
‘NON-EQUILIBRIUM’ TURBULENCE AND TWO-EQUATION MODELING

Robert Rubinstein
Computational AeroSciences Branch

NASA Langley Research Center
Hampton, Virginia 23681 USA

r.rubinstein@nasa.gov

ABSTRACT

Two-equation turbulence models are analyzed from the
perspective of spectral closure theories. Kolmogorov the-
ory provides useful information for models, but it is lim-
ited to ‘equilibrium’ conditions in which the energy spectrum
has relaxed to a steady state consistent with the forcing at
large scales; it does not describe transient evolution between
such states. Transient evolution is necessarily through ‘non-
equilibrium’ states, which can only be found from a theory of
turbulence evolution, such as one provided by a spectral clo-
sure. When the departure from equilibrium is small, perturba-
tion theory can be used to approximate the evolution by a two-
equation model. The perturbation theory also gives explicit
conditions under which this model can be valid, and when it
will fail. Implications of the non-equilibrium corrections for
the classic Tennekes-Lumley balance in the dissipation rate
equation are drawn: it is possible to establish both the can-
cellation of the leading order Re1/2 divergent contributions to
vortex stretching and enstrophy destruction, and the existence
of a nonzero difference which is finite in the limit of infinite
Reynolds number.

INTRODUCTION

The two-equation model is solved as part of many
Reynolds averaged models, even in models that include
Reynolds stresses and other more refined descriptions of the
large-scale statistics. By itself, a two-equation model treats
turbulent fluctuations as homogeneous isotropic turbulence.
This simplification can be motivated by appealing to Kol-
mogorov theory, which supports the translation and rotation
invariance of the statistics of fluctuations at small scales, re-
gardless of the inhomogeneity and anisotropy of the large
scales (Frisch, 1995). This paper analyzes the two-equation
model as a description of the evolution of statistically non-
stationary homogeneous isotropic turbulence. It poses the
question of when two-equation modeling is possible, and
when is it impossible. The answer is closely linked to the
classic Tennekes and Lumley (1972) balance between vortex
stretching and enstrophy destruction.

NON-STATIONARY TURBULENCE
Kolmogorov theory implies that statistically stationary

homogeneous isotropic turbulence is characterized by two pa-
rameters, equivalent to a length scale ` and the dissipation rate
ε (this choice of variables will be justified later). This idea is
formulated in terms of the energy spectrum E(κ) as

E(κ) = E(κ;`,ε) (1)

Such a state is sometimes called an ‘equilibrium,’ but it is
more correct to call it simply a steady state, since thermody-
namically, it is far from equilibrium. Eq. (1) includes a non-
trivial idea from Kolmogorov’s theory, that because the dissi-
pation rate equals the energy flux through the inertial range, it
links the large and small scales; this justifies the characteriza-
tion of the entire energy spectrum by a flux, ε , and a largest
dynamically relevant scale, `.

But these considerations are purely ‘static;’ modeling
attempts to treat temporal evolution under unsteady condi-
tions. For the purposes of modeling, a non-stationary, or time-
dependent energy spectrum cannot vary arbitrarily in time; for
a finite dimensional model to be possible at all, it can only
depend on time through finitely many parameters, which can
reasonably be taken to be ` and ε themselves. Then Eq. (1) is
replaced by the time-dependent ansatz

E(κ, t) = E(κ;`(t),ε(t)) (2)

This might be called a (temporally) local ‘equilibrium’ or
steady state. This special solution structure, in which the time
dependence occurs only through the time dependence of two
parameters, can be compared to the normal solution of kinetic
theory (Chapman and Cowling, 1970).

But how can evolution equations for ` and ε be found?
Kolmogorov theory is silent on this point. It states only that
that starting from any state, under steady forcing, turbulence
will evolve to an equilibrium steady state with ` and ε deter-
mined by the forcing. Thus, Kolmogorov theory merely as-
serts the existence and analytical form of an attractor for the
statistics of small scales of motion; it provides no information
about the dynamics of reaching that state.
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The usual approach to modeling postulates two equa-
tions: one is an exact energy balance, but the second is basi-
cally a fabrication. Briefly, it states that in a self-similar flow,
since all quantities with the same units are proportional, the
frequencies ε̇/ε , ε/k, and P/k (k is the turbulent kinetic en-
ergy and P is the rate of energy input) are constant multiples
of each other, so that

ε̇

ε
= Cε1

P
k
−Cε2

ε

k
(3)

The constants are determined by comparison with numerical
or experimental data in self-similar flows, usually self-similar
decaying turbulence and homogeneous shear flow, in which,
to repeat, a model of this form is necessarily correct because
of self-similarity (Clark, 1999). The extension of this equation
to general flows assumes a ‘continuum mechanics’ paradigm,
in which turbulence is viewed as a ‘fluid’ with the same ‘prop-
erties’ in every flow. However, this interesting paradigm is
introduced without fundamental justification.

It is unnecessary to insist that this approach is scientifi-
cally unsatisfactory, regardless of any practical value it might
be found to have, and indeed, this fact is well recognized in the
modeling literature. Improvement requires equations of mo-
tion for E(κ, t). It follows from the Navier-Stokes equations
and the kinematic assumptions of homogeneity and isotropy
that

Ė(κ, t) = Π(κ, t)− ∂

∂κ
F (κ, t)−2νκ

2E(κ, t) (4)

where Π is a known, possibly time-dependent forcing (or
‘production’) spectrum, and where F is the energy flux, a
third order moment of the velocity field (Batchelor, 1953).

An energy balance is obtained by integrating Eq. (4) over
all wavenumbers κ ,

k̇(t) = P(t)− ε(t) (5)

where total kinetic energy k(t) =
∫

∞

0
dκ E(κ, t), total produc-

tion rate P(t) =
∫

∞

0
dκ Π(κ, t), and dissipation rate ε(t) =∫

∞

0
dκ 2νκ

2E(κ, t). The flux term integrates to zero because

it is a gradient; recall that the gradient form reflects the con-
servative nature of energy transfer by nonlinear interaction.
While this equation is attractive because it is exact, it must
be emphasized that the nonlinearity embodied in the flux term
F , the heart of the turbulence problem, plays no role in this
equation.

Similarly, a dissipation rate equation is obtained by mul-
tiplying Eq. (4) by 2νκ2 and integrating,

ε̇ = S(t)−G(t) (6)

where vortex stretching S is defined by

S(t) =−
∫

∞

0
dκ 2νκ

2 ∂

∂κ
F (κ, t)

=
∫

∞

0
dκ 4νκF (κ, t) (7)

and enstrophy destruction (or palinstrophy) G is defined by

G(t) =
∫

∞

0
dκ 4ν

2
κ

4E(κ, t). (8)

The integration by parts in Eq. (7) is justified by the plausi-
ble assumption of exponential decay of turbulence statistics
when κ → ∞, so that limκ→∞ 2νκ2F (κ, t) = 0. Since pro-
duction is assumed concentrated at large scales, the integral∫

∞

0
dκ 2νκ

2
Π(κ, t) is of order Re−1 and is ignored in Eq.

(6) in the high Reynolds number limit. These results can also
be obtained from the Kármán-Howarth equation (Batchelor,
1953).

EQUILIBRIUM EVOLUTION
Important properties of an equilibrium state in which F

is constant and E ∼ κ−5/3 in the inertial range follow because
the integrals defining S and G, Eqs. (7) and (8), are dominated
by contributions near the Kolmogorov scale κd ∝ (ε/ν3)1/4

(Smith and Reynolds, 1991). Then

S≈ νκ
2
d ∝ ν

−1/2 ∼ Re1/2 (9)

and

G≈ ν
2
κ

10/3
d ∝ ν

−1/2 ∼ Re1/2, (10)

the famous Re1/2 divergences identified by Tennekes and
Lumley (1972). Since in an equilibrium state, ε̇ = S−G = 0,
it follows that S = G also in a local equilibrium defined by
Eq. (2). Therefore, evolution through exactly local equilib-
rium states is inconsistent with evolution of ε: any attempt to
derive an ε equation based on the assumption of a local equi-
librium must be inconclusive.

Further consequences of equilibrium evolution follow
from the Kolmogorov similarity form of the energy spectrum
for steady state turbulence

E(κ;`,ε) = ε
2/3`5/3

φ(`κ) (11)

The function φ is ‘universal’ insofar as it does not depend
on ` or ε , however, the particular analytical form of φ only
applies in one class of flows: forced steady state homogeneous
isotropic turbulence. From

k = ε
2/3`2/3

∫
∞

0
dx φ(x) (12)

the Kolmogorov relation

ε = Cε

k3/2

`
(13)
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with

Cε =
(∫

∞

0
dx φ(x)

)−3/2
(14)

follows. The constant Cε is ‘universal’ in the restricted sense
noted above: whereas Eq. (13) can apply more generally, for
example to decaying turbulence, the dimensionless spectrum
φ can be flow-dependent, so that the constant Cε can take dif-
ferent values in different flows (Bos et al., 2007).

Similar considerations apply to the spectral eddy viscos-
ity, which will be discussed further in the next section,

νt =
∫

∞

0
dκ

√
E(κ)

κ3 (15)

Inserting the self-similar form Eq. (11),

νt =

∫
∞

0
dx

√
φ(x)/x3(∫

∞

0
dx φ(x)

)2
k2

ε
(16)

The spectral eddy viscosity is therefore a constant multiple
of the two-equation model viscosity k2/ε; the proportionality
constant has a theoretical value that does not depend on ε and
`, but that could depend on the flow class through the function
φ (Besnard et al., 1996).

Because they refer to equilibrium conditions alone, these
results do not depend on any particular expression for the flux
F in Eq. (4). This fact can account for their ubiquity in tur-
bulence modeling.

NON-EQUILIBRIUM EVOLUTION
While considerations based on Kolmogorov theory are

very useful, they only carry us so far. Woodruff and Ru-
binstein (2006) advocated a new viewpoint on two-equation
modeling, that the two-equation model should determine an
approximate solution of the spectral evolution equation Eq.
(4) under some closure assumption for the energy flux F . For
analytical simplicity, Woodruff and Rubinstein (2006) used
the classical Heisenberg model (Batchelor, 1953), in which
the energy flux F is the functional of the energy spectrum,

F [E(κ)] = Ch

∫
κ

0
dµ µ

2E(µ)
∫

∞

κ

d p E(p)θ(p) (17)

with the ‘algebraic’ time-scale

θ(p) =
1√

p3E(p)
(18)

The Heisenberg model is written in the form of two equations,
Eqs. (17) and (18) in order to emphasize the connection of this

model to more complete closure theories based on triad inter-
actions (Kraichnan, 1987; Rubinstein and Clark, 2004). The
Heisenberg model treats the energy flux at wavenumber κ as
the product of a scale-dependent eddy viscosity at wavenum-
ber κ , the second integral on the right side of Eq. (17), and
the square of the effective strain at wavenumber κ , given by
the first integral on the right side of Eq. (17).

The time-independent form of Eq. (4),

0 = P(κ)− ∂

∂κ
F (κ)−2νκ

2E(κ) (19)

has a steady solution consistent with the Kolmogorov κ−5/3

inertial range; then the constant Ch can be chosen to match
the familiar Kolmogorov constant, treated as an empirical in-
put. The existence of a Kolmogorov steady state solution es-
tablishes the consistency of the Heisenberg model with Kol-
mogorov theory, but the crucial fact is that the Heisenberg
model is more general, because it states equations for the evo-
lution of the energy spectrum without imposing Kolmogorov
scaling in advance. From this viewpoint, spectral closures
like the Heisenberg model stand in the same relation to Kol-
mogorov theory as the Boltzmann equation to equilibrium
thermodynamics.

The forcing spectrum Π(κ, t) is assumed to be com-
pletely specified by a single length-scale L(t) such that Π(κ, t)
is nonzero only near the wavenumber π/L, and by the total

energy input rate P(t) =
∫

∞

0
dκ Π(κ, t). If P and L do not

depend on time, then the corresponding solution of Eq. (19)
is

Eeq(κ) = E(κ;`,ε) ` = L ε = P (20)

This connection between the energy spectrum and the forcing
spectrum justifies the somewhat unconventional choice of `
and ε as basic variables. It is obvious that if L = L(t) and
P = P(t) depend on time, then the local equilibrium

Eloc(κ, t) = E(κ;`(t),ε(t)) (21)

with

`(t) = L(t) ε(t) = P(t) (22)

satisfies

0 = P(κ, t)− ∂

∂κ
F (κ, t)−2νκ

2E(κ, t) (23)

because the flux function F depends on time only through
E. But the complete spectral evolution model Eq. (4) is not
satisfied by Eloc(κ, t) because of the time derivatives on the
left. Thus, the spectral evolution equation cannot be satis-
fied by evolution through local equilibrium states. If the time
derivatives are simply ignored, then there is no need for a two-
equation model, because the equalities in Eq. (22) state that
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the spectrum adjusts instantaneously to the forcing. But if
the time derivatives are small (this assumption can be made
precise by perturbation theory: compare (Woodruff and Ru-
binstein, 2006)), then it is reasonable to construct an approxi-
mate solution of Eq. (4) by treating the local equilibrium as a
leading order solution, say

E0(κ;`(t),ε(t)) = Eloc(κ, t) (24)

where analytical form in Eq. (21) is assumed, but Eq. (22) is
not imposed. A perturbative solution of Eq. (4) is then sought
in the form

E(κ, t) = E0(κ;`(t),ε(t))+E1(κ, t) (25)

where E1 � E0 (again, this statement can be made precise
in perturbation theory). This approach to solving the spectral
evolution equation is motivated by the Chapman-Enskog and
Hilbert expansions of kinetic theory (Chapman and Cowling,
1970).

The correction E1 satisfies the linear integral equation

∂

∂κ
L [E1(κ)] =− ∂

∂ t
E0(κ;`(t),ε(t)) (26)

where L is the flux linearized about the zero order solution;
for the Heisenberg model Eq. (17),

L [E1] = Ch

∫
κ

0
dµ µ

2E1(µ)
∫

∞

κ

d p

√
E0(p)

p3

+Ch
1
2

∫
κ

0
dµ µ

2E0(µ)
∫

∞

κ

d p
E1(p)√
p3E0(p)

(27)

Thus, E1 cancels the error in Eq. (4) due to the time depen-
dence of E0.

The crux of the analysis of Woodruff and Rubinstein
(2006) is that the possibility of solving Eq. (26) requires that
certain compatibility conditions be satisfied, and these condi-
tions provide the two-equation model for the unknown func-
tions `(t) and ε(t).

Assuming that the solution exists, it is clear from Eqs.
(26) and (27) that the correction E1 has the structure

E1(κ, t) = A(κ)
ε̇(t)
ε(t)

+B(κ)
˙̀(t)
`(t)

(28)

and Eq. (26) shows that in the inertial range where E0 ∝

κ−5/3,

E1 ∝ κ
−7/3 (29)

The existence of such a ‘non-equilibrium’ correction to the
enegy spectrum was first proposed by Yoshizawa (1994). Al-
though it is very difficult to extract this contribution even in

closure calculations, by using a novel method to analyze the
data, Horiuti and Ozawa (2011) have recently given conclu-
sive evidence for its existence in direct numerical simulations.

This analysis demonstrates that in a regime described by
a two-equation model, spectral evolution cannot be through
exactly equilibrium states, and that non-equilibrium correc-
tions for the time dependence necessarily arise. These correc-
tions have a crucial role in answering the famous and funda-
mental question posed by Tennekes and Lumley (1972): given
that S and G in Eq. (6) are shown in Eqs. (7) and (8) to diverge
as ν−1/2 ∼ Re1/2, how is it possible for ε̇ = S−G to be finite
and nonzero as Re→ ∞?

The statement that the difference between vortex stretch-
ing and enstrophy destruction is independent of Reynolds
number expresses the crucial property that the evolution of the
small scales depends entirely on the large scales; or, equiva-
lently, that ε does indeed link the large and small scales, even
in a time-dependent turbulent flow. This conclusion is abso-
lutely critical to the possibility of modeling: it bears repeating
that this conclusion does not follow from Kolmogorov theory.

S and G can be written in terms of contributions from E0
and E1 as

S = S0 +S1 G = G0 +G1 (30)

but since in local equilibrium, S0 = G0,

ε̇ = S−G = S1−G1 (31)

To evaluate S1, note that the contribution to the flux from the
correction E1 is

F1 = L [E1]∼ κ
−2/3 (32)

in the inertial range, where L [E1] is defined in Eq. (27); con-
sequently,

S1 ∼
∫

∞

0
dκ νκF1 ∼ νκ

4/3
d ∼ ε ∼ Re0 (33)

Similarly,

G1 ∼
∫

∞

0
dκ ν

2
κ

4E1 ∼ ν
2
κ

8/3
d ∼ ε

2 ∼ Re0 (34)

Thus, S1−G1 can be nonzero and finite in the high Reynolds
number limit. This argument establishes the Tennekes-
Lumley balance in a perturbation theory of slow spectral evo-
lution.

The Tennekes-Lumley balance has a crucial role in the
formulation of a dissipation rate equation: it states that the
quantity that must be modeled is the unknown O(Re0) differ-
ence between two correlations of order O(Re1/2); the diffi-
culty is that this difference does not correspond to any defi-
nite correlation of flow quantities. Consequently, the program
of ‘correlation by correlation’ modeling is not possible. The
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result is the usual heuristic approach to the dissipation rate
equation. The present analysis provides a possible explana-
tion for this impasse: the dissipation rate equation arises as a
first order effect in perturbation theory. Since it is therefore
tightly linked to non-equilibrium effects, it is not accessible to
derivations based on equilibrium considerations alone.

The time dependence also induces corrections to the
equilibrium eddy viscosity and length scale relations in Eqs.
(13) and (15). The correction to eddy viscosity has the form

νt1 =
1
2

∫
∞

0
dκ

E1(κ)√
κ3E0(κ)

=
1
2

ε̇(t)
ε(t)

∫
∞

0
dκ

A(κ)√
κ3E0(κ)

+
1
2

˙̀(t)
`(t)

∫
∞

0
dκ

B(κ)√
κ3E0(κ)

(35)

where Eq. (28) has been substituted for E1. Non-equilibrium
corrections to the eddy viscosity have been introduced by
Yoshizawa and Nisizima (1993). However, their goal was to
find a correction to the eddy viscosity in steady state turbu-
lence that makes it appropriate for homogeneous shear flow
as well. The present perspective is that the eddy viscosity co-
efficient in homogeneous shear flow will be different from that
in steady state turbulence because the function φ in Eq. (16)
will not be the same. The non-equilibrium corrections in Eq.
(35) are small corrections to the equilibrium eddy viscosity
in weakly time-dependent homogeneous isotropic turbulence;
they do not apply to any other class of turbulent flows.

The analogous corrections to Eq. (13) are non-
equilibrium corrections to the Kolmogorov law ε ∼ k3/2/`.
Attempts to derive a dissipation rate equation by manipula-
tion of this equilibrium law are futile because the dissipation
rate equation depends on non-equilibrium effects.

LIMITATIONS OF TWO-EQUATION MODELS
This analysis demonstrates that two-equation modeling

requires an explicit treatment of the departure of a turbu-
lent flow from equilibrium conditions. But it also restricts
the validity of models to weak departures from equilibrium,
in which the ratios ε̇/ε and ˙̀/`, which quantify the depar-
ture from equilibrium, are ‘small’ in a sense made precise
in the theory. An extreme case of violation of this restric-
tion occurs if either ε̇/ε or ˙̀/` is large enough to cause
E0 +E1 to become negative. This possibility can be compared
to ‘continuum breakdown’ (Bird, 1994) in kinetic theory, in
which the Navier-Stokes equations become invalid because
the Chapman-Enskog distribution is non-realizable. The pos-
sibility of formulating this limitation depends on a key feature
of the present analysis, that it constructs an approximate en-
ergy spectrum, as well as equations of evolution for the turbu-
lence descriptors ε and `.

It should be stressed that the explicit formulation of con-
ditions under which the two-equation model can be valid is a
particular strength of the present perturbative approach; noth-
ing comparable is possible if the model is simply postulated
by the usual heuristic arguments.

Weak departure from equilibrium imposes relations be-
tween large and small scales: they are linked to leading or-
der in perturbation theory through the dissipation rate ε as if

the flow were steady, and the evolution is therefore such that
the small scale evolution is basically determined completely
by the large scales. This relation is sometimes expressed by
saying that the small scales are ‘slaved’ to the large scales;
however, from the perspective of closure theories, this rela-
tion between the small and large scales is very special, not a
general feature of all turbulent flows.

Of course, the two-equation model can always be solved,
even when it is not valid. In such cases, the relation between
small and large scales that it imposes can make the evolution
unrealistic. An example occurs in the problem of homoge-
neous isotropic turbulence with linearly increasing production
rate (Rubinstein et al., 2004), in which turbulence evolves
from a Kolmogorov steady state to a self-similarly growing
state. A two-equation model consistent with both the initial
steady state and with the state of self-similar growth misrep-
resents the evolution of the dissipation rate: whereas closure
and direct numerical simulation data suggest a delay in the
growth of ε followed by a very rapid rise, two-equation mod-
els predict a gradual growth of ε throughout, as if the true
dynamics were subjected to a low-pass filter. This ‘filtering’
effect arises because the two-equation model links the evolu-
tion of the dissipation rate to large scales at all times.

During the initial transient, the large scales are evolving
more rapidly than the small scales; but when the small scales
finally start to respond to the large scales, they do so on their
own fast time scales, not on the time scales of the large scale
motion. In both cases, the link between large and small scales
is broken, and the the energy spectrum simply does not admit
the two-parameter ansatz of Eq. (2). A more familiar example
of breaking the link between large and small scales is the rise
in dissipation rate during the initial transient of decaying tur-
bulence, before the Kolmogorov spectrum is formed. In this
problem, there is no ‘production’ mechanism at large scales to
cause the dissipation rate to increase; the small scales evolve
independently of the large scales, and consequently, the two-
equation model cannot predict the evolution. Compare also
the analysis of front propagation in transient turbulent evolu-
tion by Connaughton and Nazarenko (2004).

The breakdown of the two-equation model in these prob-
lems does not imply that a statistical approach is impossible:
as noted earlier, spectral closure theories do not make any spe-
cial assumptions about Kolmogorov scaling, and are therefore
candidates to analyze flows in which a Kolmogorov spectrum
does not exist.

EXTENSIONS OF THE THEORY
The term ‘equilibrium’ is used in turbulence modeling

very generally, to describe self-similar states, even when they
are time-dependent, as in decaying turbulence and in homoge-
neous shear. Another important feature of the present analysis
is that perturbations of each such ‘equilibrium’ state requires a
separate analysis: there is no assertion that a model developed
for departures from steady-state turbulence will correctly de-
scribe turbulent decay. A possible topic for future research is
the development along the present lines of a model for pertur-
bations of self-similar turbulent boundary layers.
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CONCLUSIONS
Time-dependent evolution through equilibrium states is

not possible; any description of statistically unsteady dynam-
ics requires some theory to quantify the departures from equi-
librium. When the time dependence is sufficiently slow, per-
turbation theory can be used to derive a two-equation model
which provides an approximate description of the evolution.
The perturbation theory also indicates the limitations of the
two-equation model. Completely general transient evolution
can only be predicted by solving a complete spectral evolution
equation. The use in this analysis of the Heisenberg model
was entirely for analytical convenience; a complete perturba-
tive development of turbulence models must be based on more
accurate closures that include the dynamics of triad interac-
tions in turbulence (Kraichnan, 1959).
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