
Tiltle: Closed-form and numerically-stable solutions to problems related to
the optimal two-impulse transfer between speci�ed terminal states of Keplerian
orbits

The �rst part of the paper presents some closed-form solutions to the optimal
two-impulse transfer between �xed position and velocity vectors on Keplerian
orbits when some constraints are imposed on the magnitude of the initial and
�nal impulses. Additionally, a numerically-stable gradient-free algorithm with
guaranteed convergence is presented for the minimum delta-v two-impulse trans-
fer. In the second part of the paper, cooperative bargaining theory is used to
solve some two-impulse transfer problems when the initial and �nal impulses
are carried by di�erent vehicles or when the goal is to minimize the delta-v and
the time-of-�ight at the same time.
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1 Introduction

The optimal two-impulse transfer between �xed position and velocity vectors on
Keplerian orbits problem has been studied intensively in the past. Numerical
and closed-form solutions to various formulations of the the minimum delta-v
problem have been presented in the literature (see for example [1],[?], [6], [7] or
[8]). In this paper the optimization problem is formulated in a di�erent way.
If we considered the case where the 2 impulse maneuvers are implemented by
two di�erent vehicles (e.g. Earth-departure stage (EDS) and a crew exploration
vehicle (CEV)) and considering that the unused ∆vEDS cannot be re-utilized,
minimizing J = ∆vEDS+∆vCEV might not lead to the optimal performance. If
we take into account that the Earth-departure stage can provide a maximum ∆v
(in interplanetary trajectories this would be a maximum v∞), we can formulate
the problem in a di�erent way. Given the initial and �nal states: r0,v0 and
rf ,vf , calculate two impulse maneuvers such that:

J = min ∆vCEV

subject to ∆vEDS ≤ ∆vmax

In this paper, we show that a closed-form solution of the above problem
can be obtained by solving a 4th order polynomial. A similar solution can
be also obtained for the cases when a constraint in ∆vCEV is added to the
previous problem or when the goal is to minimize the �rst maneuver subject to
a constraint in the magnitude of the second maneuver.

When the optimization index is

J = ∆v1 + ∆v2 (1)

2



no closed-form solution can be obtained according to ([?] and [4]). In this
paper we present a numerically-stable gradient-free algorithm with guaranteed
convergence. The solution consists of solving two 4th order polynomials and
then using the bisection method developed in[5].

The �nal sections of the paper are devoted to solve the previous problems
using Cooperative Bargaining theory (see [3]). If the two impulsive maneuvers
are implemented by two di�erent vehicles, we can formulate the problem as
two agents trying to obtain their maximum bene�t (minimizing its ∆v) while
cooperating with a second agent. In Cooperative Bargaining theory Eq. 1 is
known as the Utilitarian solution, (see [3]). In this paper, we examine some
properties of the Utilitarian solution (the most common one used in trajectory
optimization problems) and also the properties of some other solutions known
in the Cooperative Bargaining literature that could be used to solve the two-
impulse transfer problem. Once the properties of the Cooperative bargaining
solutions have been explained, an example of the application of this theory to
the problem of minimizing the time of �ight of the transfer while minimizing
the total ∆v is presented.

2 Problem setup

The problem we are trying to solve consists on calculating a two-impulse trans-
fer between two known states: ri,vi,0, with i = 1, 2 de�ning the departure
and arrival states respectively. In order to solve the optimization problem, the
following the formulation will be used (see also Battin):

v1 = vc + vρ1 v2 = vc − vρ2

where:

vc = v̄cxic vρi =
v̄ρ
x

iri

iri =
ri
ri

ic =
r2 − r1

c
c = ‖r2 − r1‖

v̄c =
c
√
µ

r1r2 sin θ
v̄ρ =

√
µ (1− cos θ)

sin θ

θ ∈ [0, π] angle between r1 and r2, x = ±√p, p : parameter of transfer conic

The sign of x will determine the type of transfer: short (< π) or long ( π).
No multi-rev solutions will be considered in this paper.

It is well known that the velocity locus for vi will correspond to two hy-
perbolas (see Sun, Battin) for the short and long transfers (see Figure 1). A
complete description of the parameters of the hyperbola can be found in Sun
�on optimun...�. The parameters used in this paper are described in Table 1.
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Figure 1: Geometry of the hyperbolic velocity locus for terminal 1. Since the
initial velocity v1,0 is inside the evolute, four extrema are found. Three of them
when x > 0: ∆min1(+),∆max(+),∆min2(+) and one for x < 0: ∆min(−).

Table 1: Geometrical Elements of the hyperbolic locus of velocity
Asymptotes ±ir1, ic

±ir2, ic
Included between asymptotes φ

Semi-transversal axis Ah = 2
√
v̄cv̄ρ cos φ2 =

√
2 tan θ

2 cot φi

2

√
µ
ri

Semi-conjugate axis Bh = 2
√
v̄cv̄ρ sin φ

2

4



Table 2: Characterization of the extrema of the solutions to the minimum ∆vi
transfer problem.

1 local minimum for x > 0 1 local minimum for x < 0
2 local minima, 1 local maximum for x > 0 1 local minimum for x < 0

1 local minimum for x > 0 2 local minima, 1 local maximum for x < 0

3 Computing the optimal ∆v1,2

A tangent vector to the velocity locus is de�ned by (see Battin):

vt1 := vc − vρ1 vt2 := vc + vρ2

Given the departure or arrival velocities vi,0 we can calculate the parameter
x that minimizes the departure or arrival ∆vi by simply:

(vc ± vρi)
T

∆vi = 0 (2)

Alternatively, we can obtain the same result by

min ∆vi = min ‖vi − vi,0‖

and solving for x in

d ‖vi − vi,0‖
dx

= 0

The solution to eq. 2 will require the solution of the following quartic poly-
nomials on x for terminals 1 and 2 respectively:

v̄cx
4 − v̄c (ic · v1,0)x3 + v̄ρ (ir1 · v1,0)x− v̄2ρ = 0 (3)

v̄cx
4 − v̄c (ic · v2,0)x3 − v̄ρ (ir2 · v2,0)x− v̄2ρ = 0 (4)

Given the signs of the coe�cients of the polynomials in eqs. 3 and 4, the
number of solutions that we can �nd for x are described in table **. A similar
approach is described in Sun and other. The solutions provide by both equations
will create an envelope(s) of trajectories with very interesting properties. For a
complete description of the trajectory envelopes see Sun.

We can now compute the global optimal by simply computing the ∆v associ-
ated to the real solutions of the quartic polynomials. Let xjbe the real solutions
to Eq 3 or 4. Let ∆v(xj) be the associated ∆v, the global optimal solution

∆v∗ = min
xj

∆v(xj) (5)
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3.1 Existence of multiple extrema

It is worth studying the case when multiple extrema exist. In Figure ** we can
see an example of such a case. In this example, the initial velocity vector v1,0 is
inside the evolute associated with the velocity locus of v1. Therefore, there are
three normals to the hyperbola that intersect at v1,0, that is why three extrema
appear in the solution eq. 3. The normal in the middle will correspond to a local
maxima while the two other extreme will correspond with two local minima.

Given a speci�c problem, we can calculate a necessary condition for the
magnitude of the velocity vectors vi,0 such that vi,0 is inside the hyperbola
evolute. For that purpose we will compute the magnitude of the velocity at the
cusp of the evolute

vcusp =
A2
h +B2

h

Ah
=

2
√
v̄cv̄ρ

cos φi

2

=
Ah

cos2 φi

2

Ah is also the initial velocity of the minimum-energy transfer orbit vm1, and
it always corresponds with an elliptical orbit:

vmi√
µ
ri

=
Ah√
µ
ri

=

√
2 tan

θ

2
cot

φi
2

=
√

2

√
2 tan

θ

2
cot

φi
2
<
√

2

Therefore, even initial (or �nal) elliptical parking orbits could be such that
vi,0 is inside the hyperbola evolute.

Finally, a necessary condition for vi,0 to be inside the evolute is:

vi,0 ≥
vmi

cos2 φi

2

(6)

4 Computing the optimal ∆v1,2 when constraints

in x are present

In the previous section we have seen that in order to compute the optimal
departure or arrival ∆vi it is necessary to solve a a quartic polynomial in x.
We have also seen that given the geometry of the problem several local optima
can appear. If no constraints are present, we can use Eq. 5 to compute the
global solution. But if constraints on p (or x) are present a di�erent approach
is necessary.

Let x ∈ Cx = [xc1, xc2] be the constraint set for x, with 0 < xc1 < xc2. An
algorithm to compute the global optimal ∆v1 can be found (a similar one ∆v2
can be obtained).

1. Solve Eq. 3.
2a. For the real positive solutions of 3. If only one extrema is found, xmin, get

∆v∗ from Table 3. If three extrema are found xmin1 < xmax < xmin2,
Sx = [xmin1, xmin2], get ∆v∗ from Table 4

2b. Repeat 2a for the real negative solutions of 3
3. The global ∆v∗ will the minimum between the steps 2a and 2b.
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Table 3: Algorithm for the one-extrema case
xmin, Cx = [xc1, xc2]

xmin ∈ Cx ∆v∗

F if Cx < xmin → ∆v∗ = ∆v(xc2)
if Cx > xmin → ∆v∗ = ∆v(xc1)

T ∆v∗ = ∆v(xmin)

Table 4: Algorithm for the three-extrema case
xmin1 < xmax < xmin2, Sx = [xmin1, xmin2], Cx = [xc1, xc2]

xmin1 ∈ Cx xmax ∈ Cx xmin2 ∈ Cx ∆v∗

F F F if Cx < Sx → ∆v∗ = ∆v(xc2)
if Cx > Sx → ∆v∗ = ∆v(xc1)

F F T ∆v∗ = ∆v(xmin2)
F T F ∆v∗ = min [∆v(xc1),∆v(xc2)]
F T T ∆v∗ = ∆v(xmin2)
T F F ∆v∗ = ∆v(xmin1)
T F T Not possible
T T F ∆v∗ = ∆v(xmin1)
T T T From Eq. 5

If there are several constraint sets, the previous algorithms will be called
several times for each set. The global minimum ∆v will be the minimum of all of
the solutions for each set. Additionaly, if the constraint set Cx contains negative
and positive numbers, Cx will be subdivided into two di�erent sets containing
only negative and only positive numbers and the optimization algorithm will be
called twice.

Once we have an algorithm to compute the global optimal when constraints
in x are present, all we need to do is to express di�erent constraints of the
problem (e.g. minimum radius, minimum �ight-path-angle or maximum ∆v) in
terms of x. The next sections describe several methods to achieve this.

5 Constraints in position magnitude r ≥ rmin

In this section, we are going to describe how to impose a constraint in the
position magnitude during the transfer:

t ∈ [t1, t2], r(t) ≥ rmin

We can translate the above equation into a set(s) of constraints for p. First,
we are going to calculate the sets of p that make the eccentricy vector to be
contained between r1 and r2 during the transfer and then we are going to
compute the sets of p that satisfy rp ≥ rmin. The combination of these two sets
will provide the �nal constraint set(s).
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Given that the eccentricy vector is de�ned by (see Battin ref. )

e = Ar1 +Br2

where

A =
1

sin2 θ

[(
p

r1
− 1

)
−
(
p

r2
− 1

)
cos θ

]

B =
1

sin2 θ

[(
p

r2
− 1

)
−
(
p

r1
− 1

)
cos θ

]
Therefore we need to calculate the values of p that make A > 0 and B > 0,

p ≥ pA =
r1r2 (1− cos θ)

r2 − r1 cos θ
, p ≥ pB =

r1r2 (1− cos θ)

r1 − r2 cos θ

p ∈ [pA,+∞) ∩ [pB ,+∞) = [max(pA, pB),+∞) = Sp1 → e between r1, r2

Since p > 0, there are solutions only if min
(
r1
r2
, r2r1

)
> cos θ.

For x > 0 (short transfer) a periapse passage occurs during the transfer if
p ∈ Sp1, for x < 0 (long transfer) a periapse passage occurs during the transfer
if p /∈ Sp1:

x > 0 → x ∈
[√

max(pA, pB),+∞
)

= Sn1 (7)

x < 0 → x ∈
[
−
√

max(pA, pB), 0
]

= Sn2 (8)

The next step will be to determine the values of p (and therefore x) that
make rp ≥ rpmin. First, we will calculate e2 = A2 +B2 + 2AB cos θ. After some
algebraic manipulations we can obtain:

e2 =
c2

sin2 θr21r
2
2

p2 − 2 (r1 + r2)

(1 + cos θ) r1r2
p+

2

1 + cos θ

or

e2 =
1

d2
p2 − 2

pmine

d2
p+ 2

pmine

d2
r1r2
r1 + r2

Since 1
d2 > 0, e, p de�ne a hyperbola, we can rewrite the above equation to

show this:

1

d2
(p− pmine

)
2 − e2 =

pmine

d2

(
pmine

− 2
r1r2
r1 + r2

)
(9)

we can also proof by contradiction that
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pmine − 2
r1r2
r1 + r2

< 0

Therefore we can say that e and p de�ne a vertical hyperbola centered at p =
pmine , e = 0 where p is along the x-axis and e is along the y-axis (only the pos-
itive branch is considered). The asymptotes are given by easy = ±d (p− pmine)

We can calculate the minimum eccentricy transfer by:

de2

dp
= 0, 2

de

dp
=

2c2

sin2 θr21r
2
2

p− 2 (r1 + r2)

(1 + cos θ) r1r2
= 0

pmine
=
r1r2 (r1 + r2) (1− cos θ)

c2

If we de�ne rpmin := rmin, we can calculate the constraint for p as follows:

p

1 + e
> rpmin

p

rpmin
− 1 > e

the left-hand side of the previous equation de�nes a line with slope 1
rpmin

and

the right-hand side of the equation is just the positive branch of the hyperbola
de�ned above. The set of values of p make satisfy the constraint are the ones
within the intersection of the line de�ned by p

rpmin
−1 and the hyperbola de�ned

by e. Therefore, we need to �rst �nd the values of p (if any) at the intersection
points. For that we'll solve the following equation:(

p

rpmin
− 1

)2

= e2

e2 =
1

d2
p2 − 2

pmine

d2
p+ 2

pmine

d2
r1r2
r1 + r2

p2

(
1

r2pmin
− 1

d2

)
+ p

(
− 2

rpmin
+ 2

pmine

d2

)
+

(
1− 2

pmine

d2
r1r2
r1 + r2

)
= 0 (10)

We have three possible solution sets:

p ∈ [prp1, prp2]

p ∈ [prp1,+∞]

p ∈ ∅
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Since we are solving Eq. 10 instead of p
rpmin

− 1 = e. It is necessary to

check for extraneous solutions. We will assume that prpi are the positive real
solutions to Eq. 10 that also satisfy the original equation. Prpi is a valid solution

if
Prpi

rpmin
− 1 > 0. In terms of x we obtain:

if two solutions exist x ∈
[√
prp1,

√
prp2

]
∪
[
−√prp2,−

√
prp1

]
= Srp1 ∪ Srp2(11)

if only one solutions exists x ∈
[√
prp1,+∞

]
∪
[
−∞,−√prp1

]
= Srp1 ∪ Srp2 (12)

if no solutions exist x ∈ ∅ (13)

If we combine the conditions in 7 and 11, x should satisfy:

x ∈ Srp1 ∪ Srp2 ⇐⇒ rp ≥ rpmin or

x /∈ (Srp1 ∪ Srp2) and x /∈ (Sn1 ∪ Sn2)⇐⇒ rp < rpmin and no periapse passage

Finally, if the initial or �nal terminal is inside the forbiden area, there are
no solutions

if r1 < rmin or r2 < rmin → no solutions

6 Unrealistic solutions

Not all the initial velocities in the hyperbola will generate a trajectory that

connects the terminals. If v1 >
√

2 µ
r1

and γ1 > 0 the transfer trajectory will

result on a hyperbola that goes to in�nity. We need a criteria to avoid calculating
trajectories in that region. First, we need to compute the values of p for e = 1.
Using eq. 9 we obtain

ppar1,2 = Pmine
± 4 (r1r2)

3/2

c2
sin2 θ

2
cos

θ

2
= Pmine

± 4 (r1r2)
3/2

2c2
sin

θ

2
sin θ

In this way the realistic set of transfers is composed of elliptical transfers

p ∈ [ppar1, ppar2]⇐⇒ x ∈
[
−√ppar2,−

√
ppar1

]
∪
[√
ppar1,

√
ppar2

]
= Sel1 ∪ Sel2

and hyperbolic transfers with γ1 ≤ 0. We need to �nd a criteria to determine
the �ight-path-angle at r1. We can use the condition:

v1 · îr1 =
(
v̄cx̂ic +

v̄ρ
x

îr1

)
· îr1 ≤ 0

We have two possible cases when x > 0:

if îc · îr1 = cosψ1 ≥ 0→ x2 ≤ − v̄p
v̄c cosψ1

has no solution → γ1 > 0
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Sγb = ∅

if îc · îr1 = cosψ1 < 0→ x2 ≥ − v̄p
v̄c cosψ1

Sγb =

[√
− v̄p
v̄c cosψ1

,+∞
)

We have two possible cases when x < 0:

if îc · îr1 = cosψ1 ≥ 0→ x2 ≥ − v̄p
v̄c cosψ1

has always a solution

Sγa = (−∞, 0]

if îc · îr1 = cosψ1 < 0→ x2 ≤ − v̄p
v̄c cosψ1

Sγa =

[
−
√
− v̄p
v̄c cosψ1

, 0

]

x ∈ Sγa ∪ Sγb

Therefore, the set of x that generates realistic trajectories is determined by:

x ∈= Sel1 ∪ Sel2 ⇐⇒ e < 1, and

x /∈ (Sel1 ∪ Sel2) andx ∈ (Sγa ∪ Sγb)⇐⇒ e ≥ 1, γ1 ≤ 0

We can obtain the same result using the equation that relates γ1 and p from
Battin for when γ1 = 0

p = pm
c

r1 − r2 cos θ
=
r1r2 (1− cos θ)

r1 − r2 cos θ

Using,

cosψ1 = − cosψ′1 =
r22 − r21 − c2

2r1c
=
r22 − r21 −

(
r21 + r22 − 2r1r2 cos θ

)
2r1c

=
−r21 + r1r2 cos θ

r1c

where ψ′1 is the interior angle between r1 and c.
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p = − v̄p
v̄c cosψ1

=
−r1r2 (1− cos θ)

c cosψ1
=
r1r2 (1− cos θ)

r1 − r2 cos θ

We can conclude that only tangential departure trasfers will exist if

r1 − r2 cos θ > 0⇐⇒ r1
r2
> cos θ

Therefore, the set of x that generates realistic trajectories is determined by:

x ∈= Sel1 ∪ Sel2 ⇐⇒ e < 1, and

x /∈ (Sel1 ∪ Sel2) andx ∈ (Sγa ∪ Sγb)⇐⇒ e ≥ 1, γ1 ≤ 0

After combining both conditions we will obtain a maximum of 4 sets (2 for
x < 0, and 2 for x > 0): Sr1, Sr2, Sr3, Sr4.

7 Constraints on the departure and arrival �ight-

path-angles

We can impose limits on the terminal �ight-path-angles γ1 and γ2 by traslating
those limtis into constraints on the parameter p (or x). First, we can relate γi
to the parameter by

p = pmc
cos γ1

r1 cos γ1 − r2 cos(γ1 + θ)
or p = pmc

cos γ2
r2 cos γ2 − r1 cos(γ2 − θ)

If γmin ≤ γi < γmax,

p ∈ [p (γmax) , p (γmin)] for terminal 1, since
dp

dγ1
< 0

p ∈ [p (γmin) , p (γmax)] for terminal 2, since
dp

dγ2
> 0

8 Constraints on the arrival and departure ∆v

We can impose constraints in the magnitude of the maneuvers ∆vi,min by solving
a quartic polynomial in x. First, by using the de�nitions,

∆vi = ‖vi − vi,0‖ ≤ ∆vi,min ⇐⇒ (vi − vi,0) · (vi − vi,0) ≤ ∆v2i,min

This will lead to the solution of the following quatic polynomial for terminal
1:
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Table 5: Characterization of the solutions to the maximum ∆vi contraint prob-
lem.

real solutions to Eqs. 14 and 15:x1 < x2 < x3 < x4
x > 0 x < 0

0 solutions → Cx1 = ∅ 2 solutions → Cx2 = [x1, x2]
2 solutions → Cx1 = [x1, x2] 0 solutions → Cx2 = ∅
2 solutions → Cx1 = [x3, x4] 2 solutions → Cx2 = [x1, x2]
4 solutions → Cx1 = [x3, x4], Cx2 = [x3, x4] 0 solutions
0 solutions 4 solutions → Cx1 = [x3, x4], Cx2 = [x3, x4]
0 solutions→ Cx1 = ∅ 0 solutions → Cx2 = ∅

v̄cx
4−v̄c (ic · v1,0)x3+

[
2v̄cv̄ρ (ic · ir1) + v21,0 −∆v2i,min

]
x2−2v̄ρ (ir1 · v1,0)x+v̄2ρ = 0

(14)
and for terminal 2:

v̄cx
4−v̄c (ic · v2,0)x3+

[
−2v̄cv̄ρ (ic · ir2) + v22,0 −∆v2i,min

]
x2+2v̄ρ (ir2 · v2,0)x+v̄2ρ = 0

(15)
Given the signs of the polynomials in Eqs. 14 and 15, we can establish the

nature of the solutions (see Table 5) and from them we can create the constraint
sets.
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