Global Precipitation Measurement (GPM) Mission Development Status

Ardeshir Art Azarbarzin
GPM Project Manager
Goddard Space Flight Center
April 6, 2011

Joint Seminar for CEE and ESS Departments
Center for Hydrometeorology and Remote Sensing (CHRS)
University of California, Irvine

www.gpm.gsfc.nasa.gov
Global Precipitation Measurement Overview

Mission Objective:
• Improve scientific understanding of the global water cycle and fresh water availability
• Improve the accuracy of precipitation forecasts
• Provide frequent and complete sampling of the Earth’s precipitation

Mission Description (Class B, Category I):
• Constellation of spacecraft provide global precipitation measurement coverage
 – NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation
 • 65° inclination, 400 km altitude
 • Launch July 2013 on HII-A
 • 3 year mission (5 year propellant)
 – Partner constellation spacecraft: Provided by JAXA, DoD, NOAA, other space agencies

• Ground assets
 – Precipitation Processing System: Data processing, archive, distribution for the entire constellation of spacecraft
 – Ground validation system: Uses world-wide network of ground-based measurements to validate space measurements and algorithms
 – Mission Operations Center for Core Spacecraft

• Partners
 – Japanese Aerospace and Exploration (JAXA)
 • DPR instruments for Core spacecraft
 • Launch service for Core spacecraft
 – Other U.S. and international agencies
 • Data from radiometers (e.g. NPP, DOD DMSP, JAXA GCOM-W, Megha-Tropiques)
 • Ground validation partnerships
 – Universities
 • Ground validation partnerships
 • Science team participation

Note: GMI #2 build and accommodated on the partner provided spacecraft was deleted on Feb 2011
GPM Mission Architecture

- **GPM Core Observatory**
 - Command, Science, Housekeeping
 - Instrument data
- **NASA Mission Operations**
 - Command, Telemetry
 - Science data
- **GMI instrument on Partner-provided Low-Inclination Observatory (LIO)** (Deleted)
- **NASA GPM Core Observatory**
- **TDRSS**
- **Partner Ground Systems**
- **Planned/Existing Spacecraft**
 - Instrument Data
- **Partner Constellation Spacecraft**
 - Instrument Data
- **GPM science teams & end users**

Key:
- **Bold font:** Threshold Requirements
- **★:** GPM Project Responsibilities
- **★★:** GPM Project Operations
- ★ Partners
- ★★★ GPM Project

EGU April 6, 2011
Ground System Architecture Builds on TRMM Experience

Mission Operations Center (MOC)
- Largely automated, staffed 8x5
 - Instruments operate in survey mode, require very little commanding from ground
 - Interfaces with Precipitation Processing System (PPS) to deliver:
 - 5-minute duration science instrument files
 - 5-minute duration housekeeping data files
 - Metadata associated with data processing and delivery
 - Ancillary data to support science product generation
 - Interfaces with PPS to receive instrument commands and command requests as needed

Precipitation Processing System (PPS)
- Creates higher-level science data products
- Delivers science data products to user community
- Provides interface to instrument science teams
- Delivers instrument commands, instrument team command requests to MOC

LIO GMI Instrument Operations Center
- Interfaces with partner-provided MOC (TBD)
- Provides LIO GMI data to PPS

Ground system supports:
- Radiometer precipitation products from GMI within 1 hour of observation
- Combined radar/radiometer swath products within 3 hours of observation
• GPM Level-1 Requirements call for a Ground Validation System to
 – Support the PMM Science Team in pre-launch science algorithm development and post-launch product evaluation
• The framework for the GPM-GVS is based on the GPM GVS Science Implementation Plan; it calls for 3 approaches to validation:
 – Surface: compare satellite data to US and International Networks of radars and gauges
 – Vertical Column: physical process studies and field campaigns test and refine physically-based retrieval algorithms
 – 4-Dimensional: field validation of satellite precipitation products integrated with meteorological and hydrological prediction models
• Ground validation program partnerships
 – Inter-agency and international partnerships improve the fidelity of ground validation
 – Putting partnerships in place through workshops and working group meetings
• Five (5) field campaigns planned, starting in 2011
 • ~18 month intervals between campaigns
 • Campaigns held in different climatic regimes
• Orbit: 407 km; 65 degree inclination
• 3 year design life with 5 years propellant
• Controlled re-entry at end of operational life
• GPM Microwave Imager (GMI): Conically Scanned Radiometer (Ball Aerospace)
 – 10.6, 18.7, 23.8, 36.5, 89, 166 & 183 GHz
• Dual-Frequency Precipitation Radar (DPR = KuPR + KaPR): JAXA
 – 13.6, 35.5 GHz
• Spacecraft bus: GSFC in-house design
 – Aluminum and Composite
 – Modular, fully-redundant avionics
 – Steerable high-gain antenna on dual-hinged boom
 – Solar arrays track the sun
 – 12 thrusters (4 forward, 8 aft)
 – 240 Amp-hour Lithium Ion Battery
 – Size: 13.0m x 6.5m x 5.0m
 – Mass: 3850 kg
 – Power: ~1950W
 – Data Rate:~ 300 Kbs (with onboard storage)
GPM Core Observatory (flight configuration)
JAXA-Provided Dual-frequency Precipitation Radar (DPR) Instrument Overview

<table>
<thead>
<tr>
<th></th>
<th>KuPR (similar to TRMM PR)</th>
<th>KaPR (new for GPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>13.597, 13.603 GHz</td>
<td>35.547, 35.553 GHz</td>
</tr>
<tr>
<td>Horizontal Resolution</td>
<td>5.2 km (at nadir)</td>
<td>5.2 km (at nadir)</td>
</tr>
<tr>
<td>Swath Width</td>
<td>245 km</td>
<td>120 km</td>
</tr>
<tr>
<td>Scan period</td>
<td>0.7 sec</td>
<td>0.7 sec</td>
</tr>
<tr>
<td>Range Resolution</td>
<td>250 m</td>
<td>250 m / 500 m</td>
</tr>
<tr>
<td>Observation altitude</td>
<td>Up to 19 km</td>
<td>Up to 19 km</td>
</tr>
<tr>
<td>Minimum Detectable Rainfall Rate</td>
<td>0.5 mm/hr</td>
<td>0.2 mm/hr</td>
</tr>
<tr>
<td>Measurement Accuracy</td>
<td>within ± 1 dB</td>
<td>within ± 1 dB</td>
</tr>
<tr>
<td>Beam-matching Accuracy</td>
<td>< 1000 m</td>
<td></td>
</tr>
<tr>
<td>Data Rate</td>
<td>< 109 kbps</td>
<td>< 81 kbps</td>
</tr>
<tr>
<td>Mass</td>
<td>< 472 kg</td>
<td>< 336 kg</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>< 446 W</td>
<td>< 344 W</td>
</tr>
<tr>
<td>Size</td>
<td>2.5 × 2.4 × 0.6 m</td>
<td>1.2 × 1.4 × 0.7 m</td>
</tr>
</tbody>
</table>

![KuPR STM](image1.jpg)
![KaPR STM](image2.jpg)
GMI Overview

- GMI is a passive microwave radiometer with hot and cold calibration
 - 166 Kg, 162 W, 34.9 Kbs Science (4 Kbs Engineering data) 1.2 m diameter reflector

- Conically scanned Main Reflector @ 32 RPM
 - Clear view enables high beam efficiency with low cross-pol coupling
 - Swath width 885 km
 - Resolution: 19.4km x 32.2km (10 GHz) – 4.4km x 7.3km (183 GHz)
 - Incorporates a 166/183 GHz sub reflector
 - Allows for single aperture
 - Enables critical frequencies to be located near the focal point while optimizing competing efficiency, beam width, and loss requirements

Frequencies and Polarizations

<table>
<thead>
<tr>
<th>Frequencies</th>
<th>Polarizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.65 GHz</td>
<td>V/H</td>
</tr>
<tr>
<td>18.7 GHz</td>
<td>V/H</td>
</tr>
<tr>
<td>23.8 GHz</td>
<td>V</td>
</tr>
<tr>
<td>36.5 GHz</td>
<td>V/H</td>
</tr>
<tr>
<td>89 GHz</td>
<td>V/H</td>
</tr>
<tr>
<td>166 GHz</td>
<td>V/H</td>
</tr>
<tr>
<td>183 GHz</td>
<td>Va/Vb</td>
</tr>
</tbody>
</table>
GPM Microwave Imager (GMI)
10-183 GHz

- Passive microwave radiometer with hot and cold calibration
- 4-point calibration to serve as a radiometric reference for constellation radiometers
- High spatial resolution
- Improved light rain & snow detection
- Improved signals of solid precipitation over land (especially over snow-covered surfaces)

Dual Precipitation Radar (DPR) Ku-Ka band: 13.6 & 35.5 GHz

- KuPR similar to TRMM, KaPR added for GPM
- Provides three-dimensional measurements of cloud structure, precipitation particle size distribution (PSD) and precipitation intensity and distribution
- Increased sensitivity (~11 dBZ) for light rain and snow detection

Combined Radar-Radiometer Cloud Database

- DPR & GMI together provide greater constraints on possible solutions to improve retrieval accuracy
- Improved a-priori cloud database for constellation Radiometer retrievals
GPM Constellation Sampling and Coverage

Baseline Constellation Schedule

(Canceled)

Current Capability: ≤ 3h over 45% of globe

GPM (2015): ≤ 3h over 90% of globe

Average Revisit Time (hr)

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropics (Land)</td>
<td>1.9</td>
<td>1.5</td>
<td>1.5</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Extratropics (Land)</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Globe (Land)</td>
<td>1.6</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Tropics (Ocean)</td>
<td>3.2</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>4.9</td>
</tr>
<tr>
<td>Extratropics (Ocean)</td>
<td>3.3</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Globe (Ocean)</td>
<td>3.2</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Land and Ocean</td>
<td>2.8</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Extratropics (Land and Ocean)</td>
<td>2.6</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>

1-2 hr revisit time over land with inclusion of sounders
GPM Core Observatory / GMI at 407 km

TRMM / TMI at 350 km

Key Parameters:
- Off-Nadir Angle = 48.5 degrees
- Scan Rate (TMI / GMI) = 31.6 rpm / 32.0 rpm

GMI footprint compared to TRMM and Windsat

GMI at 635 km (Deleted from Program Feb 2011)

WindSat at 840 km

Key Parameters:
- Altitude: GMI 635 km, WindSat 840 km
- Scan Rate: GMI 32.0 rpm, WindSat 31.6 rpm
GPM Core Observatory at 400 Km & 65 degree inclination
- 65 Provides;
 - Cross calibration of all GPM constellation Radiometers
 - More inland coverage and higher latitude to cover snow and ice retrieval
- Same altitude TRMM satellite 400 Km (launched in 97 with Ku band Radar and smaller Radiometer) to provide data continuity for Ku Band
 - TRMM at 35 degree inclination – covered mostly the tropics

65 degree inclination a none sun-sync orbit
- 180 degree Yaw maneuver required every 30 days to keep one side of the spacecraft (radiators) always pointed away from sun
 - GPM Core Observatory has front and rear thrusters to provide altitude maintenance in either orientation
- Required one solar array at approximately 50 degree cant angle

Being at same altitude as Space Station (400 Km) requires;
- Careful orbit injection planning
- Launch Vehicle collision avoidance; maneuver and lower the third stage altitude below 400 Km after spacecraft separation
- Precise orbit maintenance maneuvers
Core Observatory was designed to demise

- Require to meet 12 m² footprint in order have uncontrolled reentry
 - Aluminum parts used to burn upon re-entry
 - Minimized the use of titanium
 - Only used titanium where material strength was critical
 - Key components designed to demise
 - Propulsion tank (holds 550 Kg of fuel) made out of aluminum with composite wrap
 - Propulsion Management Device (PMD) made out of aluminum
 - Reaction Wheels made out of Aluminum
 - Structure made out of aluminum and composite

- At PDR (Nov 2008), most recent modeling applied a large penalty to small titanium fittings, therefore total observatory footprint exceeded 12 m² limit

- Following the PDR, spacecraft redesigned for controlled reentry at the end of mission life
 - Higher performance thruster required to meet end of life requirement
 - Fuel allocation for reentry
 - Analysis for needed critical components to meet reliability numbers
Other GPM Core Observatory Design Features

- Spacecraft bus designed to accommodate fully welded propulsion system integration
 - To save time during Observatory Integration and provide flexibility welding is NOT allowed on spacecraft after avionics have been integrated

- Designed to preclude interference between GMI (36.5 GHz) and DPR (Ka 35.5 GHz) instruments
 - Filters on both instruments
 - “Blanking” capability for on-orbit mitigation if needed

- Designed to preclude “jitter” between GMI rotation and solar array
 - Fundamental frequency design constraints
 - GMI balancing
 - On-orbit mitigation for separating resonant frequencies by changing GMI spin rate
Core Observatory communication

- High Gain Antenna System to communicate with TDRSS for Commanding and down linking the Science and spacecraft data
 - Continuous TDRSS link – high rate slewing from TDRSS to TDRSS
 - Continuous TDRSS link to Meet GMI real-time data requirement (hurricane monitoring)
 - High rate requires a comprehensive life test of the two axis gimbals

- Two Omni antennas (Nadir and Zenith) as a back-up system and spacecraft commanding during contingency mode
 - To command spacecraft during and anomaly (spacecraft tumbling)
Core Observatory Logistic challenges

• GPM Core observatory will be shipped to Japan with C-5 aircraft
 – Refueling in air to avoid landing
 • C-5 needs a long runway and very few commercial airports have long enough runway for C-5 to land
 – Will replace Air Force with NASA logo on the C-5
 – Can only land in Nagoya or Kagoshima airports
 • The only two airports with long enough runway for C-5 to land
 – Shipping container does NOT fit in C-17 aircraft

• Will use barge to ship from Nagoya or Kagoshima to Tanegashima Island (south of Japan) – Tanegashima Space Center (H-IIA launch pad)
 – Tanegashima Island airport runway not long enough for C-5
• Programmatic
 – GPM Mission was “Confirmed” by NASA HQ December 2, 2009 to proceed with the implementation phase
 • Core Observatory Launch Readiness Date (LRD) July 2013
 – Mission CDR successfully held Dec 14-17, 2009
 – Low-Inclination Observatory (LIO) implementation via partnership
 • Successful HQ meeting with INPE (Brazilian Space Program) Oct 12, 2010 to discuss potential LIO partnership; LRD 2014/2015
 – NASA/AEB/INPE establishing joint working group for one-year study
 – Plan face-to-face meetings in early 2011
• **GMI Instrument (Delivery targeted for late September 2011)**

 – All Receiver Testing completed and meeting the NEΔT requirements for all channels
 – Receiver Shelf System EMI and Thermal Vacuum testing completed
 – Instrument Bay Structure (IBS), Instrument Support Structure (ISS), Instrument Controller Assembly (ICA) and Spin Mechanism Assembly (SMA) have been integrated at Ball (see picture)
 * The SMA operation at 32 RPM verified
 – The ITT harness, Electronic Digital Controller (EDC) and Electronic Power Controller (EPC) have been mechanically and electrically integrated
 – ITT Receivers are only remaining hardware to be delivered
 * 36 GHz - Feb 8, 10 GHz – Feb 17, 18/23 GHz – Mar 7, 183 GHz – Mar 7, 166 GHz – Mar 22, 89 GHz – Mar 22
 – Key GMI near term milestones:
 * Complete instrument integration and initial performance test by the end of March
 * Pre-Environmental Review late April/early May
Performance TPM Status

<table>
<thead>
<tr>
<th>Spec.</th>
<th>Description</th>
<th>Units</th>
<th>Req.</th>
<th>PDR</th>
<th>PSR 7/08</th>
<th>PSR 12/08</th>
<th>CDR 6/09</th>
<th>PSR 11/09</th>
<th>PSR 03/10</th>
<th>PSR 05/10</th>
<th>PSR 9/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR3.1.4</td>
<td>10.65 NEDT</td>
<td>K</td>
<td>0.96</td>
<td>0.95</td>
<td>0.94</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>TR3.1.4</td>
<td>18.7 NEDT</td>
<td>K</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
<td>0.88</td>
<td>0.81</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>TR3.1.4</td>
<td>23.8 NEDT</td>
<td>K</td>
<td>1.05</td>
<td>0.70</td>
<td>0.71</td>
<td>0.71</td>
<td>0.97</td>
<td>0.97</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>TR3.1.4</td>
<td>36.5 NEDT</td>
<td>K</td>
<td>0.65</td>
<td>0.61</td>
<td>0.54</td>
<td>0.53</td>
<td>0.54</td>
<td>0.54</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>TR3.1.4</td>
<td>89 NEDT</td>
<td>K</td>
<td>0.57</td>
<td>0.41</td>
<td>0.41</td>
<td>0.45</td>
<td>0.42</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>TR3.1.4</td>
<td>166 GHz NEDT</td>
<td>K</td>
<td>1.5</td>
<td>1.37</td>
<td>1.70</td>
<td>1.58</td>
<td>1.40</td>
<td>1.48</td>
<td>1.47</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>TR3.1.4</td>
<td>183 GHz NEDT</td>
<td>K</td>
<td>1.5</td>
<td>1.03</td>
<td>1.56</td>
<td>1.44</td>
<td>1.28</td>
<td>1.18</td>
<td>1.18</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>TR3.1.4</td>
<td>183 GHz NEDT</td>
<td>K</td>
<td>1.5</td>
<td>1.04</td>
<td>1.65</td>
<td>1.42</td>
<td>1.36</td>
<td>1.22</td>
<td>1.21</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>10.65 beam effic.</td>
<td>%</td>
<td>90</td>
<td>91.4</td>
<td>91.4</td>
<td>91.4</td>
<td>91.4</td>
<td>91.4</td>
<td>91.4</td>
<td>91.4</td>
<td>92.1</td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>Derived</td>
<td>18.7 beam effic. %</td>
<td>91</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>93.3</td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>Derived</td>
<td>23.8 beam effic. %</td>
<td>92</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
<td>94.3</td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>Derived</td>
<td>36.5 beam effic. %</td>
<td>95</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>98.5</td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>Derived</td>
<td>89 beam effic. %</td>
<td>95</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>166 beam effic. %</td>
<td>90</td>
<td>91.9</td>
<td>91.9</td>
<td>91.9</td>
<td>91.9</td>
<td>91.9</td>
<td>91.9</td>
<td>91.9</td>
<td>91.9</td>
<td></td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>183+/-3 beam effic. %</td>
<td>90</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td></td>
</tr>
<tr>
<td>TR3.1.5.4</td>
<td>183+/-8 beam effic. %</td>
<td>90</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td>91.7</td>
<td></td>
</tr>
<tr>
<td>TR3.2.1.3/CPE</td>
<td>10.65 Calibration Unc</td>
<td>K</td>
<td>1.35</td>
<td>0.70</td>
<td>1.16</td>
<td>1.16</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>TR3.2.1.3/CPE</td>
<td>18.7 Calibration Unc</td>
<td>K</td>
<td>1.35</td>
<td>0.68</td>
<td>1.17</td>
<td>1.17</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>TR3.2.1.3/CPE</td>
<td>23.8 Calibration Unc</td>
<td>K</td>
<td>1.35</td>
<td>0.62</td>
<td>1.16</td>
<td>1.16</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
<td>1.26</td>
</tr>
<tr>
<td>TR3.2.1.3/CPE</td>
<td>36.5 Calibration Unc</td>
<td>K</td>
<td>1.35</td>
<td>0.56</td>
<td>1.14</td>
<td>1.14</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>TR3.2.1.3/CPE</td>
<td>89.0 Calibration Unc</td>
<td>K</td>
<td>1.35</td>
<td>0.57</td>
<td>1.14</td>
<td>1.14</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>TR3.2.1.3</td>
<td>166 Calibration Unc</td>
<td>K</td>
<td>1.5</td>
<td>0.75</td>
<td>1.31</td>
<td>1.31</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>TR3.2.1.3</td>
<td>183+/-3 Calibration Unc</td>
<td>K</td>
<td>1.5</td>
<td>0.74</td>
<td>1.34</td>
<td>1.34</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>TR3.2.1.3</td>
<td>183+/-8 Calibration Unc</td>
<td>K</td>
<td>1.5</td>
<td>0.75</td>
<td>1.34</td>
<td>1.34</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>

NEDT performance
- All frequencies based on flight performance

Beam efficiency
- All frequencies based on measured flight data using flight feehorns and Main Reflector
Receiver Subsystem Flight Hardware Test Frame in EMI RE Testing
Receiver Subsystem Flight Hardware Test Frame Set-up
Goddard Space Flight Center

EGU April 6, 2011

GPM

Receiver Subsystem Flight Hardware Test Frame Set-up
GPM RDA, Feed Horn Assembly & SMA

- RDA Deployment
- Feedhorns
- Spin Mechanism Assembly
GPM Spin Mechanism Assembly
GPM

Electronic Digital Controller (EDC) & Electronic Power Controller (EPC) & Instrument Controller Assembly (ICA) Integrated
• Dual Precipitation Radar Instrument (JAXA/NTSpace) – Delivery date targeted for early July 2011
 – KuPR/KaPR testing at Tsukuba Space Center (JAXA) is proceeding 7 days/week
 – Pre-Environmental Review held Jan 13-14, 2011
 • Issue of thermal vacuum testing profile (powering on instrument during thermal transitions and soak time) being worked between JAXA and NASA
 • Follow-up videocon Feb. 2 addressed KaPR initial performance test, T/V test profile, and other issues from PER; Additional follow-up Feb. 15
 – KaPR delivery date may be impacted due to power-on transition requirement during T/V (suggested by NASA during PER)
 – KuPR completed vibration testing and thermal vacuum testing has begun
 – KaPR electrical performance test completed and preparing for acoustic test
 – Key DPR near term milestones:
 • Complete KuPR T/V – Feb 2011
 • Complete KaPR T/V – Apr 2011
KaPR EM consists of 32 elements of waveguide slot array antenna. The length of waveguide between the transmitter unit and the antenna element is the same for all channels.

DPR photos provided by JAXA

Ku T/R unit
Ka T/R unit
Interface box
Ku Div/Comb 1
Ka Div/Comb 1
Ku RX BPF
GPM

KaPR initial Performance test
Core Observatory

- Thermal control system integration (avionics heat pipes, TCS harness) with flight lower bus structure complete
 - Completed flight Lower Bus Structure -Z avionics panel installation
- Flight harness bake-out complete and integrated onto Lower Bus Structure
- Qual Structure assembly completed mass properties; next steps are Modal Survey Test and Strength Test (on centrifuge)
- Avionics flight board manufacture at NG and BAE continues (C&DH: 3 SBC, 2 DSB, 2 SLVPC, 2 ULVPC, 2 DIO; PSE: 2 HM; GPS: 2 PCC delivered). PSE backplane solder fill issues resolved with three re-works and one white-wire.
- DiRWA anomaly experienced during component T/V testing. Potential root cause identified; modifying ETU with proposed design change
 - I&T flow reworked to accommodate late delivery
- SADDS qual/backup flight boom and panel in final assembly
- Flight thrusters and pressure transducers delivered
- FLATSAT ETU testing in progress: C&DH #1, PSE, PIE, Star Tracker, IRU
Flight Structure assembled

DPR alignment test completed
GMI alignment test completed
Preparing GPM Flight Lower Bus Structure for Harness Installation

GPM Qualification Structure
• Measuring moment of inertia – rotating back and forth
• Measuring Center of Gravity of the Core Observatory – rotating at 5-6 revolution per minute
GPM Centrifuge Test Configuration (similar to TRMM shown)
TRMM Centrifuge Test – Configuration 1
Panel in Stow Configuration

Deployment Testing GSE (with panel model)

SADDS Qual Boom Assembly
Working on Flight Harness in the Clean Room
Core Observatory Integration timeline thru launch

• Integration kick-off November 2010
 – Heat Pipe and Harness Integration on flight structure
 – Structure Qualification as a parallel activity

• Avionics and Propulsion Module integration Feb – July 2011
 – Solar Array and deployment Test and Qualifications in parallel

• Instrument Integration August – October 2011

• Core Observatory Environmental Testing Nov 2011 – Jan 2013
 – EMI/EMC Test
 – Vibration Test
 – Acoustic Test
 – Thermal Vacuum Testing
 – Post Environmental Deployments

• Solar Array Installation and mass properties Feb 2013
 – Measuring mass and center of gravity

• Ship to Launch site March/April 2013

• Launch site preparation activities April – June 2013
 – Launch site testing of spacecraft and fueling

• Launch vehicle fairing encapsulation and final test June/July 2013

• Launch July 2013
Back – up charts
Ku-band misses ~10% of the total tropical rain.

With the Ka-band, DPR will capture 97% of the total rain volume.
GPM Data Products

<table>
<thead>
<tr>
<th>Product Level</th>
<th>Description</th>
<th>Coverage</th>
</tr>
</thead>
</table>
| Level 1B GMI, GMI-2 Level 1C GMI, GMI-2
Latency ~ 1 hour | Geolocated Brightness Temperature and intercalibrated brightness temperature | Swath, instrument field of view (IFOV) |
| Level 1B DPR | Geolocated, calibrated radar powers | Swath, IFOV (produced at JAXA) |
| Level 1C, partner radiometers | Intercalibrated brightness temperatures | Swath, IFOV |
| Level 2 GMI, GMI2
Latency ~1 hour | Radar enhanced (RE) precipitation retrievals | Swath, IFOV |
| Level 2 partner radiometers | RE precipitation retrievals from 1C | Swath, IFOV |
| Level 2 DPR
Latency ~3 hours | Reflectivities, Sigma Zero, Characterization, DSD, Precipitation with vertical structure | Swath, IFOV (Ku, Ka, combined Ku/Ka) |
| Level 2 combined GMI/DPR
Latency ~3 hours | Precipitation | Swath, IFOV (initially at DPR Ku swath and then at GMI swath) |
| Level 3 Latent Heating (GMI, DPR, Combined) | Latent Heating and associated related parameters | 0.1 x 0.1 monthly grid |
| Level 3 Instrument Accumulations | GMI, partner radiometers, combined and DPR | 0.1 x 0.1 monthly grid |
| Level 3 Merged Product | Merger of GMI, partner radiometer, and IR | 0.1 x 0.1 hourly grid |
| Level 4 Products | Model assimilated data | Fine temporal and spatial scale TBD |
Target: Light rain in cold low altitude melting layer environment

GV Science:
- a) Quantify column DSD/precip variability over inland, coastal, sea regimes
- b) Melting layer physics coupled to water below and ice above
- c) Reconstructed Ka-Ku band (DPR) data for DFR algorithm testing
- d) Observationally-validated model databases for radiometer algorithms

Approach:
- Heavily instrument surface sites + 1 Ship under radar/aircraft/satellite coverage at Järvenpää (inland), Harmaja (Island), Emasalo (coast), and R/V Aranda (sea)
- 3 Dual-pol radars, 6-8 disdrometers/4-MRRs/ADMIRARI radiometer/3 POSS U. Wyoming King Air Airborne microphysics + W-band radar

Helsinki-Testbed & Gulf of Finland
Target: Mid-latitude convective and stratiform rainfall over land

Location: DOE-ASR Central Facility, Oklahoma

GV Science Priorities

1. Coordinated Airborne [high altitude/in situ]
 a. High altitude Ka/Ku-band radar, multi-freq. radiometer with in-situ ice microphysics
 b. Pre/post storm surface properties

2. 3-D Mapping of hydrometeor distribution/type
 a. Unified framework for retrieving 3-D DSD
 b. Sub pixel scale DSD variability
 c. Cross validation/comparison of multi-frequency (Ka-Ku) and dual-pol. retrievals

3. Satellite simulator models (CRM/LSM/RT)
 a. High quality sounding-based forcing data
 b. Microphysical and kinematic validation.
 c. Land surface impacts

Confirmed Instruments:

- Aircraft: ER-2, UND Citation (microphysics)
- Radars: NPOL, D3R, DOE X-band(s), C-band, Ka/W, S/UHF profiler
- Surface: Dense disdrometer/gauge net. ASR surface met, radiometer, flux and, aerosol instruments
- Soundings: ASR array 6 – 8 launches/day

Status: Pre-field deployment sampling and logistics planning
Target: Snowfall retrieval algorithms

GV Science
1. Radiometer/DPR Snowfall measurement sensitivities to snow type, rate, surface and tropospheric characteristics
2. Physics of snowfall in the column and relation to extinction characteristics
3. Model databases for forward modeling and retrieval development.

Approach
- Network observations of SWE and PSD
- In-situ and high-altitude airborne sampling
- Ground-based radar/profiling components
- Soundings for column T and Water Vapor

Status: Planning phase

Site chosen: Environment Canada CARE site in Ontario, Canada

Instruments planned: DC-8 (Ka-Ku band radar, CoSMIR radiometer), microphysics aircraft (TBD), D3R Ka-Ku radar, C-band dual-pol radar, numerous snow-gauge/disdrometer clusters, profiling radars at S/UHF, X, K, and W-bands.