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1 INTRODUCTION 

Satellite measurements of the biosphere have now become common place in various aspects of large-

scale environmental monitoring including drought and crop monitoring. This was not the case until the 

launch of the Advanced Very High Resolution Radiometer (AVHRR) instrument in June 27, 1979 on 

board the National Oceanic and Atmospheric Administration (NOAA) first Advanced Television 

Infrared Observation Satellite (TIROS-N/ NOAA-6) polar orbiting satellite. Initially, the NOAA 

AVHRR satellites were designed to observe the Earth's weather patterns: primarily cloud dynamics, 

vertical soundings of the atmosphere, and sea surface temperatures.  Early studies on remote sensing of 

vegetation were focused on understanding seasonality.  The vernal advancement and retrogradation of 

vegetation (e.g., spring green-up, summer abundance, and fall dry-down) was first studied over the 

north-south expanse of the U.S. Great Plains using data from the Earth Resources Technology Satellite 

(ERTS) Multi-Spectral Scanner instrument (MSS) (Rouse et al., 1974a; b).  Rouse et al (1974) and 

others demonstrated that biophysical characteristics of vegetation over this rangeland and cropland 

region could be inferred from satellite spectral measurements despite solar zenith angle differences 

across a long latitudinal gradient (Deering et al., 1975).  Rouse et al. (1974) developed a difference 

ratio metric between the red and near-infrared (NIR) radiances over their sum to normalize the effects 

of the solar zenith angle. This derivation is based on the unique spectral response function of vegetated 

surfaces compared to other surface matter in the visible and NIR portion of the electro-magnetic 

spectrum as shown in Figure 1.  

[Insert Figure 1 here] 

Spectral reflectances and radiances of green vegetation canopies in the red region of the 

electromagnetic spectrum are inversely related to in situ chlorophyll density due to photosynthetic 

chlorophyll absorption by vegetation in this band.  In contrast, energy in the NIR region is scattered 

and reflected by the canopy structure of the vegetation and hence NIR reflectance is directly related to 

the green leaf density (Gates et al., 1965; Knipling, 1970; Woolley, 1971).  These characteristics drive 



 

 

the spectral response of plants in these two spectral regions, and the reflectances vary with seasonal 

changes in vegetation condition (phenology) and/or stress (e.g., drought).  When captured remotely 

through time, such variations can be exploited for vegetation drought monitoring purposes. The ratio 

between red and NIR reflectances was named the vegetation index (VI).  There were other variants of 

the VI such as the Transformed Vegetation Index (square-root transformation of difference-sum ratio), 

the simple ratio (red/infrared), and the perpendicular vegetation index (Rouse et al., 1974; Deering et 

al., 1975; Richardson and Weigand, 1977).  Eventually, researchers agreed upon the normalized 

difference vegetation index (NDVI) as the most efficient and simple metric to identify vegetated areas 

and their condition (Tucker, 1979). Normalization had many advantages including: minimizing 

directional reflectance and off-nadir viewing effects, reducing sun-angle, shadow and topographic 

variation effects and minimizing aerosol and water-vapor effects (Holben, 1986) This enabled large 

scale vegetation monitoring to be undertaken as normalization enabled different regions to be 

compared through time 

The NDVI is computed as:  

NDVI = (NIR-RED) / (NIR+RED)                         (Equation 1) 

where RED and NIR are the spectral reflectance measurements in the red and near-infrared regions of 

the electromagnetic spectrum respectively.  These spectral reflectances are ratios of reflected radiation 

to incoming radiation in each spectral band, with values ranging between 0.0 and 1.0. Theoretically, 

NDVI values can range between -1.0 and +1.0.  However, the typical range of NDVI measured from 

vegetation and other earth surface materials is between about -0.1 (NIR less than VIS) for non-

vegetated surfaces to as high as 0.9 for a dense green vegetation canopies (Tucker, 1979). The NDVI 

increases with increasing green biomass, changes seasonally, and responds to favorable (e.g. abundant 

precipitation) or unfavorable climatic conditions (e.g., drought).  This early research was based on 

National Aeronautic and Space Administration’s (NASA) ERTS program, now known as the Landsat 

program.  However, due to the low repeat cycle of the satellite (18 days) and persistent cloud cover 



 

 

ERTS could not by itself provide the temporal frequency of measurements for systematic monitoring of 

the land surface.  Such high temporal frequency measurements are required for operational applications 

like drought monitoring and other environmental applications that need cloud-free measurements.  

 

2 A BRIEF HISTORY OF AVHRR 

From 1980 to 1982, independent teams of researchers with an interest in land surface monitoring 

demonstrated that the visible channels on the NOAA AVHRR could be exploited for vegetation 

monitoring (Tucker et al., 1983).  For the first time, vegetation could be monitored at a global scale 

from a satellite platform with a high temporal frequency of repeat observations (near daily global 

coverage). This meant that aspects of vegetation seasonality and health could be studied and monitored 

over time.  However, measurements for land surface monitoring were not originally planned in the 

instrumental design of the NOAA Polar Orbiting Satellite program.  The first ever AVHRR was flown 

on the Television Infrared Observation Satellite (TIROS-N) meteorological satellite in 1978.  This 

AVHRR was configured with 4 spectral channels (0.55-0.90 μm, 0.73-1.1 μm, 3.5-3.9 μm, and 10.5-

11.5 μm) customized for meteorological observations and applications.  Table 1 shows the spectral 

bandwidths of various AVHRR platforms and their possible uses and applications.  Note that some 

channel bandwidths have changed over time with observational and technological requirements  

[Insert Table 1 here] 

After this pioneer mission, it became apparent that future AVHRR sensors required modifications to 

increase effectiveness for snow mapping and vegetation monitoring, primarily by narrowing the first 

channel in the red spectral region to 0.55-0.68 μm (Schneider et al., 1981).  Since chlorophyll 

absorption of solar radiation is confined to these wavelengths, narrowing the first channel made 

detecting and mapping vegetation more effective, as opposed to the wider channel on the first TIROS, 

which constrained vegetation monitoring due to atmospheric attenuation.  After the launch of the 

NOAA-6 platform in 1979, a new unintended measurement became possible from meteorological 



 

 

satellites: the NDVI.  A major advantage of AVHRR is its daily global coverage.  Because of the 

instrument’s wide field of view (±55o) and polar-orbiting, sun-synchronous orbit, the AVHRR images 

the Earth’s land surface twice daily (day and night). Data collected over consecutive days minimize the 

effects of cloud cover and other unfavorable atmospheric conditions.  The high temporal resolution of 

AVHRR, coupled with continual operational data acquisitions over many years, provides a historical 

context for long-term monitoring and comparison of land surface conditions.  Calculating anomaly 

metrics through image differencing or other decomposition techniques can be used to show different 

types of ecosystem anomalies that can be used for drought detection (Tucker et al., 1986; Tucker et al., 

1991; Eastman and Fulk, 1993; Tucker, 1996). At present, there is a 30-year history of global AVHRR 

NDVI measurements (Table 2) that sets a climate-scale benchmark for land surface studies and 

applications. (Figure 2).  This long-term data set can be used to study aspects of drought frequency and 

extent, as well as relationships between drought and climate variability. 

[Insert Table 2 Here: History of AVHRR sensors] 

[Insert Figure 2 here: Image Series] 

 

3 NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) 

3.1 NDVI Derived from AVHRR measurements 

As previously defined in the introduction section for Landsat, the NDVI from broadband AVHRR data 

is calculated from channels 1 (0.55-0.70 μm) and 2 (0.73-1.1 μm) using the following equation:    

NDVI = (Channel 2 – Channel 1)/ (Channel 2 + Channel 1)           (Equation 2). 

Figure 1 shows comparison between AVHRR and Landsat TM spectral bandwidths for vegetation 

mapping and their respective spectral responses.  Often, AVHRR’s channel 4 or 5 (10.3-11.3; 11.5-12.5 

μm) is used as a thermal cloud mask.  The thermal cloud mask eliminates NDVI data below a set 

brightness temperature threshold, which is usually around 285K.  In most tropical latitudes, it is 

assumed that the surface brightness temperatures will be above the threshold value (even at high 



 

 

elevations during the afternoon AVHRR overpasses). Since cloud pixels typically have brightness 

temperatures less than the land surface, the corresponding NDVI pixels are set to zero (Holben, 1986).  

Kimes (1983) and Holben and Fraser (1984) found that several factors unrelated to vegetation 

condition can affect NDVI over green vegetation including: atmospheric effects, cloud detection, and 

bi-directional reflectance effects.  Different compositing techniques had to be investigated to form 

solutions to these issues (Kimes, 1983; Gatlin et al., 1984; Holben and Fraser, 1984; Kimes et al., 1984; 

Holben, 1986; Holben et al., 1986).  One such technique was to form time-composite images of 

maximum NDVI values over periods of several days such as 7-, 10-, 15-day or monthly intervals 

(Holben and Fraser 1984; Holben, 1986).  The use of a thermal cloud mask combined with maximum 

value compositing (MVC) reduces the effects of cloud contamination, atmospheric attenuation, view 

and illumination geometry, and surface directional reflectance.  This is because maximum NDVI values 

are found to be associated with a clear atmosphere, while compositing tend to minimize other angular 

effects.  

 

MVC was enacted as standard operating procedure in 1983 for the production of global AVHRR 

products generated by the Global Inventory Monitoring and Modeling Studies (GIMMS) group at the 

NASA Goddard Space Flight Center (GSFC).  Reasons for enacting this as standard protocol were: a) 

the AVHRR channels 1 and 2 are spectrally very wide, b) channel 2 contains a water absorption band, 

c) directional effects were not well understood for broad-band sensors, and d) detailed atmospheric data 

were not available for explicit atmospheric correction. Therefore, since atmospheric conditions tend to 

suppress NDVI values in a non-clear atmosphere, MVC was the preferred solution. 

 

3.2 Interpretation of NDVI 

Radiation measurements of the Earth’s surface from satellites are complex functions of not only the 

state and properties of the surface itself, but also the conditions and dynamics of the atmosphere 



 

 

through which the reflected radiation is sensed. NDVI and other derived VIs are an attempt to provide 

the best estimates of the state and condition of vegetation while minimizing (or eliminating) the 

influence of other factors as mentioned in the previous section.  Derived metrics have to be universal 

and reliable in time and space irrespective of these extraneous factors.  A detailed analysis of the 

interpretation of VIs is given by Myneni et al. (1995), who concluded that NDVI represents the energy 

that drives photosynthesis.  Over the past two decades, the NDVI has been widely used in many 

terrestrial applications.  Some examples include: drought early warning, locust monitoring, vector 

disease risk assessment, estimation of forage, agricultural monitoring, land cover classification, and as 

an input to land surface and biophysical models.  Early proof-of-concept studies showed NDVI to be a 

non-destructive measure of intercepted photosynthetically active radiation (PAR) (Hatfield et al., 1984; 

Asrar et al., 1984; 1985; Wiegand and Richardson, 1984), photosynthetic capacity, and primary 

production (Kumar and Monteith, 1982; Asrar et al., 1986; Sellers, 1985; 1987; Tucker and Sellers, 

1986).  Others studies used NDVI to study total biomass production for a wide range of vegetation 

types including grasslands, agricultural crops, and salt marshes (Steven et al., 1983; Tucker et al., 1983; 

1985b; Hardisky et al., 1984).  Intensive field studies using a combination of time-series AVHRR 

NDVI data and ground-based spectral measurements were used to estimate total biomass production in 

savanna ecosystems (Tucker et al., 1983; 1985b; Hiernaux and Justice, 1986; Prince and Tucker, 1986).  

Results from these studies showed that the cumulative NDVI was linearly related with the total above-

ground dry biomass sampled at the end of the growing season over the Sahelian zone of Africa as 

shown in Figure 3. 

[Insert Figure 3 here: NDVI vs. above ground biomass - Sahel] 

 

3.3 Early Applications of NDVI 

Researchers began to build on these early findings with large-scale studies using coarse-resolution 

AVHRR NDVI data to map regional to continental scale vegetation types (Norwine and Greegor, 1983; 



 

 

Justice et al., 1985; Townshend et al., 1985; 1987; Tucker et al., 1985a; Dyer and Crossley 1986; 

Loveland et al., 1991; Tateishi and Kajiwara, 1992; Eastman and Fulk, 1993; Stone et al., 1994).  These 

studies assumed that mapping the photosynthetic capacity of vegetation would lead to disaggregation 

of the land surface into land cover groupings based on vegetation function.  Pertinent examples of such 

successful studies were: 1) land cover mapping, 2) investigating the relationship between 

photosynthetic capacity and rainfall in semi-arid lands (Figure 4) (Tucker et al.,1991; Nicholson et 

al.,1990), and 3) monitoring ecological conditions favorable for insect and birds in arid and semi-arid 

ecosystems (Tucker et al., 1985c; Hielkema et al.,1986).  These studies led to the first use of AVHRR 

NDVI data in drought and desert locust monitoring through cooperation among NASA GSFC, Food 

and Agricultural Organization (FAO), and the U.S. Agency for International Development (USAID) 

(Tucker, 1996; Hutchinson, 1991). 

[Insert Figure 4 here: NDVI and Rainfall] 

 

4 AVHRR NDVI DROUGHT APPLICATIONS 

The absence of reliable, continuous, and high-density time series of terrestrial weather and climate 

observations for most parts of the world made it difficult to monitor the spatial patterns of drought and 

other climate-related anomalies in the past (Janowiak, 1988; Nicholson, 1989).  The 1983-1985 large-

scale drought that affected the Sahel region of Africa was the signature event that eventually led to the 

use of coarse spatial resolution AVHRR NDVI data for drought monitoring (Figure 5).  

[Insert Figure 5 here: Sahel Drought 1984] 

High temporal resolution data is key factor for drought monitoring in order to capture the frequency of 

rainfall events (Tucker et al., 1986).  During the early 1980s drought, most rainfall data records that 

were available through the World Meteorological Organization (WMO) and national meteorological 

services were compiled as weekly or 10 day cumulative records.  Comparisons with near real-time 

rainfall data could be made by temporally sampling the AVHRR NDVI data to form weekly and 



 

 

dekedal composites for drought monitoring, particularly with regard to agricultural conditions.  Tucker 

et al. (1991) demonstrated that inter-comparisons of extended time series of NDVI data can provide 

useful information for drought monitoring in the Sahel region.  Baseline vegetation conditions for the 

growing season (i.e., July to October) were defined as the mean NDVI calculated over several years, 

and the coefficient of variation in NDVI was used to represent variation between growing seasons.  

Drought and areas of high inter-annual vegetation variability were reflected in the multi-temporal 

AVHRR NDVI datasets, especially in the Sahel between the 1984-1985 drought years and the wet year 

in 1988 (Tucker et al.,1991).  With a baseline established for vegetation (by month or growing season), 

current conditions could be assessed as above, below, or near normal; which is particularly important 

for monitoring agricultural conditions and determining agricultural production estimates.  This was a 

pioneering first step towards using inter-annual and/or anomaly analysis of NDVI for drought 

monitoring of vegetation.  Other related efforts that have applied NDVI for drought monitoring (Gallo, 

1990; Kogan, 1990; 1995; Eidenshink and Hass, 1992; Burgan and Hartford, 1993; Burgan et al., 1996; 

Unganai and Kogan, 1998; among many others).  Several NDVI-based indices developed for 

monitoring drought are discussed in the following section including vegetation condition conveyed by 

remotely sensed land surface temperature (LST). 

 

4.1 Drought monitoring using NDVI 

4.1.1 NDVI Anomalies 

The simplest and most common NDVI-based methods of detecting and mapping drought use NDVI 

anomalies.  Anomalies are calculated as the difference between the NDVI composite value for a 

specified time period (e.g., week, bi-week, or month) and the long-term mean value for that period.  

This isolates the variability in the vegetation signal and establishes a meaningful historical context for 

the current NDVI to determine relative drought severity.  Anyamba and Tucker (2005) found that 

negative NDVI anomalies could identify and map the spatial extent of drought response in vegetation 



 

 

with a baseline period of 20 years for the Sahel region (Figure 5).  Other related studies have 

demonstrated strong relationships on an interannual time scale between NDVI anomalies and El Niño 

Southern Oscillation (ENSO) phenomena for east Africa (Anyamba and Eastman, 1996; Anyamba et 

al., 2001), southern Africa (Verdin et al.,1999; Martiny et al., 2006), southeast U.S. (Mennis, 2001), 

Brazil (Liu and Negron Juarez, 2001; Barbosa et al., 2006), the Northern Hemisphere (Lotsch et al., 

2005), and globally (Myneni et al., 1996; Los et al.,2001).  By understanding the relationship between 

ENSO events and drought occurrence, the dynamics of NDVI anomalies can be used to predict an 

oncoming drought (Liu and Negron Juarez, 2001). 

 

4.1.2 Standardized Vegetation Index (SVI) 

Building on the NDVI anomaly concept, the Standardized Vegetation Index (SVI) developed by Peters 

et al. (2002) describes the probability of variation from normal NDVI over multiple years of data (e.g., 

12 years), on a weekly time step.  The SVI is calculated as a z-score deviation from the mean in units 

of the standard deviation, calculated from the NDVI values for each pixel location of a composite 

period for each year during a given reference period. This is expressed in equation form as:    

i jσ
i ji j k

i j k

N DN D V I
Z

−
=

   (Equation 3) 

where Zijk is the z-score, NDVIijk is the weekly NDVI value, NDVIij is the mean NDVI value, and σij is 

the standard deviation in NDVI for pixel i during week j.  The SVI was found to provide useful 

drought-related vegetation condition information over the U.S. Great Plains in near real-time (Peters et 

al., 2002).  Due to the weekly time step of the SVI maps, this method can capture the rapidly changing 

patterns of drought and its severity during the growing season over a large area. 

 

4.2 Drought monitoring using NDVI and land surface temperature 

4.2.1 Vegetation Condition Index (VCI) 



 

 

Kogan and Sullivan (1993) introduced a vegetation index-based drought metric called the Vegetation 

Condition Index (VCI) and developed a global drought-watch system using this index derived from 

AVHRR smoothed weekly NDVI data.  The VCI is defined as: 

VCI = (NDVI – NDVImin) * 100 / (NDVImax – NDVImin) (Equation 4) 

where NDVI, NDVImax, and NDVImin are values of the smoothed weekly NDVI, and the multiple-year 

NDVI maximum and minimum, respectively. The smoothed weekly data are scaled relative to the 

amplitude of their range at each given pixel location and then linearly scaled with a minimum of 0 and 

maximum of 100.  Low values of VCI indicate poor/stressed vegetation due to unfavorable weather 

conditions, and vice versa. The pixel-based normalization is performed to minimize the effect of 

spurious or short-term signals in the data and to amplify the long-term ecological signal.  In a VCI 

study conducted by Liu and Kogan (1996), both NDVI anomalies and the VCI were shown to be 

correlated with rainfall anomalies. However, VCI was found to be more useful for seasonal and inter-

annual comparisons of drought conditions over the South American continent. A study in India found 

that that the utility of the VCI for drought monitoring was improved when used in conjunction with the 

Temperature Condition Index (TCI) (Singh et al., 2003), which is calculated from AVHRR’s thermal 

channels (10.3-11.3 µm).  The TCI is defined as: 

 TCI= 100(BTmax-BT)/ (BTmax-BTmin)          (Equation 5) 

where BT, BTmax, and BTmin are the smoothed weekly, multiple-year maximum and minimum thermal 

brightness temperatures, respectively.  Liu and Kogan (1996) found that the TCI performed better than 

NDVI and VCI especially in cases where there is excessive soil moisture due to heavy rainfall or 

persistent cloudiness.  Under such conditions, NDVI is depressed and VCI values are low, which can 

be interpreted erroneously as drought. To address the issue of false positives for drought, a third 

Vegetation Condition Index (VHI) was developed by Kogan (1995) combining the VCI and TCI. VHI 

is expressed mathematically as:   

VHI=α*VCI + (1- α)*TCI             (Equation 6) 



 

 

where α is a coefficient determining the relative contribution of the TCI and VCI.  Thus, VHI is a proxy 

characterizing vegetation health by combining estimation of both moisture and thermal conditions.  

Global maps of VCI, TCI, and VHI are routinely produced and distributed by NOAA-NESDIS at 

http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php. 

 

4.2.2 Temperature-NDVI ratio Index 

Another drought index called the Temperature-NDVI ratio was made by integrating land surface 

temperature and NDVI data.  In a study to assess drought impacts over Papua New Guinea, McVicar 

and Bierwirth (2001) developed this drought index as a ratio of LST and NDVI, which they defined as 

Ts/NDVI.  During a large-scale drought in 2007, the integral of this ratio over the period from January 

to December showed a strong positive correlation (r2=0.82) with severe drought conditions in most of 

the provinces experiencing food shortages.  Additionally, the index had an inverse relationship (r2= 

0.81) when plotted against cumulative rainfall from various meteorological stations in areas 

experiencing drought.  The results from the study demonstrated that the composite AVHRR Ts/NDVI 

ratio provides an effective and rapid way to assess drought conditions.  Under conditions of vegetation 

stress, Ts increases due to decreased transpiration rates, while it decreases at high NDVI values because 

of higher transpiration rates associated with increased photosynthetic activity. 

 

4.3 LIMITATIONS OF NDVI AS A DROUGHT MONITORING TOOL 

The studies previously described illustrate the wide range of applications of NDVI and NDVI-thermal 

based indices for drought-monitoring.  They also bring to light some possible limitations and short-

comings of using NDVI, NDVI-derived indices, and combined NDVI-thermal indices for drought 

applications.  Of particular relevance are the limitations of NDVI over dense vegetation canopy areas. 

For example, in areas such as tropical forests and the boreal regions of the northern hemisphere, NDVI 

saturates and the relationship between NDVI and canopy dynamics will break down.  In very wet 



 

 

ecosystems, where soil moisture does not limit vegetation growth, the relationship does not hold at the 

peak of the growing season when NDVI reaches its maxima; although rainfall may still be increasing 

(Nicholson et al., 1990; Baret and Guyot, 1991; Wang et al., 2005).  In such areas, the seasonal 

variation of NDVI is too small to discern significant drought events.  Furthermore, many of these areas 

have persistent cloud cover throughout the year (Holben, 1986; Fensholt et al., 2006), which can lead 

to biases in anomaly analysis; this is because of the limited cloud-free observations available to 

calculate the NDVI and LST long-term means.  

 

In semi-arid areas with sparse vegetation canopies, soil background conditions exert considerable 

influence on partial canopy spectra and the calculated VIs.  Such soil background conditions include 

primary variations associated with the brightness of bare soil and secondary variations associated with 

'color' differences among bare soils, as well as soil-vegetation spectral mixing.  For example, a brighter 

soil background results in higher NDVI values than a dark soil background for the same quantity of 

partial vegetation cover (Huete et al., 1985; Huete, 1988; Huete and Tucker, 1991).  In a study over the 

Sahel, secondary soil variance was responsible for the Saharan desert 'artifact' areas of increased VI 

response in AVHRR NDVI imagery.  Some bare soil areas on the margins of deserts result in high NIR 

reflectance relative to the red reflectance, which artificially enhances the system NDVI.  On the other 

hand, in Negev Desert, high NDVI values are shown to be associated with photosynthetic activity of 

microphytes (lower plants consisting of: mosses, lichens, algae, and cyanobacteria), which cover most 

of the rock and soil surfaces in this semi-arid region (Karnieli, 1996).  Therefore, both soil 

characteristics and reflectance of lower plant communities may lead to misinterpretation of the 

vegetation dynamics and overestimation of ecosystem productivity and drought conditions in some 

semi-arid environments.  

 

Indices that incorporate NDVI and LST, such as VHI and VTCI, rely on a strong inverse relationship 



 

 

between NDVI and LST.  Increasing LST is assumed to negatively impact vegetation vigor and 

consequently cause plant stress.  However, this hypothesis does not hold across all global ecosystems.  

For example, in northern hemisphere and high altitude ecosystems, like Mongolia, where temperature 

is a limiting factor on vegetation growth, a positive correlation is found between these two variables.  

Therefore, neither of the two indices can truly indicate drought in such places (Karnieli et al., 2006; 

2010).  In these ecosystems, warmer temperatures usually mean more favorable rather than adverse 

growing conditions for vegetation.  Furthermore, even in areas where this NDVI-LST relationship is 

assumed to be predominantly positive, it has been shown that the relationship varies with location, 

season, and vegetation type (Lambin and Ehrlich, 1996; Tateishi and Ebata, 2004).  Therefore, the 

application of empirical NDVI-LST based indices such as VHI and VTCI must be restricted to areas 

and periods where negative correlations are observed and not on a global scale (Karnieli et al., 2010). 

 

5. Operational NDVI-Based Drought Monitoring Systems 

Ecosystems such as the grasslands of east Africa, the Sahel, and North America are excellent examples 

of where NDVI can be effectively used to monitor vegetation and drought conditions. This is because 

the phenology of vegetation closely reflects the seasonal cycle of rainfall (Nicholson et al., 1990; 

Justice et al., 1985; Ji and Peters, 2004).  Using this knowledge, a drought-monitoring product was 

prototyped for the central United States. using AVHRR NDVI data as a primary input (Brown et al., 

2002; Brown et al., 2008) with the purpose of providing vegetation-specific drought information.  This 

product, known as the Vegetation Drought Response Index (VegDRI), has since been expanded to 

cover the rest of the continental United States (Wardlow et al., 2009).  VegDRI integrates satellite-

based observations of vegetation (AVHRR NDVI) with climate-based drought indices, as well as other 

biophysical information (such as land use/land cover type, soil characteristics, elevation, and ecological 

conditions). With this data, drought severity maps are produced to indicate any drought-related 

vegetation stress. 



 

 

 

Another drought monitoring risk-based system was developed for East and South East Asia. The 

system analyzes current vegetation conditions (inferred from AVHRR NDVI) and precipitation data by 

comparing 10-day intervals to long-term means, in an effort to detect areas of drought and its effects on 

agriculture (Song et al., 2004).  This and many other national early warning and drought monitoring 

systems (e.g. VegDRI, GIEWS) are based largely upon the pioneering efforts of the USAID to establish 

the Famine Early Warning System Network (FEWS NET) in 1985.  FEWS NET brought together the 

U.S. government agencies NASA, U.S. Geological Survey (USGS), and NOAA to provide technical 

expertise, data (including NDVI), and data systems integration for drought monitoring over Sub-

Saharan Africa. This system has now grown to include Haiti, Central America, and Afghanistan. At the 

global level, the Food and Agriculture Organization (FAO) created the Global Information and Early 

Warning System on Food and Agriculture (GIEWS).  GIEWS relies on FAO’s Africa Real Time 

Environmental Monitoring Information System (ARTEMIS), which has been in existence since 1988.  

ARTEMIS provides analysis of near real-time AVHRR NDVI data and European METEOSAT satellite 

cold cloud duration (CCD) images (as a proxy for rainfall) over Africa every 10 days.  With a historical 

satellite record since 1988, GIEWS analysts can pinpoint areas experiencing anomalously low rainfall.  

Around the world, several national and regional-level drought monitoring centers use NDVI data from 

AVHRR or other satellite systems as major input to their drought monitoring activities. Two such 

examples are 1) the AVHRR NDVI-based greenness products produced operationally for the 

continental U.S. by USGS EROS (http://ivm.cr.usgs.gov/) and 2) Australia’s AVHRR NDVI based 

drought monitoring system (http://www.bom.gov.au/sat/NDVI/NDVI2.shtml). 

 

6 RECENT DEVELOPMENTS IN NDVI ANALYSES 

In earlier studies, a major impediment to using AVHRR NDVI in environmental and drought 

monitoring was the lack of a long-term time series of measurements to establish historically 

http://ivm.cr.usgs.gov/�


 

 

meaningful baselines.  By the early 1990s, a sufficiently long times series (~ 20 years) of NDVI 

observations had been collected for research to start utilizing the dataset for large-scale drought 

monitoring and studying the relationship between vegetation and large-scale climate variability.  Such 

long-term analysis studies have employed time series decomposition techniques such as principal 

component analysis (PCA) (Eastman and Fulk, 1993), which decompose the NDVI image time series 

into various spatial and temporal components (Figure 6).  In general, the first four principal 

components explain most of the variance in the data set and characterize long-term conditions and 

different seasonality regimes.  Lower order components, inter-annual climate events (such as El 

Niño/La Niña- Southern Oscillation), localized patterns, and non-vegetation-related noise from changes 

in different satellite platforms over time (Anyamba and Eastman, 1996). Fourier analysis is another 

decomposition technique that can detect temporal variability patterns by breaking NDVI into phase and 

amplitude components (Azzali and Menenti, 2000). However, Fourier analyses require stationary data, 

whereby statistical parameters describing the data series (such as the mean and variance) do not change 

over space or time.  AVHRR NDVI data series, in particular, do not have these characteristics because 

NDVI is subject to external factors like weather, climate, human influences (land cover 

transformation), which change the nature of its statistics over time. Therefore, applying a Fourier 

transform to non-stationary NDVI time series results in spurious signals. Such signals are not related to 

ecosystem dynamics because the technique assumes harmonic behavior; the results are time-dependent 

periodic signals, each defined by a unique phase and amplitude value.  While regular events such as the 

seasonality of vegetation can be extracted, interannual patterns (and hence long-term trends) like 

drought are not easily resolved.  As a result, the use of Fourier analyses on non-stationary NDVI data 

should be performed with caution, with a focus on extracting patterns of seasonality.  

 

A third technique is anomaly analysis, where departures from a base mean period are used to detect 

periodic temporal patterns in NDVI.  These types of analyses have been used to evaluate the 

http://en.wikipedia.org/wiki/Mean�
http://en.wikipedia.org/wiki/Variance�


 

 

relationships between NDVI anomaly patterns and ENSO in different regions of the world (Anyamba 

and Eastman 1996; Myneni et al., 1996; Anyamba et al., 2002), linking vegetation response to 

variations in large-scale climate mechanisms (see Figure 6 as an example).  The understanding of such 

linkages or teleconnection patterns, especially the driving mechanisms, can be used in predicting areas 

that are likely to be impacted by drought (Verdin et al., 1999; Funk et al., 2008). 

[Insert Figure 6 here: Principal Components Analysis] 

 

Unlike floods, drought is a creeping phenomenon and there are now attempts to use time-integrated 

NDVI data to represent the cumulative aspect of drought. As shown in the example for Australia in 

Figure 7, the impacts of drought (A and B) can be detected as increasing cumulative severity (negative 

NDVI anomalies) through the 2006-2007 growing season. This drought pattern  is a sharp contrast to 

the period of excess moisture or inferred above normal rainfall (C and D) illustrated by the positive 

cumulative NDVI anomaly over the 2008-2009 growing season.  Such comparisons are useful in 

examining drought severity from year to year across different regions and are especially useful in 

drought and agricultural real-time monitoring applications.   

 

These and other studies have not only demonstrated the utility of AVHRR NDVI data in drought 

monitoring and mapping, but also illustrate the contribution that these time-series data have made 

towards a better understanding of the processes that lead to drought and the land-surface response to 

short-term and long-term climate variability. 

[Insert Figure 7 here: Australia] 

  

7 INSTRUMENTAL CHALLENGES AND NEXT GENERATION NDVI SENSORS 

Although the AVHRR NDVI data have provided unprecedented information for drought and 

environmental monitoring, there remain challenges for data usage.  First of all, the AVHRR has a large 



 

 

pixel footprint ranging from 1 to 8-km spatial resolution (8 km for most available global data sets).  

Secondly, the instrument uses wide spectral bandwidths that are subject to atmospheric interference 

(specifically aerosols and water vapor) and are therefore not ideally suited for vegetation monitoring.  

Finally, given that AVHRR is an optical sensor, there remain major cloud contamination problems 

globally, especially in the tropical regions (Holben, 1986; Fensholt et al., 2009).  For most areas of the 

world, the growing season is persistently cloudy with cloud cover present 30% or more of the time.  As 

a result, it is not possible to monitor the dynamics of land-surface conditions at a high temporal 

frequency in such areas.   

Presently, NDVI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board 

NASA’s Terra (AM) and Aqua (PM) are now available and widely used in drought monitoring and 

agricultural applications (Becker-Reshef et al., 2010; Pittman et al., 2010; Gu et al., 2008).  MODIS 

offers a generational improvement over AVHRR.  The narrower spectral band widths for the ‘red’ band 

(band 1: 620-670nm), increase chlorophyll sensitivity, and the near infrared band (band 2: 841-876nm) 

has less water vapor absorption, which are marked advancements over AVHRR.  Coupled with state-of-

art atmospheric correction techniques, the MODIS spectral bands offer improved sensitivity to 

vegetation conditions/changes and provide data at several temporal (8, 16, and 32 days) and spatial 

(250-, 500-, and 1000-m ) resolutions (Huete et al., 2002; Justice and Townshend, 2002).  However, 

even with these improvements, cloud cover is still an impediment in some areas. Currently, there are 

various attempts to employ data from the geostationary Meteosat Second Generation (MSG) satellite to 

fill coverage gaps (Fensholt et al., 2006a), and to exploit radar/microwave systems (uninhibited by 

clouds) for alternative remote sensing observations of land surface conditions.  The MSG can provide 

cloud-free imagery over cloud -contaminated areas in the tropics with a composite period less than 5 

days due to high frequency imaging of the instrument (every 15 minutes) and therefore, cloud-free 

NDVI can be generated over areas with persistent cloud cover (e.g., West Africa) during the growing 

season (Fensholt et al., 2006b).  Radar also provides cloud-free imaging capabilities that can be 



 

 

particularly useful in studying vegetation dynamics of northern dense canopy forests (Ranson and Sun, 

1994) and the Amazon (Hess et al., 1995).  Some studies have begun to investigate the use of these data 

for drought and vegetation monitoring in a research mode, but have yet to transition the data and 

techniques to operational production and application.  Another method of cloud screening uses Fourier 

analysis and empirical mode decomposition to derive cloud-free NDVI data by approximating NDVI 

values of cloudy pixels (Roerink et al., 2000; Pinzon et al., 2005).  However, such techniques are better 

suited to long time-series research data sets than for real-time operational applications; because they 

require intensive analysis of baseline data for processing a corrected data set. 

 

Another challenge is the inter-satellite instrument calibration among the series of AVHRR instruments 

that have been used over the past 29+ years to develop a historical NDVI time series.  On average, the 

AVHRR sensors have a lifespan of 5 years (see Figure 8, Table 2).  Therefore, the existing long-term 

NDVI dataset is made of a compilation of observations from several different AVHRR instruments with 

different calibration characteristics.  The orbital decay and inter-sensor differences between these 

instruments introduces bias in the derived NDVI time series, which must be compensated for in order 

to develop a long-term data set appropriate for environmental monitoring.  There have been several 

attempts to produce a coherent long-term NDVI time-series, including the GIMMS NDVI version g 

dataset (Tucker et al., 2005; Pinzon et al., 2005) (shown in Figure 8), and the Long-Term Data Records 

(LTDR) project (Pedelty et al., 2007).  Biases that emerge in using AVHRR instruments from the 

different sensing platforms are apparent in Figure 8 for two different land surfaces: the desert of the 

semi-arid Sahel and Congo forest.  Following the uncorrected data series, the discontinuities or 

dramatic step-change (decrease or increase) in the NDVI time series at different points in time (e.g. 

1984, 1988, and 1995)  indicate the change from one AVHRR instrument to another.  Each instrument 

has slightly different calibration characteristics; once in orbit it usually takes a couple months for a 

given instrument to be tested and cleared for operational use.  Over time, the AVHRR is subject to 



 

 

orbital drift (e.g. 1992 to 1994 Congo forest site) and hence, the degradation of sensor performance.  

 

The GIMMS and LTDR data sets are attempts to remove and correct the effects of  the aforementioned 

factors by creating a standardized and coherent time series, as shown in Figure 8.  Using the lessons 

learned from MODIS (i.e., processing techniques, calibration, atmospheric correction, and directional 

effect determination), the LTDR Project applies these methods to the overlapping AVHRR and MODIS 

periods.  The results gleaned from the overlap period are then applied to the AVHRR data preceding the 

MODIS instrument, to produce higher quality AVHRR data products.  However, these datasets are 

more appropriate for historical, retrospective studies rather than near real-time operational activities 

(such as drought monitoring) because of the 1- to 3-year time lag between data updates. 

[Insert Figure 8 here: EMD Correction Time Series Sahel and Congo Forest] 

 Although e MODIS data is available, delays in data processing render them inadequate for real time 

drought monitoring.  MODIS is classified as a science mission and therefore its data processing chain 

was not designed for operational use.  To help overcome this problem, the Land Atmosphere Near real-

time Capability for EOS (LANCE) is providing near real-time (<less than 3 hours from observation) 

access to processed products such “eMODIS” from the U.S. Geological Survey (USGS) Earth 

Resources Observation and Science (EROS) Center that is used for drought monitoring (VegDRI: 

http://drought.unl.edu/vegdri/VegDRI_Main.htm)  by FEWS and for VegDRI.  In addition, MODIS 

data from LANCE is utilized for forest threat early warning (USFS Eastern Forest Environmental 

Threat Assessment Center: http://www.forestthreats.org/), and Global Land Agricultural Monitoring 

(GLAM: http://www.pecad.fas.usda.gov/glam.cfm), which is a joint project between GSFC and USDA 

Foreign Agricultural Service (FAS) to monitor global agricultural conditions. 

 

8 CONCLUSIONS AND THE FUTURE 

The AVHRR instrument was originally designed solely for meteorological applications.  A significant 
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and unintended use for this data has been land-surface monitoring through use of the NDVI.  The 

AVHRR NDVI dataset from July 1981 to present has created a record of land-surface conditions that 

has never been available before to the scientific and environmental monitoring communities.  As 

illustrated by the many examples in this chapter, and this book as a whole, these data will continue to 

be important to a wide range of users including the drought monitoring community.  In the short-term, 

there will be continued availability of NDVI data from the NOAA series of satellites (NOAA-18 and 

NOAA-19) and the Meteorological Operational polar-orbiting satellite (MetOp) AVHRR series from 

the European community that also fly AVHRR instruments.  In addition, the availability of data for 

since 2001 from MODIS has ensured that there is a redundancy in NDVI data availability.  

Additionally, MODIS provides a more spatially detailed global record of NDVI observations (250- and 

500-m). These observations are better suited for a full suite of applications that require more landscape-

level observations than the AVHRR 1-km/8-km data could provide.  The follow-on satellites in the 

Joint Polar Satellite System (JPSS) with the Visible/Infrared Imager Radiometer Suite (VIIRS) 

instruments (scheduled to launch in December 2011) will guarantee that the history of coarse- to 

medium-scale global remote sensing data will continue to be available to support operational activities 

such as drought monitoring.  However, commitments by governments and space agencies to continue 

these missions into the future, and lessen the turn-around time between science missions to applications 

are of paramount importance to the drought monitoring community and other societal applications. 
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Figure captions 



 

 

Figure 1. Spectral response curve of vegetation and the relative spectral response of LANDSAT and 

AVHRR bands in the visible and infrared portions of the electromagnetic spectrum. This characteristic 

response pattern of vegetation has defined the design of remote sensing instruments and the derivation 

of various metrics for vegetation monitoring.  The AVHHR’s wide spectral band widths are subject to 

atmospheric interference (specifically aerosols and water vapor). 

 

Figure 2. Example of monthly NDVI time series data for Africa and the Middle East for a year. In 

general, areas of high NDVI or high vegetation density are represented in shades of green while areas 

of low NDVI/low vegetation density such as semi arid lands and Sahara and Arabian Deserts are show 

is shades of yellow to brown. The patterns change seasonally from January through December. Data 

produced by GIMMS Group at NASA/GSFC. 

 

Figure 3. Summary figure for the NOAA AVHRR 1-km NDVI-Sahelian biomass relationship from 

1981-1988. The figure represents the specific comparisons between ground sampled above ground total 

dry herbaceous biomass sampled at the end of the growing season and integrated NDVI data from the 

same growing season for these specific locations. From Prince (1991): [biomass (kg/ha) = -

86+114*ndvi-days; Confidence Intervals: @3 ndvi-days, +/-61 kg/ha; @10 ndvi-days, +/-51 kg/ha). 

Source: Adapted from C.J. Tucker, History of the Use of AVHRR Data for Land Applications, in 

Advances in the Use of NOAA AVHRR Data for Land Applications (Dordrecht: Kluwer Academic 

Publishers, 1996), 1-19. 

 

Figure 4. Comparison between average precipitation from 1982 to 1987 for 1794 stations from West 

Africa and coincident normalized difference vegetation index. Source: Data updated and adapted from 

C.J. Tucker, History of the Use of AVHRR Data for Land Applications, in Advances in the Use of 

NOAA AVHRR Data for Land Applications (Dordrecht: Kluwer Academic Publishers, 1996), 1-19. 



 

 

 

Figure 5. Growing season (July to October) NDVI anomaly for the Sahel region showing the large 

areal extent of the Sahelian the drought in 1984. Before AVHRR NDVI data became available, such 

regional to continental mapping of drought extent and patterns was not possible. Source: Adapted from 

A. Anyamba and C.J. Tucker, “Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI 

data from 1981-2003,” J Arid Environ, (2005) 63: 596-614. 

 

Figure 6.  Principal components analysis results of monthly NDVI anomaly time series for Southern 

Africa for the period 1986-1990 showing the drought spatial pattern in (a) and the associated temporal 

loadings in (b).  This component accounts for 9.73% of the total variance of the anomaly time series. 

The temporal loadings (B) represent the correlation between each image in the time series with the 

component spatial pattern in (A). The component loadings show a positive correlation with the drought 

(negative) spatial component pattern in (A) between late 1986 and late 1987 and negative correlation 

(wetter or greener than normal conditions) between 1988 and 1990 with the spatial component pattern 

(A). This component patterm is related interannual variability rainfall associated with El Niño/La Niña-

Southern Oscillation (ENSO) phenomenon. The temporal loadings are highly correlated (r = 0.80) with 

ENSO is represented by the Oceanic Nino Index (ONI). Reconstructed after Anyamba and Eastman 

(1996). 

 

Figure 7. Cumulative NDVI anomalies (CVI) for Australia showing the cumulative nature of drought 

from December 2006 to 2007 (A) and the wetter/greener-than-normal conditions from December 2008 

to February 2009 (C). Cumulative time series profiles of a drought location are shown in (B) and a wet 

location in (C). 

 

Figure 8. Uncorrected (dotted line) and corrected (thick line) NDVI time series data plots for a Sahel 



 

 

site and Congo Forest site. The empirical mode decomposition (EMD) method was applied to the 

original NDVI data (un-corrected) and eliminates satellite discontinuities for example in 1984, 1988, 

1994 and spurious trends (Pinzon et al., 2005). 

 


