Modularized TGFβ-Smad Signaling Pathway

Y. Li¹, M. Wang¹, C. Carra¹ and F. A. Cucinotta²

¹USRA, Division of Space Life Sciences, Houston, TX 77058
²NASA, Lyndon B. Johnson Space Center, Houston, TX 77058

The Transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGFβ signaling pathway is discussed by mathematical analysis and numerical simulation.