NASA Ames Sonic Boom Testing

Don Durston, Principal Investigator
Frank Kmak, Chief, Wind Tunnel Operations Branch

Supersonic Tunnel Association International Meeting
May 4-5, 2009
Outline – *will be updated as charts progress…*

- Sonic Boom Testing
- Facility
- Models
- Probes
- Results
- Lessons Learned
Sonic Boom Testing in a Nutshell

- Acquire pressure “signatures” in flow field surrounding model
 - Line of static pressure variation parallel to the freestream
- Measure pressures along a line directly below model (as along a ground track)
 - Measurements at other angles relative to the model are also commonly taken for determination of off-ground-track boom loudness
- (post-test) Extrapolate signature to ground to determine merging of shocks as boom propagates and sound pressure levels at ground
So what does it take to do a Sonic Boom Test?

Just a few parts...
The Most Important Parts: Model & Probes

- Small model (typically 10 - 20 inches in length) to allow for high h/L (number of body lengths from probe)

- Probe(s) mounted on wall out of tunnel boundary layer

- 3 ways to get signature along length of model:
 1. Move model relative to probes
 2. Move probes relative to model
 3. Use probe rail: many orifices over long length, model & rail remain stationary (or small model movements to cover orifice gaps)
Particular Objectives for Ames 9x7 Test

- Re-establish sonic boom testing in the Ames 9x7
- Acquire higher-fidelity signatures with the better instrumentation of today **Better pressure xducers?**
- Ames model
 - Compare new and old data for Ames model to verify test techniques and hardware
- Gulfstream model
 - Make tunnel-to-tunnel test comparisons (Ames 9x7 to Langley 4x4) for a Gulfstream model
 - Acquire data at larger distances for the Gulfstream model than was possible in the 4x4 WT
NASA Ames Unitary Plan Wind Tunnel

11x11 FT Transonic Windtunnel

11x11 FT Transonic Windtunnel
9-by 7-Foot SWT Characteristics

- Complete automation of tunnel and model support systems
- Excellent optical access
- Sting mount model support system
- Modern control room
- Contoured sliding block nozzle
- 11-stage compressor with stainless steel blades
- The Standard Data System (SDS) is a multi-tasking, multi-user steady-state data system
- Precision Instrumentation, Flow Visualization, a Balance Alarm System (BLAMS), and modern Video Systems
- 3000 psia heated High Pressure Air available
Models

- Both designed for low boom
- **Ames 1990 wing-tail model**
 - 0.3% scale, 12” long
 - Various nacelle positions on wing & tail
 - Sting-mounted
- **Gulfstream**
 - 1% scale, 16” long
 - No nacelle simulation
 - Blade-strut mounted for clean aft end of model
Probes

- pictures of probe rails to come...
Results
Lessons Learned / Conclusions

- Supersonic Test hardware review
 - Review all test hardware as if it were installed for the first time
 - Relative placement of rake hardware was an important variable
Things to highlight

(brainstorming slide – delete after making slides)

- How sonic boom testing is done
 - techniques
 - how the data are used
- Probe failure
 - what happened and why
 - analyses done
 - lessons learned
- Probe rails vs. single probes
 - concept of operation
 - productivity gains
 - data quality comparisons
- Value of large tunnels for SB testing
 - higher h/L’s