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A MINIMUM ∆V ORBIT MAINTENANCE STRATEGY FOR
LOW-ALTITUDE MISSIONS USING BURN PARAMETER

OPTIMIZATION

Aaron J. Brown∗

Orbit maintenance is the series of burns performed during a mission to ensure the
orbit satisfies mission constraints. Low-altitude missions often require non-trivial
orbit maintenance ∆V due to sizable orbital perturbations and minimum altitude
thresholds. A strategy is presented for minimizing this ∆V using impulsive burn
parameter optimization. An initial estimate for the burn parameters is generated
by considering a feasible solution to the orbit maintenance problem. An low-
lunar orbit example demonstrates the ∆V savings from the feasible solution to
the optimal solution. The strategy’s extensibility to more complex missions is
discussed, as well as the limitations of its use.

INTRODUCTION

“Orbit maintenance,” as discussed in this paper, refers to the series of burns that must be per-
formed during a mission to ensure the vehicle’s orbit satisfies all mission constraints. An orbit
maintenance strategy is often devised pre-mission to meet these constraints and dictate exactly what
burns are needed. The problem of determining an appropriate orbit maintenance strategy is cer-
tainly not new, as almost any mission orbiting close to its central body has grappled with this ques-
tion. Such missions include the International Space Station (formerly Space Station Freedom),1

TOPEX/Poseidon,2 the Lunar Reconnaissance Orbiter (LRO),3 and the Mars Reconnaissance Or-
biter (MRO).4

Low-altitude missions in particular often require non-trivial orbit maintenance ∆V due to sizable
orbital perturbations and their proximities to minimum altitude thresholds. These perturbations
come from non-spherical mass distributions in the central body, third-body effects, and atmospheric
drag (when applicable). Minimizing the ∆V spent on orbit maintenance while meeting mission
constraints is clearly desirable for mission planning purposes. This paper presents a strategy for
accomplishing these goals using impulsive burn parameter optimization.

Like the orbit maintenance problem, trajectory optimization problems such as minimum fuel
or minimum time orbit transfers are not new, and have been solved for decades using parameter
optimization. This study aims to bring the realms of orbit maintenance and parameter optimization
together in an effort to generate an optimal solution to the orbit maintenance problem. While this
approach can be taken for any mission in orbit about its central body, this paper will focus on
low-altitude missions because of their potentially high orbit maintenance costs.

∗Aerospace Engineer, Flight Dynamics Division, NASA Johnson Space Center, Mail Code DM34, 2101 NASA Parkway,
Houston, TX 77058.
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A low-lunar orbit example with simple mission constraints is used to demonstrate the strategy’s
effectiveness. In principle, this strategy is extensible to missions such as LRO that have more
complex mission constraints. In the following sections, vectors are denoted in bold and scalars in
italics.

ASSUMPTIONS AND EQUATIONS OF MOTION

For this analysis, a low-altitude mission is assumed in which the initial orbit conditions of the
vehicle are specified. The mission constraints under consideration include final orbit conditions
(i.e. endpoint equality constraints), and a constant minimum altitude threshold (i.e. a path inequality
constraint). Figure 1 provides an abstract representation of the mission.
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Figure 1. Abstract Representation of a Low-Altitude Mission

The equations of motion are

r̈ = − µ
r3

r + f (1)

where r is the position, µ is the gravitational constant, and f = f(r, ṙ, t) is the perturbing acceleration
on the vehicle.

DEFINING BURN PARAMETERS AND GENERATING INITIAL ESTIMATES

For low-altitude missions constrained only by a minimum altitude threshold, a standard orbit
maintenance strategy (henceforth called the “standard strategy”) can be applied in order to both de-
fine the burn parameters to be optimized and to generate their initial estimates. If the vehicle’s orbit
is perturbed by non-spherical gravity, drag, or some other force, it’s periapse will tend to decrease
over time. Depending on the vehicle’s initial conditions and the minimum altitude threshold, the
periapse may violate this threshold (and the vehicle may even impact the surface) before possibly
trending positive (say, in the case of non-spherical gravity). In the standard strategy, when the next
periapse is predicted to drop below the minimum altitude threshold, an impulsive, horizontal burn is
performed at the apoapse immediately prior in order to raise periapse back to a specified reference
altitude. This procedure is repeated as necessary over the course of the mission. Each time the next
periapse is predicted to violate the minimum altitude threshold, periapse is boosted to the reference
altitude. This periapse-raising “phase” constitutes Part I of the standard strategy.

In general, the final state at the end of the periapse-raising phase will not meet the final orbit
conditions. In Part II of the standard strategy, a minimum-∆V two-burn impulsive transfer is per-
formed to meet these constraints. This transfer is accomplished by solving a separate parameter
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optimization sub-problem in which the parameters are the times of ignition (TIGs) and ∆V com-
ponents (∆Vx, ∆Vy, ∆Vz) of the two impulses, along with the transfer time between the initial
and final orbits. The “initial” orbit for this sub-problem is given by the final state at the end of the
periapse-raising phase, and the “final” orbit is defined by the final orbit conditions. The transfer
orbit is constrained to depart from the “initial” orbit any time after the end of the periapse-raising
phase. Ocampo5 provides several approaches to solving this sub-problem. In summary, the process
of raising periapse to the reference altitude (Part I) followed by a final two-burn orbit transfer (Part
II) constitute the standard strategy.

Following the optimized two-burn transfer, the TIGs and ∆V components of all impulsive burns
performed in the standard strategy become the parameters (X) for a larger burn optimization prob-
lem. The parameter values resulting from the standard strategy are used for the initial estimates
(X0). The standard strategy also provides a baseline value of the objective function, which is the
sum of the impulsive ∆V magnitudes throughout the mission. Qualitatively then, the objective
function tells us how much ∆V was required to “fly” a given strategy, i.e. to maintain the orbit and
not violate any mission constraints.

To illustrate the standard strategy, consider a hypothetical spacecraft in a low-altitude orbit around
the Moon. The vehicle starts in a 100 km altitude, circular, polar orbit, and must return to those same
conditions after completing a 60-day mission. These conditions are listed in Table 1 and constitute
the first case study (Case 1). A variation on these conditions will be examined later in Case 2.
During the mission, the vehicle must stay above a minimum altitude threshold of 80 km.

A realistic application of the Case 1 conditions would be a crewed mission to the Moon to ex-
amine a polar landing site.6 The vehicle would stay in a low-altitude orbit while a surface module
would land at the site and commence extended surface operations. The vehicle is required to stay
in a low-altitude orbit in order to support surface aborts (if necessary) but also must stay above the
minimum altitude threshold. At the conclusion of surface operations, the vehicle would perform a
two-burn orbit transfer to prepare for ascent and rendezvous of the surface module.

Table 1. Low Lunar Orbit Initial and Final Conditions - Case 1
Element Initial Condition Final Condition
h (km) 100 100
e 0 0
i (deg) 90 90
Ω (deg) 0 –
ω (deg) 0 –
ν (deg) 0 –

The only orbital perturbation considered in this study is non-spherical lunar gravity, modeled
using LP150Q truncated to degree and order 8. The equations of motion are propagated using an
Encke formulation and a modified Nyström numerical integrator.7 During propagation, semi-major
axis altitude, periapse altitude, apoapse altitude, eccentricity, and inclination are sampled at each
periapse (i.e. ν = 0) and are plotted in Figures 2 through 4. Note in Figures 2 and 3 that the
effects of the two interior periapse-raising burns are clearly visible at approximately 28 and 55
days, respectively. As expected however, these effects are not visible in Figure 4 since these two
burns are not designed to change inclination.

The standard strategy presents a very feasible solution to this orbit maintenance problem. More-
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over, the solution seems not only feasible, but potentially optimal on its own. Each periapse-raising
burn is performed horizontally and at apoapse, which minimizes the ∆V needed to raise periapse
back to the reference altitude. Additionally, the final two-burn transfer has been optimized to provide
at least a locally minimal ∆V solution. Summing these ∆V magnitudes together would seemingly
provide a minimum or near-minimum orbit maintenance ∆V cost over the entire mission.

Further analysis, however, demonstrates that the orbit maintenance ∆V can be reduced by solving
a larger optimization problem that optimizes all burns simultaneously using the standard strategy as
a starting point, rather than burn-by-burn using the standard strategy alone.

PROBLEM STATEMENT

The larger optimization problem to be solved can be stated as follows. Minimize

J(X) =

N∑
k=1

∆Vk (2)

subject to

ceq(rf , ṙf ) = 0 (3)

h(t) ≥ hmin (4)

The equations of motion are given in Eq. (1), and t0, tf , r0, ṙ0 are specified. In Eq. (2), N is the
number of impulsive burns as determined by the standard strategy. As mentioned previously, this
problem can be parameterized using the TIGs and ∆V components of these burns. The parameter
vector X is therefore

X =
(
t1 ∆V1 t2 ∆V2 · · · tN ∆VN

)T
. (5)

Note in Eq. (5) that ∆V1, . . . ,∆VN are vectors and not scalars. ceq in Eq. (3) are the final
orbit conditions (i.e. endpoint equality constraints). These can include final orbital elements to be
targeted or other functions of the final position and velocity. Eq. (4) is the path inequality constraint
for the constant minimum altitude threshold, hmin.

To work within the context of a parameter optimization problem, the path inequality constraint
is converted to an interior point inequality constraint that is imposed at the periapse preceding each
burn. Recall that in the standard strategy, an impulsive burn is only executed when the altitude of the
next periapse is predicted to drop below the minimum altitude threshold. Therefore in the standard
strategy, the altitude of the periapse preceding the burn will represent the lowest altitude point along
the path, since this was the point just prior to the violation (had no burn been performed). If the
inequality constraint is met at each such point, then in general it will be met along the entire path.∗

Thus Eq. (4) is equivalent to
∗Isolated points may exist along the trajectory in which periapse comes very close to, but does not violate the minimum

altitude threshold. In these cases, the standard strategy dictates that no burn is performed since the threshold was not
violated. In the subsequent optimization, however, the components of one or more burns preceding these points may
change, and ultimately cause these points to now violate the threshold. No inequality constraints however will exist
at these points to protect against this violation, since there were no burns in the standard strategy to “trigger” these
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cineq =


hmin − hp1
hmin − hp2

...
hmin − hpN

 ≤ 0 (6)

where hpk is the altitude of the periapse preceding burn k.

Since J is an explicit function of X, the gradient of J is straightforward.

(
∂J

∂X

)T

=

(
0

∆VT
1

∆V1
0

∆VT
2

∆V2
· · · 0

∆VT
N

∆VN

)T

. (7)

If ∆Vk = 0, then the gradient is simply 0 for burn k. In contrast to J , the gradient of c (i.e. (∂c/∂X)T),
where c =

(
cT
eq cT

ineq

)T
, is not an explicit function of X and must be approximated using finite

differences or other comparable method.

Finally, suitable scale factors S are chosen for X, J , and c to aid convergence in the optimization
process. For each element i of X, for J, and for each element j of c, define

Xiscl =
Xi

SXi

, Jscl =
J

SJ
, cjscl =

cj
Scj

(8)

so that Xscl, Jscl, and cscl become the “scaled” versions of X, J , and c, respectively. SX, SJ , and
Sc are then chosen so that each scaled gradient

∂Jscl
∂Xiscl

=
∂J

∂Xi

SXi

SJ
,

∂cjscl
∂Xiscl

=
∂cj
∂Xi

SXi

Scj
(9)

when evaluated at t0 has an order of magnitude as close to±1 as possible. This ensures that changes
in J and c will not be too steep (i.e. sensitive) nor too shallow (i.e. insensitive) as the optimizer
varies X.

SOLUTION AND RESULTS

The optimization problem is solved using a sequential quadratic programming (SQP) algorithm
implemented in MATLAB’s fmincon function. The implementation is based on Chapter 18 of No-
cedal and Wright.8 At the solution point, fmincon returns the final parameter estimates, Xf . Evi-
dence that the solution is in fact a local minimum can be found in Figure 5, which plots the objective
function history for Case 1.

Further evidence can be obtained by examining the first differential necessary conditions for a min-
imum. Let νeq and νineq be the vectors of Lagrange multipliers associated with the equality and
inequality constraints, respectively. An auxiliary Lagrangian function is then given by

L(X,ν) = J(X) + νTeqceq + νTineqcineq. (10)

constraints. To work around these isolated cases, it is sufficient to note where they exist in the standard strategy, and
then to generate the optimal solution. If any of these points (that did not violate the threshold in the standard strategy)
now violate the threshold in the optimal solution, inequality constraints can be manually added to cineq and the optimal
solution can be re-generated. In the new solution, these points will no longer violate the minimum altitude threshold.
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Figure 5. Objective Value vs. Iteration - Case 1

With this definition, the first differential necessary conditions for a minimum are(
∂L

∂X

)T

= 0 (11)

ceq = 0 (12)

cineq ≤ 0 (13)

νineq ≥ 0 (14)

Though not shown here, these conditions are met to within the algorithm’s tolerances at the solution
point.

The initial and final parameter estimates (X0 and Xf ) and ∆V magnitudes for the periapse-raising
burns and the final orbit transfer burns for Case 1 are given in Tables 2 and 3. In these tables, the ∆V
components are expressed in a Local Vertical Local Horizontal (LVLH) coordinate system in which
the Y axis points opposite the angular momentum vector, the Z axis points nadir, and the X axis
completes the right-handed system. Semi-major axis altitude, periapse altitude, apoapse altitude,
eccentricity, and inclination using both the standard strategy and parameter optimization for Case
1 are plotted in Figures 6 through 8. As shown in Figure 6, using parameter optimization with the
standard strategy as a starting point reduces the orbit maintenance ∆V in Case 1 from 32.240 m/s
to 27.028 m/s, reflecting a 16% savings over using the standard strategy alone.

The data suggest that the optimizer realized these savings through three primary adjustments.

1. Out-of-plane ∆V (i.e. ∆Vy) was added to Burns 1 and 2 in order to adjust the inclination
downstream and reduce the out-of-plane ∆V required in Burn 4.

2. Burn 3 was almost completed eliminated.
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3. ∆Vx was subtracted from Burn 2. This adjusted the periapse altitude downstream such that
no periapse correction was necessary to meet the final constraints.

Table 2. Initial Parameter Estimates (X0) and ∆V Magnitudes - Case 1

Burn # Ignition (days) ∆Vx (m/s) ∆Vy (m/s) ∆Vz (m/s) |∆V| (m/s)
1 27.723 4.393 0 0 4.393
2 55.670 4.359 0 0 4.359
3 60.078 −0.736 −2.133 −0.123 2.260
4 60.118 −7.958 19.652 1.047 21.228

Table 3. Final Parameter Estimates (Xf ) and ∆V Magnitudes - Case 1

Burn # Ignition (days) ∆Vx (m/s) ∆Vy (m/s) ∆Vz (m/s) |∆V| (m/s)
1 27.724 4.321 −6.318 −0.465 7.668
2 55.669 3.568 −5.192 −0.575 6.326
3 60.067 5.051e−5 −5.807e−5 −1.423e−5 7.826e−5

4 60.107 −7.742 10.444 0.924 13.034

This example is now repeated with slightly different initial and final conditions, as listed in Table 4
(Case 2). In this second case, the vehicle starts in a 100 km altitude, circular, 45◦ inclined orbit.
After the 60-day mission, the vehicle must return to a 100 km altitude circular orbit, but now must
meet a constraint on the right ascension of the ascending node (Ω) instead of inclination.

Table 4. Low Lunar Orbit Initial and Final Conditions - Case 2
Element Initial Condition Final Condition
h (km) 100 100
e 0 0
i (deg) 45 –
Ω (deg) 0 240
ω (deg) 0 –
ν (deg) 0 –

As before, the optimization problem is solved using fmincon. The initial and final parameter
estimates (X0 and Xf ) and ∆V magnitudes for Case 2 are given in Tables 5 and 6. Semi-major
axis altitude, periapse altitude, apoapse altitude, eccentricity, and Ω using both the standard strategy
and parameter optimization for Case 2 are plotted in Figures 9 through 11. Note in this case that
the standard strategy dictates seven burns instead of four, and that the optimized burns result in a
noticeably different trajectory than the standard strategy burns. This is most apparent in Figures 9
and 10. Using parameter optimization in Case 2 reduces the orbit maintenance ∆V by 32% from
131.228 m/s to 89.810 m/s.

EXTENSIBILITY TO COMPLEX MISSIONS

The low-lunar orbit example shows this approach to be effective for missions with simple con-
straints. It may also benefit missions with more complex constraints such as LRO. The standard
strategy, or stationkeeping algorithm chosen for LRO must meet five constraints:
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Table 5. Initial Parameter Estimates (X0) and ∆V Magnitudes - Case 2

Burn # Ignition (days) ∆Vx (m/s) ∆Vy (m/s) ∆Vz (m/s) |∆V| (m/s)
1 4.492 4.493 0 0 4.493
2 9.361 4.247 0 0 4.247
3 30.378 4.446 0 0 4.446
4 35.738 4.195 0 0 4.195
5 56.835 4.420 0 0 4.420
6 60.085 0.583 −84.592 −4.103 84.694
7 60.110 −23.607 7.126 1.918 24.734

Table 6. Final Parameter Estimates (Xf ) and ∆V Magnitudes - Case 2

Burn # Ignition (days) ∆Vx (m/s) ∆Vy (m/s) ∆Vz (m/s) |∆V| (m/s)
1 4.508 3.532 −36.650 −21.799 42.789
2 9.334 5.105 8.562 5.415 11.344
3 30.388 4.449 −1.942 −1.029 4.962
4 35.746 0.648 −0.006 0.026 0.648
5 56.736 5.933 −4.359 −1.916 7.608
6 60.000 −1.001 0.527 0.229 1.154
7 60.000 −18.477 9.828 3.990 21.305

1. Maintain ground station contact during stationkeeping maneuvers.

2. Control altitude to within 20 km of the mean 50 km altitude.

3. Control periselene to spend at least 48% of the time in each of the northern and southern
hemispheres.

4. Match orbit eccentricity at the beginning and the end of each lunar siderial period.

5. Minimize stationkeeping ∆V.

In the analysis for LRO, four different stationkeeping options were proposed that meet the first
four constraints. Two of the options were eliminated by the fifth constraint, with the remaining
two having nearly identical ∆V costs. The option with the smaller altitude variation during each
siderial period was chosen as the final stationkeeping algorithm. When simulated, the vehicle coasts
through a full siderial period, and then performs a pair of stationkeeping maneuvers to rotate the
line of apsides and reset the eccentricity (e) vs. argument of periapse (ω) pattern. 10.81 m/s of ∆V
per siderial period are required for the stationkeeping maneuvers.

Though a detailed analysis is not addressed in this paper, the mapping from the simple low-lunar
orbit mission to the more complex LRO mission is clear. The stationkeeping algorithm chosen for
LRO can be used to determine the burns needed over the course of the mission, which then form the
initial estimate of the burn parameters. The burns can then be optimized to reduce stationkeeping
∆V, subject to the first four LRO constraints.
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APPROACH LIMITATIONS

While burn parameter optimization can be used to reduce orbit maintenance ∆V, there are lim-
itations to this approach. First, employing an SQP algorithm or other line-search technique will
yield only locally optimal solutions. The solutions will be local to the initial estimate of the burn
parameters, which in this case is defined by the standard strategy. These solutions may or may not
be globally optimal, which can only be determined using global optimization techniques such as
genetic algorithms. Such analysis is beyond the scope of this paper.

Second, the standard strategy itself represents only one approach to generating an initial estimate.
Myriad other equally valid approaches exist, such as performing smaller but more frequent burns
throughout the mission. A related variant would be to choose a different and potentially time-
varying reference altitude for the periapse-raising burns. Finally, burns could be executed based on
other criteria, and not solely on violations of the minimum altitude threshold. A separate analysis
(also beyond the scope of this paper) would be required to determine the best (or at least a better)
approach to generating an initial estimate.

Third, this approach works well as long as the total number of burns is relatively small. Each
time a new burn added, the parameter set grows by four (t, ∆Vx, ∆Vy, ∆Vz), and finite differ-
ence gradient computations become more expensive. In Case 1 of the low-lunar orbit example, the
gradient of c is a (16 x 7) matrix (16 parameters, 4 path inequality constraints, and 3 endpoint equal-
ity constraints) and is relatively inexpensive to evaluate. If there were, say, 50 burns, the gradient
matrix would be (200 x 53) (200 parameters, 50 path inequality constraints, and 3 endpoint equality
constraints), and would be more expensive to evaluate.

CONCLUSIONS

This study presented a strategy for obtaining a minimum ∆V solution to the orbit maintenance
problem using burn parameter optimization. This strategy is well-suited for low-altitude missions
in particular given their potentially high ∆V costs for orbit maintenance. Two variations of a low-
lunar orbit example were analyzed using this strategy. Orbit maintenance ∆V was reduced by 16%
in the first case, and 32% in the second case over using a standard strategy alone.

The general approach for a given mission is to use a pre-existing orbit maintenance strategy to
generate an initial estimate of the burn parameters and a baseline ∆V cost. The burn parameters
(X) are then fed into a parameter optimization algorithm that varies X to minimize the total orbit
maintenance ∆V while meeting mission constraints. Upon convergence, the final estimate of the
burn parameters provides at least a locally optimal solution to the orbit maintenance problem.

Though not analyzed here, in principle this approach can be applied to more complex missions
such as LRO. It is not without limitations however, as the standard strategy provides only one
approach to generating an initial estimate of the burn parameters. Furthermore, as the number of
burns to be optimized increases, the approach becomes more computationally expensive.
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Introduction

• Orbit Maintenance is the series of burns 
performed during a mission to ensure the 
orbit satisfies mission constraints.

• Low-altitude missions often need non-trivial 
orbit maintenance ΔV due to perturbations 
and minimum-altitude thresholds.

• Goal is to minimize orbit maintenance ΔV 
using burn parameter optimization
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The Big (Abstract) Picture
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Standard Strategy – Part I
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• Use a standard orbit maintenance strategy to 
define burn parameters and generate initial 
estimates.

• Propagate until periapse drops below the 
minimum altitude.

• Perform a horizontal burn at the prior apoapse in 
order to raise periapse.

• Repeat as necessary over the course of the 
mission.



Standard Strategy – Part II
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• Periapse-raising alone will not meet final orbit 
conditions.

• After periapse-raising phase, perform a 
separate, minimum ΔV two-burn impulsive 
transfer to meet final conditions.



Example:  Low Lunar Orbit – Case 1

• Minimum altitude = 80 km
• 60-day mission



Parameter Optimization
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• Standard strategy is not only feasible, but 
potentially optimal on its own.

• But…we can do better using parameter 
optimization.

• Use ignition times and ΔV components of all 
standard strategy burns as parameters (X) for 
the main optimization problem.



Problem Statement
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Minimize

Subject to

•
• N is the number of impulsive burns
• are specified

 

J(X) =  ∆Vk
k =1

N

∑

 

ceq (r f ,Ý r f ) = 0
h(t) ≥ hmin

 

t0, t f , r0, Ý r 0
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X =  t1 ∆V1 t2 ∆V2 L tN ∆VN( )



Problem Statement, cont.

• Convert minimum altitude path constraint to 
point constraint at periapse prior to each burn. 
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Problem Statement, cont.

• Gradient of J is straight-forward 

• Gradients of ceq and cineq must be 

approximated (finite differences, etc.)
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Solution and Results – Case 1

• Using parameter optimization reduced orbit 
maintenance ΔV from 32.240 m/s to 27.028   
m/s -- a 16% savings over using the standard 
strategy alone.

AAS 11-635 / Aaron J. Brown 11





Example:  Low Lunar Orbit – Case 2

• Minimum altitude = 80 km

• 60-day mission
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Solution and Results – Case 2

• Using parameter optimization reduced orbit 
maintenance ΔV from 131.228 m/s to 89.810   
m/s -- a 32% savings over using the standard 
strategy alone.
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