Techniques for Connecting Superconducting Thin Films

Junctions can be tailored to obtain desired levels of electrical resistance.

Marshall Space Flight Center, Alabama

Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects.

The techniques are applicable to both low-T_c and high-T_c superconductors (where T_c represents the superconducting-transition temperature of a given material), offering different advantages for each. Most low-T_c superconductors are metallic, and heretofore, connecting them have been made by spot welding. Most high-T_c superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-T_c superconductors and additional solutions to problems of connecting most high-T_c superconductors.

A superconducting thin film can be formed on a flat substrate. When two such substrate-supported thin films are placed face-to-face in tight contact by any means, electrical conductivity can be established across the resulting interface or junction between them. If the electrical resistance of the junction can be made relatively low, then the junction can serve as an ordinary electrical connection between the superconductors. On the other hand, provided that the junction can be tailored to impart a specified larger electrical resistance, the junction can be used to create desired electron quantum-tunneling effects. Such a thin-film-to-thin-film contact can be formed in one of three ways:

1. Bonding the two substrates together,
2. Mechanically fastening the two substrates together, or
3. Bonding the two thin films together, with or without bonding and/or mechanically fastening of the two substrates.

In general, one would bond the substrates to obtain reliability better than could be obtained by mechanical fastening of the substrates. On the other hand, mechanical fastening of the substrates offers the advantage of reversibility of the connection between the superconducting thin films.

For the purpose of the present innovation, the bonding of substrates and superconducting films can be effected by any of the established techniques generally used for that purpose in the art of superconducting thin films. In particular, the hydroxide catalyzed optical bonding process developed for NASA’s Gravity Probe B mission is well-suited for the controlled bonding of superconductors.

Prior to making a junction in one of the three ways described above, the electrical resistance of the junction can be modified in one of the following ways, depending on the specific application:

• Generally, the electrical resistance of the junction can be increased by creating an electrically resistive layer on either or both superconducting thin films to be bonded.
• In the case of metallic superconducting thin films with surface oxide layers, the electrical resistance of the junction can be reduced by etching, scratching, or polishing to thin or remove the oxide layers.
• If the two superconducting thin films are to be directly bonded, the electrical resistance of the junction can be increased in a controlled manner via the resistance of a bonding material. Optionally, beads of a known electrical resistivity and known size distribution can be added to the bonding material to control the thickness of the bonding interfacial layer and thereby obtain the desired electrical resistance.

This work was done by John Mester and Dz-Hung Guo of Stanford University for Marshall Space Flight Center. For further information, access http://stanfordtech.stanford.edu/4DCGI/docket?docket=97-042.

MFS-31605

Versatile Friction Stir Welding/Friction Plug Welding System

A single system could perform any FSW or FPW operation.

Marshall Space Flight Center, Alabama

A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following:

• Basic FSW;
• FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability];
• Self-reacting FSW (SRFSW);
• SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and
• Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld.

Prior FSW and FPW systems have been capable of performing one or
two of these operations, but none has thus far been capable of performing all of them.

The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in “Tool for Two Types of Friction Stir Welding” (MFS-31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

This work was done by Robert Carter of Marshall Space Flight Center. Further information is contained in a TSP (see page 1).

This invention is owned by NASA, and a patent application has been filed. For further information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at sammy.a.nabors@nasa.gov. Refer to MFS-31738-1.