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Convergence of multigrid and defect-correction iterations is comprehensively studied within different incom-
pressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-
correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-
coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of
medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach
numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-
density grids. Certain downstream-boundary modes are veryslowly damped on high-density grids. Multigrid
scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-
grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of
the regions but slow convergence is noted for near-sonic andvery low-Mach compressible flows. Multigrid
solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and
stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for
the airfoil flow, with a sharp trailing-edge, residuals werefast converging for a subcritical flow on a sequence
of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid
or the two coarsest grids.

I. Introduction

Defect correction (DC) is currently a cornerstone approachfor solving the Euler and Navier-Stokes equations.
Second-order finite-volume discretizations (FVD) requirelarge-stencil linearizations, making direct iterations expen-
sive. Also, linearizations of inviscid discretizations beyond first-order are highly non-positive and difficult to relax.
On the other hand, upwind-biased first-order equations are more diagonally dominant and can be relaxed (solved) with
conventional approaches. Thus, DC is widely used for second-order solutions,1 either directly by solving a series of
first-order equations with modified residuals or indirectlyby using the first-order operator to relax or precondition the
second-order equations. The concept is also being applied in p-multigrid methods to solve higher-order discretizations.

Usually, DC is cited as being slow to converge the second-order residuals but fast to converge quantities of en-
gineering interest, such as lift and drag.1–3 On the other hand, DC has been used to solve large-scale turbulent ap-
plication problems for many years4–6 and relatively fast asymptotic convergence of residuals has been observed in
many instances. A hierarchical full-approximation scheme(FAS) multigrid method6, 7 with a DC-based relaxation
scheme, herein referred to as MG-DC, was previously developed and applied in two dimensions, demonstrating fast
convergence of residuals for airfoils at compressible and incompressible conditions.

Analysis of DC convergence for two-dimensional (2D) convection has been previously performed in a semi-
discrete setting6, 8 in which boundary conditions in one direction are taken intoaccount. A two-level multigrid analysis6

showed that although the number of cycles to attain convergence was dependent on the mesh density, the dependence
was reasonably small and fast asymptotic convergence was eventually attained. A more detailed study of DC alone8

showed that an asymptotic convergence of about0.5 per DC iteration is observed in computations. Slow convergent
DC iterations may be encountered for nonaligned flows beforeattaining the asymptotic rate; the number of slow itera-
tions slightly grows on finer grids ash−1/3, whereh is a characteristic mesh size. Thish dependence can be observed
for three-dimensional flows as well.

With the current trend of performing complex computations on increasingly larger scales, it is critically important
to (re)evaluate performance of traditional algorithms on grids of high density. Analysis of convergence on such grids
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has been conducted in this paper. Some surprising results have been obtained regarding the DC asymptotic rate.
Specifically, the asymptotic convergence on typical computational grids is significantly different from the asymptotic
convergence on high-density grids. The asymptotic rates are essentially invariant for several refined grids of medium
density, but the convergence rates slow significantly with progressive grid refinement. The asymptotic slowdown on
high-density grids was found first for the Euler system of equations, but was found to occur even for the convection
equation alone. The previous results for asymptotic convergence of DC iterations are revisited in the light of these
new findings.

The purpose of this paper is to analyze convergence of iterative solvers for inviscid flows, ranging from incom-
pressible to supersonic Mach numbers, to complement the methodology developed previously for diffusion.9, 10 The
convergence of the MG-DC algorithm is comprehensively studied within different incompressible and compressible
regimes on structured grids of progressively high density.The approach is to first assess the convergence away from
any boundaries and discontinuities that may exist and this assessment can be performed using the framework of a
small-perturbation (SP) flow. With acceptable and quantified performance within this regime, a solid foundation is
established for assessing convergence for the general 2D inviscid flow. The entire flow field around an airfoil, for
instance, has at least six distinct regions (regimes): (1) flow away from the boundaries and discontinuities; (2) flow
near tangency boundaries away from stagnation; (3) flow within the leading-edge (LE) stagnation flow; (4) flow within
the trailing-edge (TE) stagnation flow; (5) flow near discontinuities , e.g., shocks; and (6) flow near the far boundary.
Each of these flow regimes may introduce difficulties in the multigrid and each should be studied individually, both
analytically and computationally.

Several analysis tools are used to characterize performance of the MG-DC scheme. For SP flows, a constant-
coefficient approximation is analyzed with the local mode Fourier (LMF) analysis and a semi-discrete (SD) analysis.
General quantitative analysis tools10, 11 idealized coarse-grid (ICG) and idealized relaxation (IR), are applied in actual
flow computations for assessing multigrid relaxation and coarse-grid correction. The analytical results, confirmed with
actual computations, indicate that asymptotic MG-DC convergence rates are stable and well separated from one and
are limited on high-density grids by the quality of the coarse-grid correction. The convergence of MG-DC iterations
is significantly better than convergence observed in DC iterations alone because multigrid accelerates convergence of
slow DC iterations, especially for near-sonic flows and low-Mach compressible flows.

The material in the paper is presented in the following order. Components of the multigrid and defect correction
scheme are presented in Section II. Analysis tools are introduced in Section III. Section IV describes the first-order
solver that serves as a driver of the DC iterations. An analysis of DC and MG-DC iterations for SP flows is presented
in Section V. Numerical tests and IR/ICG analysis of flows in other regimes are presented in Section VI. The
results are discussed in Section VII. Details of the analysis methods used in this paper are provided in Appendices A
and B. Asymptotic convergence rates of constant coefficientconvection equation on high-density grids are discussed
in Appendix C. For reference, Table 1 includes all acronyms used in the paper.

II. Components of MG-DC solver

The conservation form of the 2D steady inviscid flow equations is given as

R(Q) = 0. (1)

Here, the conserved variables for compressible flows areQ ≡ (ρu, ρv, ρw, ρ, ρE)T , representing the momentum
vector, density, and total energy per unit volume, andR(Q) is a spatial divergence of convective fluxes

R(Q) ≡ ∂xF(Q) + ∂yG(Q), (2)

F(Q) =











ρu2 + p

ρuv

ρu

ρuE + up











, G(Q) =











ρuv

ρv2 + p

ρv

ρvE + vp











.

The primitive flow variables are velocity, pressure, and density,q = (u, v, p, ρ)T . Eq. (1) is discretized with a second-
order, cell-centered, upwind-biased FVD scheme that employs an approximate Riemann solver to compute fluxes at the
control volume faces. The baseline Riemann solver is the flux-difference-splitting (FDS) scheme12 but other schemes
are also considered, including the low-dissipation flux-splitting (LDFS)13, 14 and flux-vector-splitting (FVS).15 Either
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Acronym Description

Alternating A relaxation method

Line-Colored (ALC)

Courant-Friedrichs-Lewy An iterative parameter characterizing the ratio of

(CFL) number (pseudo) time increment to mesh spacing

Correction Scheme (CS) A MG scheme that uses linear approximations on coarse grids

damped Alternating A relaxation method

Line-Jacobi (dALJ)

Defect Correction (DC) Used for single-grid iterations andas relaxation in multigrid

Flux Difference A less-dissipative approximate Riemann solver

Splitting (FDS)

Flux Vector A more-dissipative approximate Riemann solver

Splitting (FVS)

Full-Approximation A MG scheme that uses non-linear approximations on coarse grids

Scheme (FAS)

Full-Multigrid A MG scheme that uses coarser-grid solutions

(FMG) to form finer-grid initial approximations

Finite-Volume The discretization approach used in this paper

Discretization (FVD)

Idealized General quantitative method for analysis of multigrid relaxation

Coarse Grid (ICG)

Idealized General quantitative method for analysis of coarse-grid correction

Relaxation (IR)

Leading Edge (LE) Designate the leading-edge stagnation area

Low-Dissipation A more-dissipative approximate Riemann solver

Flux-Splitting (LDFS)

Local-Mode A constant-coefficient analysis for interior ofthe domain,

Fourier (LMF) assumes periodicity in all directions

Multigrid (MG) A hierarchical computational method

MG-DC Multigrid method studied in this paper

that uses defect-correction based relaxation

Semi-discrete (SD) A constant-coefficient analysis takingboundary conditions into account,

assumes periodicity in the directions tangential to the boundary

Small Perturbation (SP) Computational model that assumes small deviation

from a known (e.g., free-stream) solution

Trailing Edge (TE) Designate the trailing-edge stagnationarea

Table 1. Acronyms used in this paper.

of these latter schemes are generally known to be more dissipative than the FDS scheme. The discrete approximations
to derivatives correspond to the Fromm discretization for structured grids used herein.

The same approach is used for incompressible flows with smallvariations. The variables areQ = (u, v, p)T and
the fluxes are defined as in Eq. (2), except the density is constant and the fourth (energy) equation is dropped. The
incompressible version of the FDS scheme4 is used.

In a DC relaxation, a correction,δQh, to the approximate solution,Qh, is computed from the driver equation

DδQh = −R(Qh), (3)

whereD is the Jacobian of the first-order upwind discretization, and R is the discretized residual Eq. (1). For DC

3 of 17

American Institute of Aeronautics and Astronautics



relaxation within an outer FAS multigrid cycle, a correction scheme (CS) multigrid is applied to determineδQh. One
CS cycle generally reduces the residual of Eq. (3) by an orderof magnitude (see Section IV). For DC iterations, Eq. (3)
is solved to high precision. Where practical, e.g., for the SD analysis or a scalar convection equation, Eq. (3) is solved
precisely, otherwise multiple multigrid cycles are used.

After DC relaxation, the solution of the target FVD scheme isupdated as

Qh = Qh + δQh. (4)

For the MG-DC solver, FAS multigrid is used to accelerate convergence. AnFAS(ν1, ν2) multigrid cycle starts on the
target finest grid, performsν1 relaxations on the current grid, restricts solutions and residuals to the coarser grid, solves
the coarse-grid problem recursively, prolongs the coarse-grid correction, and completes with additionalν2 relaxations.
Each coarse grid is obtained by full coarsening from the finergrid. The same FVD scheme is used on all grids andW
cycles are used. For SD computations, the restriction operator is full weighting, and the prolongation operator is the
normalized transposition to the restriction. For fully discrete computations, the restriction operator is the conservative
residual restriction and prolongation corresponds to linear interpolation. Full multigrid (FMG) requires a high-order
prolongation for full efficiency. In the current FMG solver,the FMG prolongation is the same as within the FAS cycle.

III. Analysis tools

In recent years, a number of powerful methods have been developed to analyze convergenceof iterative solvers. For
problems well described in terms of small perturbations, e.g., SP flows, analysis of a constant coefficient approximation
allows one to estimate various convergence characteristics, such as stability, asymptotic and maximum convergence
rate, number of slow iterations, etc. For more general problems, windowing and downscaling techniques16 can be used
to analyze accuracy and grid convergence of discrete solutions. Quantitative analysis methods, IR(ν1, ν2) and ICG(ν1,
ν2),10, 11 have proved to be invaluable for assessing components of multigrid solvers for general problems. Here,
parametersν1 andν2 denote the respective numbers of fine-grid relaxations performed before and after coarse-grid
correction.

III.A. Analysis of constant coefficient equations on regular grids

A constant coefficient linearization to the FVD schemes usedhere on Cartesian grids is given by

A+∂−

x wh +A−∂+
x wh +B+∂−

y wh +B−∂+
y wh = 0, (5)

wherewh is a discrete solution vector. For compressible flow, the variables are taken following Mulder17 aswh =
(δu, δv, δp/(ρc), δS)T , c is the speed of sound, andS = log(p/ργ) is the specific entropy. For incompressible
flow, wh = (δu, δv, δp)T . The operators,∂−

x and∂−

y are upwind discretizations of derivatives, and∂+
x and∂+

y are
downwind discretizations of derivatives.

Different linearizations are associated with each splitting scheme. For the baseline FDS scheme, the linearizations
are eigenvalue splittings of the Jacobian matrices associated with non-conservative formulations,

A = A+ +A−, B = B+ +B−,

where

A =











u 0 c 0

0 u 0 0

c 0 u 0

0 0 0 u











, B =











v 0 0 0

0 v c 0

0 c v 0

0 0 0 v











,

The speed of sound is taken asc = 1 and the velocities are defined asu = M cos(α), v = M sin(α), whereM is
Mach number andα is the angle of attack.

For subsonic regimes,

A+ =











(u+ c)/2 0 (u+ c)/2 0

0 u 0 0

(u+ c)/2 0 (u+ c)/2 0

0 0 0 u











, A− =











(u − c)/2 0 −(u− c)/2 0

0 0 0 0

−(u− c)/2 0 (u− c)/2 0

0 0 0 0











,
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B+ =











v 0 0 0

0 (v + c)/2 (v + c)/2 0

0 (v + c)/2 (v + c)/2 0

0 0 0 v











, B− =











0 0 0 0

0 (v − c)/2 −(v − c)/2 0

0 −(v − c)/2 (v − c)/2 0

0 0 0 0











For supersonic regimes,
A+ = A; A− = 0; B+ = B; B− = 0.

The discretization is defined as

A+∂−

x wh +A−∂+
x wh +B+∂−

y wh +B−∂+
y wh = 0.

In the LMF analysis, the iterations are considered on a periodic domain for discrete Fourier componentswh =
exp(i(θxix + θyiy)), whereix and iy are integer grid indexes. The Fourier frequencies are normalized: |θx| ≤
π, |θy| ≤ π. The outcome of the Fourier analysis is an iteration symbol,which is a4 × 4 matrix with complex
coefficients parametrized by the Fourier frequencies. The specific grid size is reflected through the range of Fourier
frequencies realizable on the given periodic grid. For elliptic equations, the maximum spectral radius of the LMF-
symbol matrix, taken over all realizable frequencies, is anaccurate indicator of the asymptotic convergence rates. For
non-elliptic equations, the spectral radius of the LMF symbol is not a sharp estimate for the asymptotic convergence
rate on grids of moderate sizes because the LMF analysis accounts only for local error damping, but does not account
for boundary effects and error propagation along the characteristics. Note, however, that LMF analysis provides a
useful stability test. A larger-than-one LMF spectral radius is an indication of unstable iterations.

For multigrid computations, the relaxation smoothing rateis an important characteristic. The smoothing rate is
estimated as the maximum spectral radius of the LMF relaxation symbol, where the maximum is taken over high
frequency modes. Typically, high-frequency modes are defined as the modes withmax(|θx|, |θy|) ≥ π

2 ; all other
modes are considered smooth. A more general approach is to define the high-frequency modes as the modes that have
relatively large contributions to the residual.19 An implication of this definition for non-elliptic problemsis that the
typical set of high-frequencies is reduced: the modes that are smooth in the characteristic directions are excluded,
even if their Cartesian frequencies are high. For illustration, for the convection flow at45◦ discretized on a uniform
Cartesian grid, the modeexp(i(θxix + θyiy)) with θx ≈ π andθy ≈ −π is not a high-frequency mode because
θx + θy ≈ 0, and the mode is constant along the characteristic direction. With this modification for non-elliptic
problems, the LMF analysis predictions of the smoothing rate are reasonably accurate. A more detailed description of
the modified LMF smoothing analysis is provided in Appendix A.

The SD analysis is a good predictor of the asymptotic convergence for non-elliptic problems. The SD analysis
assumes solutions in the formwh = exp(iθyiy)W

h(ix), i.e., the solution is a product of a Fourier component in the
y-direction and a discrete function,Wh(ix), representing solution variations in thex-direction. The SD analysis is
accounting for boundary effects and error propagation along the characteristics. For eachy-directional Fourier fre-
quency, the asymptotic rate is estimated as the spectral radius of the SD iteration matrix, which has a size proportional
to the number of degrees of freedom in thex-direction. Another useful feature of the SD analysis is thecapability
to identify slow convergent iterations, characterize the error components causing the slow convergence, and explain
the mechanism of transition from the slow intermediate convergence to good asymptotic convergence. A detailed
description of the SD analysis is provided in Appendix B.

III.B. General quantitative analysis

More general, quantitative analysis methods for multigridsolutions are IR and ICG iterations. The iterations are de-
signed to identify slow relaxation or inefficient coarse-grid correction of a multigrid solver. In these iterations, one
part of the cycle (coarse-grid correction for IR iterationsand relaxation for ICG iterations) is actual and its compli-
mentary part is replaced with an ideal imitation. The IR and ICG methods can be applied to any formulation with a
manufactured solution; typically zero solution is used. The initial solution is chosen randomly. In IR iterations, the
relaxation in the cycle is replaced with an explicit error averaging procedure. In the IR methods used for this paper,
the error at a node is averaged from all the edge-connected neighbors. ICG cycles use actual relaxation scheme and
emulate the coarse-grid correction by, first, averaging algebraic errors to the coarse grid and, then, interpolating the
averaged error back to the fine grid as a correction. The results of this analysis are not single-number estimates; they
are rather convergence patterns of the iterations that may either confirm or refute expectations indicating what part of
the actual solver should be improved.
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The IR and ICG iterations can be directly applied in the most complicated situations including highly variable (or
nonlinear) coefficients, complex geometries, and unstructured grids. The generality of the analysis makes it a very
valuable tool for analyzing complicated large-scale computational problems, where no other analysis methods are
currently available. Properties and specific implementations of IR and ICG methods can be found elsewhere.10, 11

IV. First-order Euler solver
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Figure 1. Combined stagnation and tangency grids.
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Figure 2. Number of iteration required to reach machine-zero residuals for the first-order solver.

Mulder2, 17 developed efficient 2D multigrid solvers for the first-orderupwind discretizations of the inviscid flow
equations using both full-coarsening and semi-coarseningapproaches. He analyzed many relaxation schemes us-
ing a 2-level LMF analysis and showed that the problem of alignment could be addressed uniformly with damped
alternating-line-Jacobi (dALJ) relaxation within a full-coarsening framework or with point-implicit relaxation within
a semi-coarsening framework. In this paper, full-coarsening is used with an alternating-line colored (ALC) relaxation.
An under-relaxation factor,ω = 0.8, is needed to effectively smooth high-frequency error.1, 11 The performance of a
two-color ALC relaxation is similar to performance of dALJ relaxation.

To illustrate the performance of iterative solvers, computations are performed on a domain around a cylinder. A
typical grid is the union of the two cylindrical grids shown in Fig. 1, has local near-unity aspect ratios, and spans
180◦ of arc sector. Inflow/outflow boundary conditions are applied at all boundaries. The initial solution is a random
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perturbation of the uniform free stream conditions.
Fig. 2 compares the number of fine-grid relaxations requiredto reach the machine-zero residual for single-grid

ALC relaxations (ω = 1.0) andFAS(2, 1) multigrid W-cycles.1 One ALC relaxation is counted as two relaxations
and one W-cycle is counted as six relaxations. Results are shown for the FDS scheme on two grids for a range of
Mach numbers and for incompressible flow (M = 0). The number of single-grid relaxations approximately doubles
as the grid is refined by a factor of two in each direction, as expected. The required number of relaxations is highest
at M ≈ 1. The number of relaxations is lowest for the higher Mach numbers and, somewhat unexpectedly, for the
least compressible Mach number ofM = 0.01. The number of fine-grid relaxations observed within MG-DC solver
to reach the same residual tolerance is relatively insensitive to variations of Mach number or grid size. Although not
shown, the asymptotic convergence per cycle is between 0.2 and 0.4 for all Mach numbers on both grids.

V. Multigrid for small-perturbation flows

A previous study showed that, even when the asymptotic convergence rates of DC iterations are fast, a number of
slow iterations precedes the asymptotic regime. The slow convergence occurs for smooth characteristic error compo-
nents18, 19 that are very smooth along the characteristic directions. Such components are removed mainly by accuracy
propagation from boundaries along the characteristics. Such removal may take many iterations because a less-accurate
driver propagates cross-characteristic oscillations foronly short distances. Eventually, however, the smooth character-
istic errors are removed and asymptotic convergence is attained.

In practical computations, the slow DC iterations may be overlooked on relatively coarse grids because the itera-
tions may arrive to the required solution tolerance before the characteristic components begin to dominate the solution
error. In order to observe this slowdown, one should carefully choose the initial solution approximation. On finer
grids, this slowdown is a major factor limiting the solutionefficiency.

Multigrid is expected to accelerate convergence of slow DC iterations. Note that full-coarsening multigrid has
its own problems with characteristic components. The asymptotic convergence of the characteristic errors in a two
level cycle can be as slow as0.75 per cycle19 because cross-characteristic variations propagate shorter distances on
coarser grids than on finer grids. The multigrid effects on asymptotic convergence rates are significant only in those
flow regimes in which the asymptotic convergence of DC iterations is slower than the coarse-grid correction for
characteristic error components. Such situations occur onfine grids.
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Figure 3. Smoothing rate of DC iterations.

For a subsequent use in MG-DC cycle, the smoothing rate of DC iterations is estimated with the LMF and ICG
analysis. Fig. 3 shows the predicted smoothing rates. For all flow conditions (Mach numbers and angles of attack),
the predicted smoothing rates are excellent and grid independent. The LMF predicts the smoothing rate of between
0.5 and0.7, and the ICG predicts the rate between0.5 and0.6. The smoothing rates predicted by ICG are slightly

7 of 17

American Institute of Aeronautics and Astronautics



better than the rates predicted by the LMF analysis because ICG predicts the reduction of high-frequency errors in a
multigrid cycle, while the LMF analysis predicts the reduction of high-frequency errors in a relaxation. In general, the
LMF analysis can be modified to account for the coarse-grid effects on high frequencies.

The need and benefits of multigrid are illustrated in Fig. 4 bythe SD analysis for SP flows. The flow conditions are
M = 0.3, α = 45◦, they-directional frequency is smoothθy = 5π

64 , and the initial distribution along thex-direction
is random. While the asymptotic convergence for both DC and MG-DC iterations is about the same, around0.6, the
slowest convergence rate is significantly slower for DC thanfor MG-DC iterations.
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Figure 4. SD analysis: convergence of DC and MG-DC iterations on2562 grid, M = 0.3, α = 45◦, and θy = 5π

64
.

Fig. 5 shows the asymptotic rates of a two-gridV (1, 0) with DC relaxation. The rates are computed with the SD
analysis on two coarse grids. The asymptotic rates of MG-DC iterations are stable and well below unity over most of
theM − α range. The convergence is slow for near-sonic flows (M ≈ 1) at intermediate angles of attack and for very
low compressible Mach numbers.
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VI. Flows at other regimes

VI.A. Boundary-tangency and stagnation flows

A typical grid for computations of flows characterized by boundary-tangency and LE stagnation are shown in Fig. 1
Stagnation is computed on the most-forward part of the grid and boundary-tangency is computed on the upper-most
part of the grid; each domain spans 90 deg of arc sector. A compressible-flow manufactured solution is composed
of the velocities from the exact incompressible cylinder flow along with constant enthalpy and entropy. Medium-size
grids are considered. The finest grid has 128 cells in both thecircumferential and radial directions. Computations are
shown for FAS(2,1) W-cycles using a maximum of six levels. Inflow/outflow conditions are applied at all boundaries
away from the cylinder surface.

Flows characterized by boundary-tangency do not representdifficulties for the MG-DC solver. A typical con-
vergence history for a series of grids is shown in Fig. 6 forM = 0.3, starting from a random perturbation to the
exact solution on the left and from FMG interpolations on theright. Starting from random perturbations, the residuals
converge rapidly in the first cycles, converge more slowly inintermediate cycles, and then asymptotically converge
faster. Starting from FMG interpolations, the number of cycles needed are considerably smaller and machine-level
zero residuals are encountered before the faster asymptotic rates are encountered. Although not shown, similar residual
convergence per cycle is attained with ICG(1,0) and IR(2,1)multigrid cycles.
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Figure 6. Residual convergence for boundary-tangency computations with the MG-DC solver; M = 0.3; FDS scheme.

Within stagnation flows, the Jacobian can differ appreciably from the small perturbation linearization Eq. (5) be-
cause the contribution for the velocity gradient (e.g.,O(ux)) to the linearization can be comparable with or even
greater than the contributions from differences in velocity (e.g.,O(u/h)). These terms can subtract from the diagonal
contributions associated with the momentum equations. Forincompressible discretization schemes in which the mo-
mentum equations can be marched before solving an elliptic equation for the pressure, these velocity-gradient terms
can cause an error amplification when marching into/from stagnation.11 Here, we find that similar difficulties arise
for the MG-DC solver because DC can be unstable. The DC convergence is sensitive to the particular discretization
schemes used for LE stagnation. For instance, DC does not converge for the FDS scheme but does for the LDFS and
FVS schemes. Fig. 7 shows convergence of the MG-DC solver forstagnation flow using the FDS scheme (left) and
the LDFS (right) scheme. An infinite CFL number is used for theLDFS scheme but a CFL of400 is used for the FDS
scheme. On the two coarser grids, the MG-DC scheme does not converge for the FDS scheme — a smaller CFL is
necessary for the scheme to remain stable. On the finer grids,the overall residual convergence of either scheme within
stagnation is similar to that observed for boundary-tangency computations.

Although not shown, for TE stagnation, both schemes are unstable without addition of a pseudo time step. Anal-
ysis of convergence within stagnation leads to a variable-coefficient problem problem that is difficult to analyze using
LMF analysis. One can devise neighborhoods which provide relevant constant-coefficient approximations to the full
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linearization, but certain parts of stagnation, such as thestagnation streamline, are inaccessible to a constant-coefficient
analysis.11 The stagnation flow analysis was actually a motivating factor for the development of more general quanti-
tative analysis methods. For the airfoil computations in the next section, we simply use the LDFS scheme. The airfoil
has a sharp trailing edge which does not seem to cause a problem with this scheme.
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Figure 7. Stagnation computations: residual convergence for the MG-DC solver; finest grid is 1282 cells, the coarsest grid is162 cells.

VI.B. Multigrid for airfoil

Computations for the NACA 0012 airfoil following the Vassberg and Jameson benchmark study20 are shown here. The
grid, similar to that used for the study, is generated through a sheared adaptation of a conformal grid around a Karman-
Trefftz airfoil matching the leading-edge radius and trailing-edge angle of the NACA 0012 airfoil. The grid extends
150 chords outwards from the airfoil, and has nearly unity-aspect-ratio cells. The second-order accuracy was verified
in computations with lifting and non-lifting manufacturedsolutions for the Karman-Trefftz airfoil in incompressible
flow and in compressible flow at moderate Mach numbers. A compressible-flow manufactured solution was defined
with the velocities from the exact incompressible Karman-Trefftz solution along with constant enthalpy and entropy.

Fig. 8 and Fig. 9 shows residual and drag convergence historyof FAS(2,1) cycles for the NACA 0012 airfoil at
subcritical lifting conditions (M = 0.5 andα = 1.25) and supercritical non-lifting conditions (M = 0.8 andα = 0),
respectively. Six grids were used in the computations. FMG cycles were started on the coarsest grid composed of162

cells. The finest grid contained256 cells in the directions around and outward from the airfoil.For the subcritical
computations, convergence rates per cycle are uniformly fast. Residual convergence per cycle is0.3 on the finest grid.
Convergence of drag (and also lift, although not shown) is quite fast, within one FMG cycle. The exact drag is zero,
reflected in the benchmark level shown as well as the value on the finest grid. The drag is converging with second
order accuracy although finer grids are necessary to confirm this.

For the supercritical computation, convergence rates per cycle are quite disparate between grids. The two grids
before the finest grid in the FMG sequence are converging muchslower than the finest grid or the two initial coarser
grids. No limiter is used in these computations. Drag is again converging within one FMG cycle. The drag is
converging with second order accuracy to the benchmark level.

VII. Discussions

The MG-DC solver used here is similar to the multigrid schemedeveloped previously.6, 7 The previous scheme
used alternating-line Jacobi and/or colored relaxations that do not provide sufficient damping of high-frequency errors
in purely inviscid regions of the flow. Analysis methods werenot applied to identify this shortcoming and instead
other parts of the algorithm were modified to compensate, namely a pseudo-time step limited by a maximum CFL
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Figure 8. Residual and drag convergence history of FAS(2,1)cycles for NACA 0012 airfoil at subcritical lifting conditi ons;M = 0.5 and α = 1.25.

of O(100) was added to the implicit relaxation operator, relaxation subiterations were performed, and dissipation via
entropy fixes to all fields was added to the FDS discretization. In the present work, we apply under-relaxation based
upon optimization of ICG(1,0) cycles, do not add a pseudo-time step except within stagnation, and do not add any
entropy fixes.

The convergence of the MG-DC solver has been comprehensively studied within different incompressible and
compressible inviscid regimes. The properties of the solver away from any boundaries and discontinuities are analyzed
on high-density grids because this region forms the foundation of the methodology. Within this region, the smoothing
properties of the scheme have been shown to be bounded away from one using both a modified LMF analysis and
a more general ICG analysis. DC alone has some slowly converging iterations on grids of medium density. This
behavior has been shown previously for convection but the convergence for the Euler equations is slower than that
for pure convection. The convergence is especially slow fornear-sonic flows and for very low compressible Mach
numbers. Additionally, the asymptotic convergence seen onmedium-density grids is significantly different from the
asymptotic convergence on high-density grids. Certain downstream-boundary modes are very slowly damped on high-
density grids. The FAS multigrid scheme accelerates convergence of the slow DC iterations to the extent determined
by the coarse-grid correction. The 2-level asymptotic convergence rates are well separated from unity over most of the
region but slow convergence is noted for near-sonic and verylow-Mach compressible flows.

We have applied the MG-DC solver to the NACA 0012 airfoil and to different flow regimes, such as near-tangency
and stagnation. The MG-DC solver encounters problems within stagnation regions. The FDS scheme is unstable
without a time step addition for leading-edge stagnation and all schemes have a problem for smooth trailing-edge
stagnation. Analysis of the linearization within stagnation predicts difficulties associated with the loss of diagonal
contributions to the momentum equation linearization within decelerating flow. A pseudo-time step addition can
provide convergence, although the amount varies from grid to grid. Nonetheless, for the airfoil flow, with a sharp
trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow,
residuals converged slower on some intermediate FMG grids than on the finest grid or the two coarsest grids. The
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Figure 9. Residual and drag convergence history of FAS(2,1)cycles for NACA 0012 airfoil at supercritical non-lifting conditions; M = 0.8 and α = 0.

cause of the slowdown may be associated with the coarse-gridcorrection near Mach unity. Also, the lift and drag both
showed second-order accuracy in grid refinement for subcritical and supercritical conditions.

A key measure of efficiency for a multigrid method is the number of FMG cycles required to converge algebraic
errors below the level of discretization errors. Ideally only a single cycle is needed. For both airfoil solutions, algebraic
errors in lift and drag were well below discretization errors after a single FMG cycle. Another key property for an
iterative solver is to ensure that the residual can be driven(fast) to the zero level if needed. The MG-DC solver provides
fast residual convergence. The efficiency of the scheme is limited by the coarse-grid correction. Previous work has
shown that a modified coarse-grid discretization can substantially improve the correction. The effectiveness of the
scheme needs to be explored on high-density grids and in the regimes with slower convergence. Local relaxations in
slow-convergence regions may accelerate convergence evenfurther.

A. Modified Local Mode Fourier Analysis

For given Mach number and angle of attack, the respective symbols of the target,T, and driver,D, operators on a
uniform Cartesian grid with mesh spacingh are defined as

T(θx, θy) ≡ A+ 1
4h

(

eiθxix + 3− 5e−iθxix + e−2iθxix
)

−A− 1
4h

(

e−iθxix + 3− 5eiθxix + e2iθxix
)

+B+ 1
4h

(

eiθyiy + 3− 5e−iθyiy + e−2iθyiy
)

−B− 1
4h

(

e−iθyiy + 3− 5eiθyiy + e2iθyiy
)

.

(6)

D(θx, θy) ≡ A+ 1
h

(

1− e−iθxix
)

−A− 1
h

(

1− eiθxix
)

+B+ 1
h

(

1− e−iθyiy
)

−B− 1
h

(

1− eiθyiy
)

.
(7)
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The symbol of the DC iteration is a4× 4 matrix

DC(θx, θy) ≡ I−D−1T, (8)

whereI is the identity matrix.
The smoothing rate,µ, is estimated as the maximum spectral radius

µ = max ρ (DCd) , (9)

whered is a high-frequency indicator. For a flow withα ≤ 45◦,

d =

{

1, if max(|θx|, |θy|) ≥
π
2 & |mod(θx + v

uθy, 2π)− π| ≤ π
2 ;

0, otherwise.
(10)

B. Semi-Discrete Analysis

The SD analysis considers the solutions in the form ofeiθyWix , ix = 0, . . . , Nx, whereNx is the number of
nodes in thex-direction. The original multidimensional discrete problem is, thus, translated into a one-dimensional
problem parametrized by the normalized Fourier frequency,|θy| ≤ π. The discrete functionWix is either a scalar
solution for the convection equation, or a vector solution for the system of flow equations (5). The analysis takes
into account specific implementations of boundary conditions and is capable to predict details of solution evolution
in individual iterations. When zero manufactured solutionis used, the round-off error does not affect computations,
which is critical for the ability to observe asymptotic convergence in computations. SD tests routinely encounter and
treat residuals as small as10−150. The asymptotic convergence rate can be directly evaluatedas the spectral radius of
the iteration matrix. The analysis is precise for a constant-coefficient formulation with y-periodic boundary conditions.
A description of the analysis in application to constant-coefficient convection equation is provided in a previous paper.8

The DC iteration matrix has the form:

DC = I−D−1T. (11)

HereI,T, andD are the identity, target, and driver matrices, respectively. For the convection equation,awx +
bwy = f , the matrixT corresponds to the Fromm discretization, with a row composed of the following coefficients:

T =
[

· · · 0 a
4hx

−5a
4hx

3a
4hx

+B2
a

4hx

0 · · ·
]

, (12)

B2 =
b

4hy

(

eiθy + 3− 5e−iθy + e−2iθy
)

, (13)

and the main diagonal coefficient is underlined.D is a driver two-diagonal matrix:

D =
[

. . . 0 a
hx

a
hx

+B1 0 . . .
]

, (14)

B1 =
b

hy

(

1− e−iθy
)

. (15)

For the system of equations the corresponding matrices are block diagonal.
The iteration matrix of a two-level MG-DCV (ν1, ν2) cycle is

MG = (DC)ν2CGC(DC)ν1 , (16)

CGC = I−PT−1
c RT. (17)

HereCGC is the coarse-grid-correction matrix,R andP are restriction and prolongation matrices, respectively,and
Tc is the coarse-grid-operator matrix. The size of the multigrid matrices is twice as large as the size of corresponding
single-grid matrices because multigrid couples two components corresponding to Fourier frequenciesθy andθy + π.
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Figure 10. Asymptotic convergence rate of DC iterations forconstant-coefficient convection equation computed with the SD analysis.

C. Scalar convection equation

The asymptotic convergence of DC iterations for the scalar convection equation is computed with the SD analysis.
The variation of the asymptotic rate with the grid density and the angle of attack is shown in Fig. 10. The convergence
plots on grids of moderate size with up to1282 degrees of freedom are practically over-plotted. For smallangles of
attack, grids with2562 and5122 degrees of freedom also show similar rates. On finer grids, however, the convergence
rates are dramatically different. Slow asymptotic rates are observed for solutions that are exponentially decaying from
the outflow boundary toward the interior. Fig. 11 shows the real and imaginary components of an eigensolution for
DC iterations on a grid withNx = 2048 andα = 45◦; only variation near the outflow boundary is shown. The
eigensolution corresponds toθy = π

5 and the eigenvalueµ = 0.8464− 0.1382i.
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Figure 11. Eigensolution on a grid withNx = 2048;α = 45◦; θy = π

5
; and the corresponding eigenvalue isµ = 0.8464 − 0.1382i.

Even for combinations of grids and solutions with fast asymptotic convergence, many slow DC iterations may
be encountered before the asymptotic regime is attained. Algorithmic enhancements are required to accelerate slow
iterations preceding the asymptotic convergence and to improve asymptotic convergence, if necessary. Multigrid
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addresses both these issues. Convergence of standard full-coarsening multigrid cycles for second-order convection
discretizations on high-density grids is limited by the factor 0.75.19 For the diagonal flow alignment the scheme
becomes third-order accurate and the limiting factor is even more severe,0.875. However, these rates are significantly
better than slow-iteration DC rates.

D. Defect-correction iterations for small-perturbation flows
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Figure 12. Asymptotic convergence of DC iterations computed with the SD analysis.
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Figure 13. Asymptotic convergence of DC iterations computed with the SD analysis.

In this section, DC iterations are applied for SP flows away from boundaries and singularities. The asymptotic
rates of DC iterations are computed with the SD analysis. Theangles of attack are varying as0 ≤ α ≤ 45◦ and
Mach number is varying between (almost) zero and fully supersonic,0.01 ≤ M ≤ 1.81. Fig. 12 shows levels of the
asymptotic rate on a1282 grid. The grid is not a high-density grid and the rates do not necessarily show the maximum
values approached in grid refinement, but the distribution is representative for the medium-density grids. It shows that
the slowest convergence is expected at low and near-sonic Mach numbers.
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Fig. 13 shows the variation of asymptotic convergence ratesversus Mach number on grids of progressively high
density. The maximum rate over the range of angles of attack0 ≤ α ≤ 45◦ is shown. Slowdown at low and sonic
Mach numbers is observed on all grids. Similar to the convection convergence pattern shown in Fig. 10, the rates slow
down for all Mach numbers on finer grids.

Actual computations performed on the inflow/outflow domain shown in Fig 1 indicate similar trends. Fig. 14
shows the “asymptotic” rate, namely, the last rate exhibited before achieving the machine-zero error, and the maximum
convergence rate observed over the course of iterations. The rates shown in Fig. 14 are somewhat different from the
rates predicted by the SD analysis because the error is sometimes reduced to the machine-zero level before the actual
asymptotic convergence is achieved. As expected, the maximum rate is closer to one than the asymptotic rate. Both
maximum and asymptotic rates peak atM ≈ 0 andM ≈ 1.
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Figure 14. Convergence rates of DC iterations observed in actual SP flow computations.
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