aircraft model was perturbed with a log sine sweep input which had a frequency content

of 0.5–25 Hz, mean value of 3.5 deg and ±0.3 deg amplitude. The inputs were applied to the

horizontal tail. The accelerometer output was collected from a sensor located at the nacelle

inboard aft position. Wind-tunnel tests were conducted at subsonic, transonic and supersonic

conditions and varying dynamic pressures. The input-output were antialiasing filtered by an

eighth-order Bessel filter with a cut-off at 200 Hz and recorded at 1,000 Hz. Data was collected

for a range of Mach numbers from M = 0.6 − 1.2 and dynamic pressures Q = 20 − 65 psf

(pounds per square foot).
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3.2 Data Analysis

In this study, the objective was to develop a parsimonious model for control synthesis to improve

gust-load alleviation and ride quality. As such, we focused our identification efforts on data

collected at Mach 0.80, 0.95, 1.10 and Q = 30, 55, 60, 65 psf. At each Mach we used Q = 30

psf as the estimation data and Q = 55, 60, 65 psf as the cross-validation data. At M = 0.95

data was not collected at Q = 65 psf and, therefore, the estimated model could only be cross-

validated at Q = 55 and 60 psf. This approach of modelling and validation was taken to assess

the model’s predicative capability and robustness.

Data was preprocessed to remove the linear trend, mean and outliers. The preprocessing step

ensured that all unwanted low-frequency disturbances, offsets, trends and drifts were removed

and allowed for an accurate representation of the system dynamics.

3.3 Identification Procedures

The identification process was performed in four stages to assess the full range of models dis-

cussed in §2. In all cases the model order was estimated using the FPE, AIC and MDL ap-

proaches. The optimal model order was deemed as one that produced the lowest prediction

error of the aforementioned techniques. Once the model order was fixed, prediction error iden-

tification (PEI) was used to estimate the unknown parameters and its predictive capability was

computed for a cross-validation set as described previously (see §2.3).

1. The ARX structure’s ability to model wind-tunnel data was assessed because it is the sim-

plest input-output model and invoking the principle of parsimony. For the ARX model the

order was determined by preselecting a range of model orders to search over. Specifically,

na =2–5, nb =1–5 and nk =1–10 was chosen as the search range, where nk denotes input

delay. This range was selected to allow sufficient model complexity whilst maintaining

an efficient system description.

2. Further complexity was added to the ARX model to assess whether the same model struc-

ture could account for significantly greater output variance with na =2–10, nb =1–10 and

nk =1–20.

3. Using the best fit ARX model order to fix na and nb we searched for an ARMAX order,

namely, nc =1–20 that provided the smallest prediction error as the optimal ARMAX

order.
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4. The same procedure was followed to assess whether the BJ model structure could account

for more of the output variance than the ARMAX model with nd =1–20.

4 RESULTS

4.1 ARX Model

Two ARX model orders were evaluated. Specifically, a model with order na =5, nb =1, nk =1

and na =10, nb =1, nk =1 was used for model development. The model order was estimated

as discussed in §2.2. This analysis allowed for us to assess whether adding complexity to the

same structure could account for significantly more of the output variance. The models were

estimated using wind-tunnel data measured at Mach1.10, Q = 30 psf which yielded structures

of the form

ARX5:

Â(q)y(n) = B̂(q)u(n) + e(n) where (13)

Â(q) = 1 + â1q
−1 + â2q

−2 + â3q
−3 + â4q

−4 + â5q
−5 and

B̂(q) = b̂1q
−1

ARX10:

Ã(q)y(n) = B̃(q)u(n) + e(n) where (14)

Ã(q) = 1 + ã1q
−1 + ã2q

−2 + ã3q
−3 + ã4q

−4 + ã5q
−5

+ ã6q
−6 + ã6q

−6 + ã6q
−6 + ã6q

−6 + ã10q
−10 and

B̃(q) = b̃1q
−1.

Figure 2 shows representative results for the ARX structure’s (Eqns.13 &14) ability to represent

S4T wind-tunnel data by evaluating it with cross-validation data at Mach 1.10, Q =55, 60, 65

psf. This figure compares %QF of the predicted output for the ARX5 and ARX10 models

superimposed on top of measured data. The %QF’s obtained for the ARX5 model at Q =55,

60, 65 psf. are 82.97%, 84.94% and 84.94%, respectively. For the ARX10 model the %QF’s

are 86.61%, 88.24% and 88.05%.

Figure 2 demonstrates that adding complexity to the ARX model improves the %QF. As such,

we deem that the ARX10 model (Eqn. 14) is the better fit model due to its predicative capability.

10



0 20 40 60 80 100

−1

−0.5

0

0.5

1

1.5

Time (s)

G
Cross−Validation Fit: Mach 1.10, Q=55

 

 

Measured
ARX10 86.61%QF
ARX5 82.97%QF

(a)

0 20 40 60 80 100

−1

−0.5

0

0.5

1

1.5

Time (s)

G

Cross−Validation Fit: Mach 1.10, Q=60

 

 

Measured
ARX10 88.24%QF
ARX5 84.94%QF

(b)

0 20 40 60 80 100

−1

−0.5

0

0.5

1

1.5

Time (s)

G

Cross−Validation Fit: Mach 1.10, Q=65

 

 

Measured
ARX10 88.05%QF
ARX5 84.94%QF

(c)

Figure 2: Measured and predicted output for ARX5 and ARX10 models at Mach 1.10. (a): Q = 55 psf. (b):

Q = 60 psf. (c): Q = 65 psf. Solid line (“—”) measured output. Dash-dash line (“– –”) predicted

ARX10 model output. Dot-dot line (“...”) predicted ARX5 model output.
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4.2 ARMAX Model

Next, we used the ARX10 model oder as a starting point to develop a more complex ARMAX

model to assess whether it could account for more output variance whilst maintaining an effi-

cient model description. The model was estimated at Mach 1.10, Q = 30 psf and yielded a

structure of the form

ARMAX:

Ã(q)y(n) = B̃(q)u(n) + C̃(q)e(n) where (15)

C̃(q) = 1 + c̃1q
−1 + c̃2q

−2 + c̃3q
−3 + c̃4q

−4 + c̃5q
−5

+ c̃6q
−6 + c̃7q

−7 + c̃8q
−8 + c̃9q

−9 + c̃10q
−10.

Figure 3 shows representative results for the ARMAX structure’s (Eqn.15) ability to represent

S4T wind-tunnel data by evaluating it with cross-validation data at Mach 1.10, Q =55, 60, 65

psf. The figure illustrates %QF of the predicted output for the ARMAX model superimposed

on top of measured data. The %QF’s obtained for the ARMAX model at Q =55, 60, 65 psf.

are 87.38%, 88.86% and 88.67%, respectively. Notice that although this model structure adds

complexity, it is accounts for incrementally more of the output variance.

4.3 Box-Jenkins Model

Lastly, we used the ARMAX model (Eqn. 15) oder as a starting point to develop a more complex

BJ model to assess whether it could account for more output variance whilst maintaining an

efficient model description. The model was estimated at Mach 1.10, Q = 30 psf and yielded a

structure of the form

BJ:

y(n) =
B̃(q)

F̃ (q)
u(n) +

C̃(q)

D̃(q)
e(n) where (16)

F̃ (q) ' Ã(q) and

D̃(q) = 1 + d̃1q
−1 + d̃2q

−2 + d̃3q
−3 + d̃4q

−4 + d̃5q
−5

+ d̃6q
−6 + d̃7q

−7 + d̃8q
−8 + d̃9q

−9 + d̃10q
−10.

Figure 4 shows representative results for the BJ structure’s (Eqn. 16) ability to represent S4T

wind-tunnel data by evaluating it with cross-validation data at Mach 1.10, Q =55, 60, 65 psf.

12



0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

G
Cross−Validation Fit: Mach 1.10, Q=55

 

 

Measured
ARMAX 87.38%QF

(a)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

G

Cross−Validation Fit: Mach 1.10, Q=60

 

 

Measured
ARMAX 88.86%QF

(b)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

G

Cross−Validation Fit: Mach 1.10, Q=65

 

 

Measured
ARMAX 88.67%QF

(c)

Figure 3: Measured and predicted output for ARMAX model at Mach 1.10. (a): Q = 55 psf. (b): Q = 60 psf. (c):

Q = 65 psf. Solid line (“—”) measured output. Dot-dot line (“...”) predicted ARMAX model output.
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Figure 4: Predicted output of the BJ model at Mach 1.10 superimposed on top of measured output. (a): Q = 55

psf. (b): Q = 60 psf. (c): Q = 65 psf. Solid line (“—”) measured output. Dot-dot line (“...”) predicted

BJ model output.
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The figure illustrates %QF of the predicted output for the BJ model superimposed on top of

measured data. The %QF’s obtained for the BJ model at Q =55, 60, 65 psf. are 87.17%,

88.70% and 88.48%, respectively. Although the BJ model offers greater complexity to model

the observed data, it offers a slightly lower %QF. Using validation data, if the fit of a higher

order deteriorates, it is an indication that the model complexity is too high [33].

Table 1 summarises the findings of our analysis. These results from Table 1 illustrate that model

Dynamic Quality of Fit (%)

Mach Pressure (psf) ARX5 ARX10 ARMAX BJ

55 86.04 87.63 88.26 88.05

0.80 60 86.81 88.25 88.87 88.61

65 86.16 87.33 87.79 87.66

55 83.31 85.56 86.80 86.05

0.95 60 83.60 85.97 87.11 86.36

65 × × × ×

55 82.97 86.61 87.38 87.17

1.10 60 84.94 88.24 88.86 88.70

65 84.94 88.05 88.67 88.48

Table 1: Summary of cross-validation results. Mach number and dynamic pressure versus model structure.

fit increases with added complexity for the ARX model structure, improves incrementally for

the ARMAX structure but decreases for the BJ. From these results we conclude that the higher-

order ARX model may be sufficient for our purposes and as such we compare the predictive

capability of this model to the FE based ASE model used for control design during wind-tunnel

test [38, 39].

4.4 Comparison of Tenth-Order ARX and ASE Models

Lastly, we compared the ARX10 (Eqn.14) and ASE model’s ability to predict measured data.

The original FE based model had 17,196 degrees of freedom. Using a modal approach an

eightieth-order ASE model was developed and used for comparison [38, 39]. The ASE model
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contained 60 structural and 20 unsteady aerodynamic lag states.

Figure 5 illustrates results of how accurately, as %QF, the two models correspond to wind-tunnel

data at Mach 0.80, 0.95, 1.1 and, Q =55, 60, 65 psf. The figure shows the predicted output for
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Figure 5: Predicted outputs of the ASE and ARX10 model superimposed on top of measured output. (a–c): Mach

0.80, Q = 55 − 65 psf. (d–e): Mach 0.95, Q = 55 − 60 psf. (c): Mach 1.10, Q = 55 − 65 psf. Solid

line (“—”) measured output. Dot-dot line (“...”) predicted ARX10 model output. Dash-dot line (“–..”)

predicted ASE model output.

the ARX10 and ASE models superimposed on top of measured data. The %QF’s obtained for

the ARX10 model, at all Mach numbers and Q’s, ranges from 85% to 88%. For the ASE

model the %QF’s, for all Mach numbers and Q’s, ranges from 2% to 7%. Although the FE

ASE has many more degrees of freedom, it was not able to provide better predictive capability
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than the data-driven ARX model. Clearly, the tenth-order ARX model obtained using system

identification methodology outperforms the FE ASE model.

5 DISCUSSION

This study explored the utility of system identification techniques to develop robust models

for control synthesis. Initially, at each Mach number, an ARX model with maximum order

of five was posed to the AIC, FPE and MDL techniques to estimate optimal lag and dynamic

order. Next the ARX models were allowed greater flexibility with a maximum order of ten to

assess whether the same structure could explain more of the output variance. Analysis of these

results indicated that the tenth-order ARX models provided sufficient improvement in model fit

to justify the added complexity. Therefore, at each Mach number the tenth-order ARX models

were used as a starting point for ARMAX model development. The best fit ARMAX models

were then used to develop BJ models.

The results show that whilst the ARMAX models provide an improved fit, it was less than 1%

for each case. The predictive capability of the BJ models was less than that of the ARMAX

structures, which is a symptom of too much complexity. As such, these results indicate that

the tenth-order ARX models were optimal in terms of parsimony and predictive capability to

describe the dynamics of recoded wind-tunnel data.

A comparison of the tenth-order ARX and 80th-order ASE model’s ability to explain the output

variance revealed that the more complex ASE model was not able to achieve as high of a fit. The

ARX model was able to attain a higher fit because the model was developed using measured

data which often contains dynamics that are not captured in a FE based model. Conversely, the

ASE model was developed from idealised assumptions about mass, damping, etc. which are

idealisation and often do not closely hold with observations under experimental conditions.

Although a different ASE model was developed for each Mach and Q, they yielded significantly

reduced fits to measured data compared with the tenth-order ARX model. Notice that the ARX

model at each Mach number was developed with estimation data at Q = 30 psf but was able to

accurately predict the measured data at higher Q’s, namely, Q = 55− 65 psf. This is the power

of utilising a data-driven approach to model development.

Often a model which yields a minimum system description yet provides good predictive ca-
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pabilities is deemed as the best or optimal model. This is a trade-off between the ability to

describe the system behaviour and parsimony. If two models can describe the system behaviour

almost equally well, why choose the more complex one? For example, in H∞-control synthesis

the order of the controller is equal to the order of the model plus the order of the performance

weights. Of course, it is not as computationally demanding to compute a controller of lower

order. Moreover, selecting a model with greater complexity may lead to numerical issues if

the model order is too high. Hence, minimum complexity often renders control synthesis more

tractable [33, 47].

A future study will utalise these data-driven models to develop control laws to assess model

and controller design robustness. Initially, this study will be performed in a simulation environ-

ment but with data collected from the wind-tunnel tests described in this paper. The successful

demonstration of this work may lead to comparison of the robustness of control law design

based on the two approaches, FE ASE and system identification models, on a supersonic flight

test vehicle.

6 CONCLUSION

This study demonstrates the application of system identification techniques to develop parsi-

monious and robust models directly from data with excellent predictive capability. The results

show that a data-driven model is capable of predicting observed data for a larger operating

point. This robust predictive power was demonstrated with models developed at Q = 30 psf

yet able to accurately predict the measured output at higher Q’s. This superior predictive capa-

bility allows for simpler control solutions and reduced modelling effort whilst traditional ASE

based control strategies rely on computationally expensive models with little predictive power

rendering control law design more expensive.
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Introduction

• Undesirable ASE interactions are a major concern in modern aircraft design

– ASE interactions between aircraft structure, aerodynamics and flight control systems
can lead to divergent oscillations resulting in catastrophic failure

– Accurate models allow for robust control design – critical for aircraft safety, gust-load
alleviation, ride quality, etc.

• Finite element (FE) based models used in design process of aircraft to aid
in the description of complex elastic and structural components

– FE based models that accurately characterise the aerodynamic and structural compo-
nents are of very high order (e.g. thousands of degrees of freedom) and computationally
intensive

• Led to considerable activity in the areas of model and controller reduction
techniques – reduced order model (ROM) techniques
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ROM Techniques

• Proper Orthogonal Decomposition (POD) (i.e. Karhunen-Loeve Procedure)

– POD technique well known in statistical literature as principal-component analysis

– Uses synthetic data from a high fidelity FE based model to capture the dominant char-
acteristic information utilising an orthogonalisation process

• Trajectory Piecewise Linearisation (TPWL)

– Developed because standard POD procedures less robust for nonlinear problems

– TPWL technique combines reduced-order modelling with linearization of the govern-
ing equations as a solution to this problem

• ROM techniques offer significant reduction of full FE based model, how-
ever, often still too large for efficient control design

• An alternative approach is data driven techniques to let the data dictate what
the optimal model should be – i.e. system identification
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The Identification Problem
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Identification of Stochastic or Noise Model
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– Relationship between w1(t) and z(t), given only system output, z(t)

– u(t) assumed zero or constant
– Commonly known as time-series analysis
– Economic analysis, geophysical or astronomical phenomena, biological data
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Identification of the Deterministic Model, G
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– Relationship between u(t) and y(t) – assumes w1(t) = 0

– Input/output corrupted by noise, eu(t) & ez(t) – commonly assumes eu(t) = 0

– Pursued when objective is to gain insight into the functioning of a system
– Automotive industry, chemical plants, pulp & paper, biomedical modelling
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Identification of Stochastic & Deterministic Models
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– Both input/output signals available for identification
– Used when accurate predictions are desired
– Design of model-based control systems for aircraft, spacecraft or robotics
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Nonparametric Methods

• Advantage

– Provide convenient, robust means of characterising the dynamics of systems without
requiring a priori assumptions regarding the system structure

• Disadvantage

– Nonparametric estimates of dynamics are difficult to relate to the structure and param-
eters of the underlying physiological system
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Parametric Methods

• Disadvantage

– Generally require a priori assumptions about the system order

• Advantage

– Provides a concise description of the system dynamics

– Yield results that may be related directly to the system structure

IFASD 2011 – Paris, France Dryden Flight Research Center



Objective

• Investigate two common approaches to model development for robust con-
trol synthesis in the aerospace community

• Reduced order aeroservoelastic modelling based on structural finite-element
and computational fluid dynamics based aerodynamic models

• Data-driven system identification procedure
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Identification Procedure

• Choose Model Structure

– Determine model form and select parameters to include in a model

• Model Order Selection

– Determine number of input, output and error lags

• Parameter Estimation

– Determine values of unknown parameters

• Model Validation

– Assess whether identified nominal model can reproduce data from a plant
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Model Structures

• ARX Model

y(n) = −a1y(n− 1)− · · · − anay(n− na) + b1u(n− 1) + b2u(n− 2) + · · · + bnb
u(n− nb)

+e(n)

y(n) = G(q)u(n) + H(q)e(n) where G(q) =
B(q)

A(q)
, H(q) =

1

A(q)

• ARMAX Model

y(n) = −a1y(n− 1)− · · · − anay(n− na) + b1u(n− 1) + b2u(n− 2) + · · · + bnb
u(n− nb)

+e(n) + c1e(n− 1) + · · · + cnce(n− nc)

where G(q) =
B(q)

A(q)
, H(q) =

C(q)

A(q)

• Box-Jenkins Model

y(n) =
B(q)

F (q)
u(n) +

C(q)

D(q)
e(n)

where F (q) = 1 + f1q
−1 + · · · + fnf

q−nf and D(q) = 1 + d1q
−1 + · · · + dnd

q−nd
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Model Order Selection

• Final Prediction Error (FPE)

FPE = V

(
1 +

2p

N − p

)
where N is the number of data points, V is the prediction error, or the residual sum of
squares and p is the number of model parameters

• Akaike’s Information Criterion (AIC)

AIC = V

(
1 +

2p

N

)

• Minimal Description Length (MDL)

MDL = V

(
1 +

p ln N

N

)
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Cross-Validation

• Model validation concerned with assessing whether a given nominal model
can reproduce data from a plant, collected after some initial experiments to
obtain estimation data

• Model goodness is assessed by

%QF =

(
1−

1
N

∑N
n=1(yn − ŷn)2

1
N

∑N
n=1(yn)2

)
× 100
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Experimental S4T Wind-Tunnel Data from NASA Langely Research Center

• Data analysed used horizontal tail position input and structural accelerom-
eter response output
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Data Collection

• Data recorded during transonic clearance

• Aircraft model was perturbed with a log sine sweep input and had a mean
value of 3.5 deg and ±0.3 deg amplitude

• Inputs applied to horizontal tail and output data collected from sensor lo-
cated at nacelle inboard aft position

• Data was collected for M = 0.6− 1.2 and dynamic pressures Q = 20− 65
psf
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Data Analysis

• Objective was to develop a parsimonious model for control synthesis to
improve gust-load alleviation and ride quality

• Focused our identification efforts on data collected at Mach 0.80, 0.95, 1.10
and Q = 30, 55, 60, 65 psf

• Used Q = 30 psf as estimation data and Q = 55, 60, 65 psf as cross-
validation data

• At M = 0.95 data was not collected at Q = 65 psf and, therefore, the
estimated model could only be cross-validated at Q = 55 and 60 psf.
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Identification Procedures

• Model order was estimated using FPE, AIC and MDL

• Prediction error identification (PEI) used to estimate unknown parameters

• Identification process was performed in four stages:

1. ARX structure’s ability to model wind-tunnel data assessed because it is the simplest
input-output model and invoking the principle of parsimony. Model order determined
by preselecting a search range of: na =2–5, nb =1–5, nk =1–10. Range selected to
allow sufficient model complexity whilst maintaining an efficient system description.

2. Complexity added to ARX model to assess whether the same model structure could
account for significantly greater output variance with na =2–10, nb =1–10, nk =1–20.

3. Using best fit ARX model order to fix na and nb we searched for an ARMAX order,
namely, nc =1–20 that provided the smallest prediction error as the optimal order.

4. The same procedure was followed to assess whether the BJ model structure could ac-
count for more of the output variance than the ARMAX model with nd =1–20.
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Results: ARX Model....

• Two ARX model orders evaluated: na =5, nb =1, nk =1 and na =10,
nb =1, nk =1 with estimation data from Mach1.10, Q = 30 psf

ARX5:
Â(q)y(n) = B̂(q)u(n) + e(n) where

Â(q) = 1 + â1q
−1 + â2q

−2 + â3q
−3 + â4q

−4 + â5q
−5 and

B̂(q) = b̂1q
−1

ARX10:
Ã(q)y(n) = B̃(q)u(n) + e(n) where

Ã(q) = 1 + ã1q
−1 + ã2q

−2 + ã3q
−3 + ã4q

−4 + ã5q
−5

+ ã6q
−6 + ã6q

−6 + ã6q
−6 + ã6q

−6 + ã10q
−10 and

B̃(q) = b̃1q
−1.
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....Results: ARX Model Cross-Validation at Mach 1.10, Q =55, 60, 65 psf
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Results: ARMAX Model....

• Used the ARX10 model order as a starting point to develop a more complex
ARMAX model with estimation data from Mach1.10, Q = 30 psf

ARMAX:
Ã(q)y(n) = B̃(q)u(n) + C̃(q)e(n) where

C̃(q) = 1 + c̃1q
−1 + c̃2q

−2 + c̃3q
−3 + c̃4q

−4 + c̃5q
−5

+ c̃6q
−6 + c̃7q

−7 + c̃8q
−8 + c̃9q

−9 + c̃10q
−10.
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....Results: ARMAX Model
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Measured
ARMAX 88.86%QF
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Measured
ARMAX 88.67%QF
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Results: Box-Jenkins Model....

• Used the ARMAX model order as a starting point to develop a more com-
plex BJ model with estimation data from Mach1.10, Q = 30 psf

BJ:

y(n) =
B̃(q)

F̃ (q)
u(n) +

C̃(q)

D̃(q)
e(n) where

F̃ (q) ' Ã(q) and
D̃(q) = 1 + d̃1q

−1 + d̃2q
−2 + d̃3q

−3 + d̃4q
−4 + d̃5q

−5

+ d̃6q
−6 + d̃7q

−7 + d̃8q
−8 + d̃9q

−9 + d̃10q
−10.
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....Results: Box-Jenkins Model
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Measured
BJ 87.17%QF
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Measured
BJ 88.7%QF
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Measured
BJ 88.48%QF
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Summary of Cross-Validation: Mach & Dynamic Pressure Vs. Model

• Results illustrate that model fit increases with added complexity for the
ARX model structure, improves incrementally for the ARMAX structure
but decreases for the BJ

• We conclude that the higher-order ARX model may be sufficient for our
purposes and as such we compare the predictive capability of this model to
the FE based ASE model used for control design during wind-tunnel test

IFASD 2011 – Paris, France Dryden Flight Research Center



Comparison of Tenth-Order ARX and ASE Models

• Compared the ARX10 and ASE model’s ability to predict measured data

• FE based model had 17,196 degrees of freedom, using a modal approach
an eightieth-order ASE model was developed and used for comparison

• ASE model contained 60 structural and 20 unsteady aerodynamic lag states
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Predicted Outputs of ASE, ARX10 Models Measured Output
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Measured
ARX10 87.63%QF
ASE Model 3.487%QF
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Measured
ARX10 88.25%QF
ASE Model 4.116%QF
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Measured
ARX10 87.33%QF
ASE Model 4.938%QF
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Measured
ARX10 85.56%QF
ASE Model 1.638%QF
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Measured
ARX10 85.97%QF
ASE Model 2.554%QF
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Measured
ARX10 86.61%QF
ASE Model 3.84%QF
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Measured
ARX10 88.24%QF
ASE Model 7.457%QF
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Measured
ARX5 88.05%QF
ASE Model 6.247%QF
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Conclusions

• Study demonstrates the application of system identification techniques to
develop parsimonious and robust models directly from data with excellent
predictive capability

• Results show that a data-driven model is capable of predicting observed
data for a larger operating poin

• Robust predictive power was demonstrated with models developed at Q =
30 psf yet able to accurately predict the measured output at higher Q’s

• Superior predictive capability allows for simpler control solutions and re-
duced modelling effort whilst traditional ASE based control strategies rely
on computationally expensive models with little predictive power rendering
control law design more expensive
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