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Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to 
modify the external flowfield has gained renewed interest with regards to potential retropropulsion 
applications pertinent to entry, descent, and landing investigations. This study describes numerical 
computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time 
conservation element solution element viscous flow solver with unstructured meshes. Both steady-
state and time-accurate computations are performed for several configurations with different 
counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow 
rate and jet Mach number on the flow stability, jet interaction with the bow shock and its 
subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. 
Similar to previous experimental findings, both long and short penetration modes exist at a wind-
tunnel Mach number of 3.48.  It was found that both modes exhibit non-stationary behavior and the 
former is much more unstable than the latter. It was also found that the unstable long penetration 
mode only exists in a relatively small range of the jet mass flow rate.   Solution-based mesh 
refinement procedures are used to improve solution accuracy and provide guidelines for a more 
effective mesh generation procedure for parametric studies. Details of the computed flowfields also 
serve as a means to broaden the knowledge base for future retropropulsion design studies. 

Nomenclature 

€ 

d  = Capsule diameter 

€ 

e  =  Total energy 

€ 

f  = Flux vector 

€ 

F,  G  = Components of flux vector  

€ 

h  = Flux vector in space-time domain  

€ 

l  = Maximum shock standoff distance measured from the capsule surface 

€ 

˙ m j  = Nozzle flow rate 

€ 

M j  = Counterflowing jet nozzle Mach number 

€ 

M∞  = Freestream Mach number 

€ 

p  = Pressure 

€ 

P0  = Total pressure of freestream 

€ 

P0 f  = Total pressure at free stagnation point 

€ 

P0 j  = Total pressure of counterflowing jet 

€ 

Pamb  = Static pressure at the ambient outside the nozzle exit 

€ 

Pj  = Static pressure of the jet at the nozzle exit plane 
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€ 

Ps  = Static pressure of freestream 

€ 

t  = Time 

€ 

T0  = Total temperature of freestream 

€ 

T0 j  = Total temperature of counterflowing jet 

€ 

Ts  = Static temperature of freestream 

€ 

u,  v  = Cartesian velocity components 

€ 

U  = Conserved flow variable vector 

€ 

V  = Space-time region 

€ 

x,  y  = Cartesian coordinates 

€ 

γ  = Ratio of the specific heat 

€ 

ρ  = Density 
 

I. Background and Introduction  
Injection of a supersonic jet into an opposing supersonic/hypersonic freestream as a flow control concept to reduce 

aerothermal loads on spacecraft or as a decelerator technology during decent into planetary atmospheres like that of Mars, 
has recently gained renewed interest.1-3 Most studies on the use of opposing jets for such purposes were performed in the 
pre-Viking era.4-14 The initial studies were focused on the effects of retropropulsion nozzle flows on boundary-layer 
transition as well as the aerodynamic drag.4-6 The primary focus of these investigations were not on blunt-body geometries, 
but their results did lay the groundwork for understanding the physics involved in jet-shock interactions. The first of such 
studies on blunt bodies was by Stadler and Inouye7 in 1956, when they investigated the effect of air injection from the 
stagnation point on heat transfer for hemispherical bodies. Following their work, other studies such as those by Rashi8 and 
Ferri and Bloom9 also observed the surface cooling effects due to the injection of counterflowing water jets. Warren10 
experimentally studied the effects of injecting gases into a Mach 5.8 free-stream and observed that the gaseous coolant 
effectively reduced the surface heat load when the injected jet did not disturb the freestream, a phenomenon observed at 
lower gas flow rates.  Interestingly, the surface heat load increased in their experiments at larger gas flow rates due to the 
formation of a stagnation circle near the surface. A more detailed study (experimental as well as analytical) on the effects of 
jet Mach numbers, flow rates and thrust coefficient on the unsteadiness of the flow was done by Finley.11 Following this 
effort, Bushnell and Huffman12 investigated the influence of the jet penetration distance on the cooling effects, which was 
then also studied in a greater detail by Jarvinen and Adams13 by utilizing a conical aeroshell body fitted with a single nozzle 
jet. They were the first to report two regimes of jet penetration, namely the long penetration mode (LPM) and short-
penetration mode (SPM), along with details on how the pressure ratio between that of the jet and the freestream influenced 
the transition between the two modes. McGhee14 furthered the study on centrally located nozzles issuing supersonic jets by 
characterizing the flow in terms of the nature of jet expansion (over-expanded, fully-expanded, and under-expanded jets). 
Based on the nature of the jet expansion, McGhee14 identified the regimes of unsteady and steady flows. Simultaneously, 
there have also been other studies focusing on peripheral nozzle configurations that could be used for retropropulsion 
applications. More recent works in this regard have focused on the effects of weakly ionized non-equilibrium plasma jets on 
the wave drag and heat flux for hypersonic configurations. For a more thorough historic background and recent efforts on 
these concepts, the reader is referred to Refs. 1 and 16.  

Most of the above studies were for simplified aeroshell geometries such as a sphere-cylinder or sphere-cone, and very 
few dealt with more realistic entry or re-entry vehicle configurations. Furthermore, a complete understanding of the 
complex physics involved in the interaction of opposing jets with a supersonic freestream has not been established. With 
these aspects in mind Daso et al.15, 16 recently performed experiments in conjunction with computational studies to 
investigate the interaction between a supersonic freestream and counterflowing jet and their subsequent impact on the 
aerodynamic and aerothermal characteristics of a 2.6% scale Apollo capsule model.  The studies involved cold jets alone 
and were carried out in the trisonic wind tunnel of the Aerodynamic Research Facility at NASA Marshall Space Flight 
Center by employing two different freestream Mach numbers of 3.48 and 4.0. The effects of nozzle geometry, Mach 
number and mass flow rates of the counterflowing jets were investigated with a limited parametric space. In addition to 
Schlieren images, time-averaged pressure and heat flux data was also obtained as part of the study. Details on other 
available experimental databases can be found in Ref. 2. 

Parallel to the experimental work, computational studies are needed to help establish details of flow physics and expand 
the knowledge base for the effects of counterflowing jets. Given the nature of the intricate flow physics involved, predictive 
capabilities of currently available flow solvers must also be carefully assessed. Despite the fact that most solvers have been 
extensively used for simulations of complex flow problems, accurate computations of the counterflowing jet problem pose 
challenges due to the presence of potentially strong unsteadiness and complex shock-shock and shock-boundary layer 
interactions. In order to numerically resolve such complex flows with high-fidelity, we use the emerging space-time 
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conservation element, solution element (CESE) method,17 a time-accurate numerical method for unstructured meshes 
(triangular meshes in 2-D and tetrahedral meshes in 3-D) designed to enforce strong flux conservation and capture unsteady 
waves and shocks simultaneously without ad-hoc numerical tuning.  

To capture the physics faithfully and efficiently, the high-resolution, genuine multi-dimensional space-time CESE 
methodology solves the original integral form of the conservation laws rather than the differential form.  The space-time 
CESE framework is unique for several reasons: (i) space and time are unified and treated as a single entity; (ii) local and 
global space-time flux conservation is enforced; (iii) no dimensional-splitting approach is used, resulting in a truly 
multidimensional scheme; (iv) both the conservative flow variable and its spatial derivatives are treated as dependent 
variables; (v) a space-time staggered stencil is used such that fluxes at the cell interfaces can be evaluated without solving 
the Riemann problem; (vi) schemes are built from non-dissipative (space-time inversion invariant) core schemes, allowing 
for efficient control of numerical dissipation; and (vii) it is naturally compatible with unstructured triangular and tetrahedral 
meshes. To date, the CESE based solvers have been utilized to solve a variety of problems including inviscid acoustic 
waves, traveling and interacting shocks, detonation waves, and cavitation flows.17-21  

The main objective of this study is to perform numerical computations for selected experimental configurations studied 
by Daso et al.16 Axisymmetric computations are carried out to study the underlying physics associated with the two modes 
of jet interaction. Results are compared against available experimental data, such as Schlieren images, and other details 
available in literature. Similar studies using the original CESE schemes17, 22 were performed for selected configurations with 
short penetration mode in Ref. 23. The main focus of the present study is to perform more detailed time-accurate 
computations using the updated CESE schemes24 for unsteady cases observed in the experiments in an attempt to explore 
the unsteady dynamics of the process. The most important update to the CESE scheme, relevant to this study, deals with the 
procedure to compute the flow variable derivatives – one of the dependent variables in the CESE methods. The new 
procedure24 to compute derivatives provides the CESE method with the ability to effectively handle highly stretched 
unstructured meshes and the ability to deal with very strong shocks. As part of the study, the effect of the jet mass flow rates 
and the transition from the unstable LPM into the more stable SPM will be investigated to gain a deeper understanding of 
the retropropulsion concept. As flow instability plays a crucial role for drag reduction, such studies may significantly 
enhance design confidence for potential retropropulsion applications. Another aspect of this study is to explore the use of a 
solution-based mesh refinement method to better resolve important flow features. Given the complex nature of the flow 
involved in the various flow conditions targeted, it would be difficult to generate an ideal mesh a-priori unless a highly 
refined mesh is used. Results obtained in this study augment on-going computational studies of similar retropropulsion 
concepts using other well-established flow solvers.2, 3 In the next section, we briefly describe the flow characteristics of a 
counterflowing jet in Section II, followed by the numerical method in Section III. Computational results and adaptive grid 
refinement studies are presented in Section IV. Conclusions from this study are summarized in Section V. 

II. General Flow Characteristics  
Supersonic flows around blunt-body geometries are in general characterized by a detached bow shock. The introduction 

of a supersonic jet (one that opposes the freestream) at or near the stagnation point of the blunt body can significantly alter 
the flowfield around the body. This modification to the flowfield is brought by the interaction between the jet flow and the 
bow shock, and is found to vary based on the location of the jet and its intensity. In this section we primarily focus on the 
central nozzle configuration and briefly describe the associated flow physics because of its relevance to cases studied by 
Daso et al.16  

 As detailed by Finley11, the primary flowfield characteristics of a counterflowing jet ejected from a central nozzle 
configuration are a bow shock, a jet terminal shock, free stagnation point and recirculation regions, as indicated in Fig. 1 (a). 
Based on the ratios of the total pressure of the jet and the freestream, features and the stability of the flowfield vary. The 
overall structure of the complex jet-bow shock interaction and the surrounding flowfield is primarily dependent upon the 
location of the free stagnation point, where both the freestream as well as the jet decelerate to zero velocity. For a capsule 
without counterflowing jets, the flow field configuration is nearly stable. However, for the central nozzle configuration 
shown in Fig.1, as the jet mass flow rate increases, the flow begins to become unstable and turns into a configuration with a 
diamond-pattern in the plume as given in Fig. 1(b). However, beyond some threshold value of the jet mass flow rate, the 
unstable flow reverts back into a near stable flow field with the structure shown in Fig. 1(a). The stable flowfield is 
characterized by a bow shock that remains close to the blunt body and the jet does not penetrate the bow shock. When the 
jet issued from the nozzle penetrates the bow shock, the shock displacement is significantly higher than that found in a 
stable flowfield (for the case with and without jet). In this scenario, the jet flow is unable to remain contained within the 
shock layer. Instead it begins to interact strongly with the bow shock resulting in a large shock standoff distance and 
creating an unstable flowfield with a very dispersed shock. As the jet flow rate increases further, for reasons not yet clearly 
understood, the shock standoff distance begins to decrease again and the flow eventually reverts back to a more stable 
condition, where the flowfield structure is characterized by a jet terminal shock and other flow features shown in Fig.1 (a). 



 4 

Jarvin and Adams13 characterized these two distinct flow regimes, where the jet does and does not interact with the bow 
shock as LPM and SPM respectively. Both modes are investigated computationally in this study. 
 

 
(a) Short Penetration Mode: Features of the stable flowfield for a central nozzle configuration 

 
(b) Long Penetration Mode: Features of an unstable flowfield for a central nozzle configuration 

Fig. 1.  Flowfield structure characterization for a jet issuing from a central nozzle against a supersonic freestream. 

III.  Space-Time CESE Method 
 

As mentioned in the Introduction Section, the space-time CESE method17 is built around the concept of treating space 
and time synergistically and conserving fluxes in both space and time. To bring out the clear conceptual difference between 
conventional CFD algorithms and the CESE framework, consider the differential form of a conservation law in multiple 
spatial dimensions that is given by 

 

€ 

∂U
∂t

+∇⋅ f (U) = 0  (1) 

where U is the conserved variable, 

€ 

f (U) is its spatial flux vector, and the symbol 

€ 

∇⋅ denotes the divergence operator in the 
spatial domain. Finite-difference schemes model only the differential form of Eq. (1). Note that a set of physical 
conservation laws, in their original form, is a collection of flux conservation equations in space-time. These conservation 
laws are represented by a set of integral equations. The differential form of these laws is obtained from the integral form 
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Fig. 2. An arbitrary space-time 
region V in E3. 

using an extra assumption that the physical solution is smooth. Consequently, by modeling only the differential form, finite-
difference schemes, in general, lack the capacity to capture solution discontinuities and to ensure flux conservation. In an 
attempt to capture physics more accurately, conventional finite-volume schemes model the flux-balance form of Eq. (1) 
over a fixed spatial domain, i.e., 

 

€ 

d
dt

U dV
V∫ = −  f (U)• ds

S(V )∫  (2) 

where S(V) is the boundary of a spatial control volume V, and directional elemental area 

€ 

d s = dσ n  with 

€ 

dσ  representing 
the area and 

€ 

n  the outward unit normal vector of a surface element on S(V). Eq. 
(2) essentially states that the rate of increase of the total amount of a conservative 
substance contained in a fixed spatial domain V is equal to the net flux of that 
substance entering the boundary of V. Finite-volume methods concentrate on 
evaluation of the right hand side of Eq. (2), and the left hand side of Eq. (2) is 
usually discretized by finite-differencing, such as the Runge-Kutta method. Thus, 
there is a clear distinction in the way the temporal and spatial derivatives of Eq. (2) 
are treated in a conventional finite-volume scheme. 

Consider a special case of Eq. (1) with two spatial dimensions. Let x- and y- 
be the spatial coordinates and F and G be the flux components of the flux vector 

€ 

f (U)  in the x- and y-directions, respectively.  Let (x, y, t) be the coordinates of a 
three-dimensional Euclidean space, E3, shown in Fig. 2, and let the symbol 

€ 

∇⋅ 
denote the divergence operator in the space-time domain E3.  Then, Eq. (1) reduces to 

 

€ 

∇ ⋅h ≡ ∂U
∂ t

+
∂F
∂x

+
∂G
∂y

= 0  (3) 

where 

€ 

h = (F,G,U)  is the space-time flux vector. If the Navier-Stokes equations are solved as the governing equations with 
perfect gas flow assumption, then U is defined as U = (ρ, ρu, ρv, e), where the flow variables ρ, u, v, and e represent density, 
two velocity components, and total energy (defined as 

€ 

e = p /(γ −1) + ρ(u2 + v2) /2 , where p denotes the pressure), 
respectively. The flux vectors F and G include both the inviscid (Euler) and the viscous parts.  Invoking Gauss’s divergence 
theorem in E3, Eq. (3) can be expressed in the following integral form: 

 

€ 

 h ⋅ds
 S(V )∫ = 0  (4) 

S(V) is the boundary of an arbitrary space-time region V (see Fig. 2) in E3, and and 

€ 

d s = dσ n  with 

€ 

dσ  and 

€ 

n , respectively, 
denoting the area and the outward unit normal vector of a surface element on S(V).  Because

€ 

 h ⋅d s  is the space-time flux of 

€ 

 h  leaving the space-time region V through the surface element 

€ 

ds , Eq. (4) simply states that the total space-time flux of 

€ 

 h  leaving V through its boundary vanishes, i.e., the rigorous statement of the space-time flux conservation law associated 
with Eq. (3). Unlike Eq. (2), the form presented in Eq. (4) treats both the temporal and spatial terms of Eq. (1) in a unified 
manner. This is a crucial difference that, at the conceptual level, separates CESE schemes from the conventional finite-
volume schemes. There are several schemes under the CESE framework; but those of relevance to the study here are the 
solution point based Courant number insensitive scheme22, 25 and the edge-based Courant number insensitive scheme.24 
These two schemes are vital for viscous simulations that involve a large disparity in the cell sizes across the mesh 
employed. Numerical dissipation control for cells with a very small Courant number plays a crucial role in numerical 
accuracy for such meshes. The edge-based method24 is a relatively newer development and will be employed in all the 
computations performed in this study. It is invaluable to problems where the cell sizes vary by several orders across the 
mesh and have highly skewed shapes, as is the norm in many hypersonic computations. More details on these schemes can 
be obtained from Refs. 24 and 26. With its capability to compute supersonic viscous flows over a blunt body without any 
undesired numerical issues such as the carbuncle phenomenon,27 the CESE numerical framework provides a distinct 
advantage over other conventional numerical schemes. 
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Fig 3. Experimental capsule model geometry (2.6% subscale Apollo model) from Daso et al.16 

 
Table 1. Freestream and counterfowing jet conditions simulated in the present study. 

 

Freestream Conditions: 

€ 

M∞  = 3.48; 

€ 

P0  = 3.061 atm; 

€ 

Ps  = 0.04129 atm; 

€ 

T0  = 333.33 K; 

€ 

Ts  = 97.406 K 

Nozzle Conditions 

€ 

M j  Case ID 

€ 

˙ m j  (kg/s) 

€ 

P0 j (atm) 

€ 

T0 j (K) 

0 Baseline 0 - - 

N1mf1 0.0227 (0.05 lbm/s) 1.633 300.00 

N1mf2 0.0453 (0.1 lbm/s) 5.178 300.00 

N1mf3 0.0680 (0.15 lbm/s) 5.444 300.00 

N1mf4 0.0907 (0.2 lbm/s) 6.532 300.00 

2.44 

N1mf5 0.2268 (0.5 lbm/s) 19.441 300.00 

N2mf1 0.0227 (0.05 lbm/s) 2.966 300.00 

N2mf2 0.0453 (0.1 lbm/s) 6.294 300.00 

N2mf3 0.0680 (0.15 lbm/s) 9.241 300.00 

N2mf4 0.0907 (0.2 lbm/s) 12.207 300.00 

2.94 

N2mf5 0.2268 (0.5 lbm/s) 28.865 300.00 
  

IV. Results and Discussion 
Altough Daso et al.16 investigated the effect of a counterflowing jet on flow augmentation for three different angles of 

attack (0°, ± 9°), only the zero angle of attack case is investigated in this work. While Daso et al.16 had utilized five different 
nozzle geometries in their study only two of them (jet Mach numbers of 2.44 and 2.94) are studied in detail here. These	  two	  
configurations	  are	  selected	  to	  represent	  the	  long	  and	  short	  penetration	  modes	  (LPM	  and	  SPM)	  observed	  in	  Daso	  et	  
al.’s experiments.16	  Additionally, flow without a counterflowing jet is also computed as the baseline solution. The geometry 
of the capsule tested is shown in Fig. 3 and the flow conditions for the various computations performed are summarized in 
Table 1. In Table 1, the various runs are designated with a unique case name. The first part of the case name, namely N1 or 
N2 stands for the nozzle chosen, with N1 and N2 representing the jet Mach number of 2.44 and 2.98, respectively. The 
second half (mf1-mf5) corresponds to which of the five jet mass flow rates is being computed. Since Daso et al. 16 had listed 
the jet mass flow rates in English units, both SI and English units are listed here in Table 1 for reference. For all of the 



 7 

computations presented the freestream Mach number is 3.48, with a unit Reynolds number of 1.527×107 m-1 and the capsule 
and sting wall temperature of 297 K.  

Since the current study focuses only on zero angle of attack, the axisymmetric version of the Navier-Stokes equations is 
used for the time-accurate computations. Daso et al.16 did not report any three-dimensionality effects for the zero angle of 
attack cases, and hence assumption of an axisymmetric flow is valid. With triangular meshes being the preferred grid 
topology for the CESE framework, unstructured triangular meshes, generated by GRIDGEN® and University of Alabama at 
Birmingham’s in-house code, the Mixed-Element Grid Generator in 3 Dimensions (MEGG3D),28, 29 have been utilized in 
this study. The meshes for all the computations here have been generated based on our previous experience.23, 30 As a result, 
no grid convergence study has been demonstrated as part of this work. The original mesh employed for the baseline (no jet) 
computations contained approximately 280,000 triangular cells and 141,000 nodes. The meshes employed for all of the 
other computations (those with the nozzles) contained approximately 430,000 triangular cells and 216,000 nodes. All of the 
meshes employed are clustered near the CEV surface and nozzle wall to maintain sufficient grid resolution for predicting 
heat transfer. Overall schematics of the computational setup (boundary conditions along with the locations of some key 
probes employed to monitor the flow) and the close-up views of the mesh employed are provided in Figs. 4(a) and (b) 
respectively.  

 

 
(a) Schematics and boundary conditions 

 

 

 
 

 

Mesh overview 

 
Mesh close-up 

(b) Mesh details 

Fig. 4. Computational set-up and mesh details. 

A. Baseline computations (No-jet case) 
Figre 5 shows the steady flowfield obtained for the baseline case without the counterflowing jet. The computed Mach 

number, temperature, and density gradient contours are shown along with a comparison against Schlieren images obtained 
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from Daso et al.16 It can be seen that the computed shock standoff distance is in good agreement with the experiment. In 
addition to the bow shock, the separation region near the capsule aftbody-sting junction, the reflected shock off the wind 
tunnel wall, its interaction with the shock emanating from the separation region in the capsule aftbody, as well as the 
boundary layer above the sting are all clearly visible from the computational results. The time-history of the integrated heat 
flux on the capsule face, integrated from the line of symmetry to the capsule’s shoulder, neglecting the aftbody and sting 
portion) is shown in Fig. 6 and is indicative of the steady-state nature of the flow. Negative heat-flux indicates cooling of 
the surface and this behavior is expected as the capsule wall has been set to 297 K.  

  
(a) Mach number and temperature contour plot (b) Experimental Schlieren versus computed density 

gradient 

Fig. 5. Computed Mach, temperature and density gradient contours for baseline geometry with no jet (

€ 

M∞ = 3.48 ). 
 

 
 Fig. 6. Time history of the heat flux integrated on the capsule face from the centerline to (

€ 

M∞ = 3.48 ; no jet).  

B. Mach 2.98 Jet Nozzle 
Mach 2.98 jet nozzle results are presented ahead of the Mach 2.44 jet nozzle, as Schlieren images from Daso et al.16 are 

available for comparison. Also note that, Schlieren images from Daso et al.16 are available for the N2mf1, M2mf2 and 
N2mf5 runs alone and not for N2mf3 and N2mf4, as these two test conditions were not part of the experiments done by 
Daso et al.16 The two test conditions, N2mf3 and N2mf4 respectively, were constructed by the authors with the aim of 
obtaining a clearer understanding of the transition from LPM to SPM, as Daso et al.16 had pointed out in their study the 
quick transition of the jet from the LPM configuration to the SPM configuration for flow rates beyond that corresponding to 
the N2mf2 case (0.0453 kg/s). For this reason, test conditions N2mf3 and N2mf4 are designed to have intermediate flow 
rates that are slightly larger than that of the N2mf2 run but smaller than the N2mf5 run.  
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As indicated in Figs. 7(a)–(c), with increase in mass flow rate, the jet’s interaction with the bow shock increases. As a 
consequence, the bow shock gets pushed further away from the capsule surface, resulting in a longer shock standoff 
distance than that corresponding to the test conditions with no jet. The level of jet penetration, however, varies quite 
drastically with the mass flow rate. For smaller flow rates, the jet begins to penetrate the bow shock; as the mass flow rate 
increases, this penetration increases substantially, that it begins to completely disperse the strength of the shock while 
simultaneously pushing the shock further away from the capsule surface, resulting in the unstable LPM configuration. 
Finally, as the jet mass flow rate increases beyond a threshold level, the jet-bow shock interaction suddenly collapses back 
into the stable SPM condition, wherein the jet does not penetrate the bow shock, but rather expands to form an effective 
capsule with a less blunt surface to the incoming supersonic freestream. As seen from Figs. 7(a) and (c), the CESE 
computations are able to capture all the features of the jet interaction observed in the Schlieren images, including the correct 
shock standoff distance. The dispersed shock observed in N2mf2 computations is not shown well in the experimental 
Schlieren images; and Daso et al.16 mentioned this aspect in their work. In an additional study16 done through employment 
of a high-speed camera, they were able to observe more details of this interaction mode and the computed results are in line 
with the observed trend. As noted by Daso et al.,16 cases N2mf1 and N2mf2, corresponding to LPM jet interaction, were 
highly unsteady. Cases N2mf3 and N2mf4 constructed in this study were also found to be unsteady. In contrast, the N2mf5 
case was largely stable with only mild unsteadiness. This indicates that there might exist a critical jet mass flow rate for the 
LPM.  Time series from the various probes placed in the computations provide more details on this aspect and will be 
discussed later in this paper. 

The LPM jet interactions are highly unstable. For the N2mf2 case, the flow structure is characterized by the movement 
of the bow shock location with time between x = 0.25m to x = 0.076m (see Fig.8) at the centerline without settling in one 
axial location. The bow shock seemed to settle into a quasi-steady state at several locations only to collapse back 
(resembling an SPM like configuration) or get pushed upstream from that location. This behavior as well as the subsequent 
transition from LPM to SPM at a higher jet mass flow rate is a direct outcome of the jet structures shown in Figs. 7(a) –(c). 
At the smaller flow rates (Figs. 7(a) and 7(b)), the jet structure is more like that shown in Fig. 1(b), while that for SPM (Fig. 
7(c)) resembles Fig. 1(a). The differences in these flow structures can be attributed to the difference in the ratio of the static 
pressure of the jet at the nozzle exit plane and the ambient static pressure outside the nozzle exit (

€ 

Pj /Pamb ). A jet with 

€ 

Pj /Pamb > 1 is characterized as an under-expanded jet, while for 

€ 

Pj /Pamb >>1 , the jet is said to be highly under-
expanded. In a slightly under-expanded jet, as the flow expands into the ambient gas with low-pressures, expansion fans are 
created at the nozzle exit. The free jet boundary reflects these expansion fans as compression waves, which then coalesce to 
form an incident shock. The incident shock (see Fig. 1(b)) then undergoes a regular reflection (without forming a Mach 
disk) at the jet axis. The resulting diverging shock, once again, interacts with the jet boundary creating another incident 
shock and the process repeats resulting in the familiar diamond shock-cell structure. The consecutive deceleration by the 
shock cell slows down the jet plume until it stagnates at the free stagnation point.  At this point, the jet plume meets the post 
normal shock flow near the centerline, with both their total pressures reaching a value of 

€ 

P0 f . It is understood that a normal 
shock is not stable if it occurs in the decelerating region of a flow.11 The LPM jets belong to this class; the under-expanded 
jet adjusts itself to get the terminating normal shock to end up in the accelerating flow region. In the case of the highly 
under-expanded jet, the incident shock rather than undergoing a regular reflection at the jet axis, instead forms a Mach disk. 
The Mach disk is quickly able to decelerate the supersonic jet to come into equilibrium with the ambient flowfield.  
Moreover, since this normal shock remains within the accelerating region of the jet, the flow remains very stable. Larger jet 
mass flow rates are often a consequence of larger jet-to-freestream total pressure ratios (

€ 

P0 j /P0), and as a result, the SPM 
jet interactions found in these cases comply well with this highly under-expanded jet behavior. Fig. 8, along with Figs. 9(a)–
(d), where the results for several jet mass flow rates are shown, clearly demonstrates the aforementioned phenomenon. The 
corresponding Mach number and static pressure distributions along the jet axis for various jet flow rates are shown in Figs. 
10(a)-10(b). The counterflowing jet and the freestream meet at the stagnation point after each undergoes a strong normal 
shock for N2mf4 and N2mf5. In contrast, the counterflowing jet undergoes additional shocks before they meet for N2mf2 
and N2mf3.  In the extreme case of N2mf2, three strong shocks are clearly visible. 

Several probes were placed in the computational domain to monitor the flow and record time history data. Among 
those, we show results for probes P1, P2 and P3 that are shown in Fig. 4(a). Probe P1 was placed in the region just above 
the nozzle exit (in the recirculation region; x = -0.0178m and y = 0.0367m), while Probe P2 was closer to the shoulder of 
the capsule face (x = 0.0m and y= 0.042m). Probe P3 was at an axial location outside the nozzle and within the jet’s core (x 
= -0.001m and y = 0.0002m). The nozzle exit along the line of symmetry was at location x = 0.0 and y = 0.0. Note that, 
results from Probe P3 will only be shown for LPM jets, as it is expected to be indicative of the dynamic changes occurring 
to the jet behavior. In Fig. 11, the time history of the static pressure and its spectra are shown for the LPM jet (N2mf2) and 
the SPM jet (N2mf5). As can be observed from Fig. 11(a), the time history data from all the three probes indicate a highly 
unsteady flow phenomenon that is expected of the LPM. The frequency spectra feature a broad-band structure without any 
distinct dominating modes. Multiple peaks seen here could be indicative of the quasi-steadiness achieved in the transient.  
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(a) N2mf1 (

€ 

˙ m j = 0.0227 kg/s ) 

 
 

(b) N2mf2 (

€ 

˙ m j = 0.0453 kg/s ) 

 
 

(c) N2mf5 (

€ 

˙ m j = 0.2268 kg/s ) 

Fig. 7. Effects of flow rate on the interaction of the counterflowing jet with freestream and 

€ 

M j= 2.98; computed 
density gradient versus experimental Schlieren image. 
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t = 0.0004 s 

 

t = 0.003 s 

 

t = 0.006 s 

 

t = 0.008 s 

 

t =0.010 s 

 

t = 0.012 s 

              
Fig. 8. Time sequence of the computed density gradient contour images for the LPM jet (N2mf2). 
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(a) N2mf2 (

€ 

˙ m j = 0.0453 kg/s ) 
 

(b) N2mf3 (

€ 

˙ m j = 0.0680 kg/s ) 

 
(c) N2mf4 (

€ 

˙ m j = 0.0907 kg/s)  
(d) N2mf5 (

€ 

˙ m j = 0.2268 kg/s ) 

Fig. 9. Influence of jet flow rate in the transition from LPM to SPM (Density gradient contours). 

 

  
Fig. 10. Variation of Mach number and pressure across the jet centerline/axis for various jet flow rates. 
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(a) N2mf2 (LPM) 

  
(b) N2mf5 (SPM) 

Fig. 11. Time history and spectra of the pressure at various probes placed in the computational domain. 
 
The overall broad-band structure of the spectra only confirms the complexity of the process involved in LPM jets, indicating 
the instability contributions from the oscillating jet, jet shear layer and the bow shock. Data correlation after a longer time 
integration is expected to provide more information on the flow. In contrast, for the SPM jet (see Fig. 11 (b)), probes P1 and 
P2 only experience a mild fluctuation and have a distinct dominating mode. Based on theory and the computational results, 
these fluctuations are a result of a small jet stream emanating in the region where the jet shear layer meets the Mach disk. 
This jet stream oscillates periodically, affecting the curvature of the shock (shock standoff location is unaffected) and also 
periodically impinges onto the shoulder of the capsule. Probes P1 and P2 indicate a dominant frequency of around 6 kHz. 

A. Mach 2.44 Jet Nozzle 
 Similar to the Mach 2.98 jet cases, cases N1mf1, N1mf2 and N1mf5 (see Table 1) alone were based on actual test 
conditions from Ref. 16. For reasons explained earlier, additional cases, N1mf3 and N1mf4 respectively, were designed to 
give slightly higher flow rates than test case N1mf2. Based on the computational results shown in Figs. 12 (a)–(e), the 
condition for maximum jet penetration occurs (N1mf1) at lower mass flow rates than the Mach 2.98 jet case. This indicates 
that for lower jet speeds, LPM occurs at much lower jet-to-freestream total pressure ratios, compared to higher speed jets. 
The jets exhibit similar features as those for the Mach 2.98 nozzle. Similar to the previous case at a higher jet mass flow 
rate, the LPM jets had substantial unsteadiness resulting in oscillation of the bow shock position as the jets reduce total 
pressure to match that of the free stagnation point through a series of shock compressions and expansions (see pressure and  
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(a) N1mf1 (

€ 

˙ m j = 0.0227 kg/s) 
 

(b) N1mf2 (

€ 

˙ m j = 0.0453 kg/s ) 

 
(c) N1mf3 (

€ 

˙ m j = 0.0680 kg/s) 
 

(d) N1mf4 (

€ 

˙ m j = 0.0907 kg/s ) 

 

 

(e) N1mf5 (

€ 

˙ m j = 0.2268 kg/s)  

Fig. 12. Effects of flow rate on the interaction of the counterflowing jet with freestream and 

€ 

M j = 2.44 (computed 
density gradient). 
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Fig. 13. Variation of Mach number and Pressure across the jet centerline/axis. 

  
(a) N1mf1 (LPM) 

  
(b) N1mf5 (SPM) 

 
Fig. 14. Time history and spectra of the pressure at various probes placed in the computational domain. 
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(a) Mach 2.44 Nozzle (b) Mach 2.98 Nozzle 

Fig. 15. Time history of the integrated heat flux for the two nozzles (various jet mass flow rates). 

 
 The numerical results at Probes P1, P2 and P3 are shown in Fig. 14. It should be noted that these probes were positioned 
at the same locations as defined earlier and shown in Fig. 4(a). From Fig. 14(a) one can clearly see the unsteadiness in the 
LPM jet from the probe data and their spectra, which once again displays a very broad-band structure. The SPM jet spectra 
(Fig. 14(b)), on the other hand, exhibit only very small fluctuation levels because of its stable nature and possesses a clear 
and distinct mode around 7 kHz. 
 

 
Fig. 16. Variation in shock displacement with jet speed and total pressure ratio.  

Mach number distribution along the axis shown in Fig. 13). In addition, the SPM jet seemed to have a higher spreading 
angle than that for the higher speed jet.	  

Although not discussed in detail here, one of the main purposes for employing counterflowing jets is to reduce the 
thermal loads on the capsule or to increase the drag forces as necessary for entry and other applications. Fig. 15 confirms the 
evidence that counterflowing jets with larger mass flow rates can greatly mitigate thermal loads on the capsule face. As the 
flow rate increases for both nozzles, more cooling was achieved as indicated by a more negative value of the on integrated 
heat flux. It can also be observed from Fig. 15 that LPM jets tend to result in greater fluctuation (large changes in 
amplitude) in heat loads on the capsule surface in comparison to SPM jets. 
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Figure 16 summarizes the key observations from this study, by presenting the maximum shock standoff distance 
(normalized by the capsule diameter) against the jet-to-freestream total pressure ratio 

€ 

P0 j /P0 . The total pressure ratio is a 
better parameter to utilize than the jet mass flow rates; the reason being that, when 

€ 

M∞  is fixed, 

€ 

M j  and 

€ 

P0 j /P0  can 
uniquely determine the 

€ 

Pj /Pamb  ratio, which can provide insights on the kind of expansion the jet is likely to undergo as it 
exits the nozzle. It is evident from Fig. 16 that as 

€ 

P0 j /P0 increases, the shock standoff distance (with respect to the baseline 
case with no jet) increases to a peak value and then begins to drop drastically until it reaches a value that is slightly larger 
than that for the test conditions with no jet. Beyond this, it remains constant or increases by a small amount. Romeo and 
Sterrett31 have also previously reported this trend in their study. It was found that, as the jet speed increases, the 

€ 

P0 j /P0  
ratio at which the maximum shock displacement takes place also increases. Based on these observations, it is possible to 
clearly delineate the LPM jet from the SPM jet. However, more studies (both experimental and computational) are needed 
to arrive at a specific criterion for the occurrence of LPM to SPM transition. Also from previous studies,31 it was observed 
that even with smaller angles of attack (< 5°) the long penetration mode vanishes completely. However, Daso et al16 
observed that the LPM jet can be present even for angles of attack up to 10°. Further studies are needed in order to better 
understand this aspect. 

C. Solution-based Mesh Refinement Method 
Given the complex nature of jet-shock interaction, the use of solution-based mesh refinement can improve the accuracy 

of numerical results and the computational efficiency. Preliminary computations of a grid refinement study have been 
performed for the axisymmetric configurations shown previously. The method used to construct solution-adopted meshes 
involves simple isotropic refinement to refine triangular and tetrahedral meshes, based on either the shock sensor proposed 
by Lovely and Haimes32 or the weight function by Soni et al.33 Basically, each triangular or tetrahedral element in the 
domain of interest is subdivided into four or eight elements, respectively. Note that the current approach does not have mesh 
coarsening abilities. 

 

  

Fig. 17. Preliminary results of the solution-based mesh refinement method applied to the SPM jet. 

Preliminary results from the solution-based refined mesh for the SPM jet interaction are shown in Fig. 17. As can be 
observed by comparing the original and modified meshes, a significant enhancement in grid resolution near the bow-shock 
as well as shock-boundary layer interaction regions was achieved by utilizing the solution-based mesh refinement approach. 
As a result the overall quality of the numerical result also improved. The overall grid count increases from 430,000 to 
530,00 cells. The application of solution-based mesh refinement to the LPM jet interaction configuration is more difficult 
because the flow is highly unsteady and there are many flow features of interest from weak interactions to strong. For 
example, the main bow shock is well resolved in Fig. 18, while the structures within the jet are not well-resolved. In 
axisymmetric computations, under-resolved areas can be easily picked on a graphical user interface to select additional 
refinement areas. However, this approach is sometimes hard to do in 3-D because of more complicated flow features. 
Moreover, manual intervention cannot be used in automating mesh refinement needed in unsteady flow computations, and 
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manual intervention also increases the work of unstructured grid generation. Additional investigation on better flow feature 
detection sensors is needed and will be explored as part of future work. Additionally, implementing mesh coarsening can 
greatly improve mesh and solution quality without significant additional computation cost. 

 

 
Fig. 18. Preliminary results of the solution-based mesh refinement method applied to the LPM jet. 

 

V. Conclusions  
 The space-time CESE framework was used to numerically investigate the behavior of counterflowing jets ejected from a 
capsule against a supersonic freestream using unstructured triangular meshes. Special attention was given to understanding 
the unstable interaction known as the long penetration mode and how it transitions into the stable short penetration mode. 
The computed flow fields compare well with available experimental Schlieren images. However, the availability of 
unsteady flow data and flow contours with higher resolution helped obtain a more detailed understanding of the jet behavior 
including the cause of instability in the long penetration mode and how it transitions into a stable mode. Based on the 
present numerical investigation and knowledge gained from the literature, the source of instability of the counterflowing jet 
interaction was found to be closely related to the behavior of slightly under-expanded free jets. The diamond-shape shock 
cells from the under-expanded jets cause strong flow instability as the jet plume interacts with opposing freestream. It was 
observed that when the jet-pressure ratio of nozzle exit to pressure at the ambient outside the nozzle is large enough, the 
counterflowing jets behaved as highly under-expanded jets. Highly under-expanded jets end with a Mach disk termination 
and the overall flow is more stable. Based on the computational results, an increase in the jet flow rates or jet-to-freestream 
total pressure ratio transitions the overall flow from a stable detached bow shock for the case of no jet injection into a highly 
unstable long penetration mode, only to quickly revert back to the stable short penetration mode whose behavior is similar 
to that of a less-blunt capsule with no jet injection. The potential usage of solution-based mesh adaptation techniques was 
discussed to generate better meshes quickly and areas needing improvements, such as better flow-feature detection sensors, 
were identified. The outcome of this paper is closely related to other work in NASA’s EDL project. More work will be 
carried out in the future for the retro-propulsion configurations related to the on-going wind tunnel experiments at NASA 
Langley Research Center. 
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