The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

Richard D. Neumann
Delma C. Freeman

Presented By
Del Freeman

Thermal & Fluids Analysis Workshop
TFAWS 2011
August 15-19, 2011
NASA Langley Research Center
Newport News, VA
Legacy Heating Data: NASA TND-1372, Circa 1962

Flat Plate Recovery Temperature Compared to Theory

Corrected Heating Data Compared to Theory

TFAWS 2011 – August 15-19, 2011
In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities.

This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.
The Current Protuberance Heating Experiment

Overall View of Test Article

Protuberance Models Tested

1. Effect of change in Height/BLT ratio – Forward Steps
2. Effect of Edge Shape/Width Change
3. Effect of Width Change
4. Effect of Change in height/BLT ratio on cylindrical protuberances
A thermal pulse is introduced by bypassing the tunnel heat exchanger and increasing the test section pressure.

Two types of data are generated:
1. Recovery temperature for the initial 4 seconds
2. Heat transfer data at the time of maximum difference between total temperature and wall temperature

Data fusion allows the construction of the heat transfer coefficients.
Reference Data Using IR and Thin Film Measurements

Contour Map Showing the Reference Location

IR and Thin Film Data Obtained at Mach 3.51
Recovery Temperature

Overall View of Recovery Temperature

View Focused on the Separation Region Ahead of the Protuberance

Adiabatic Wall Temperatures
Run 2027
$T_o = 609.14$, measured
$T_{aw} = 561.5$, flat plate computed
Experimentally

Numerically

\[H = \frac{q(t_n)}{(T_R - T_w)} \]

Inferred from measured wall temperature \(T_w(t) \) and model properties, \(\rho c k \)

Recovery temperature: Normally an educated guess. Measured in this study \(F(T_0, \text{location, Mach Nr.}) \)

Measured surface

Computed fitting temperatures in the boundary layer

\[q(t_n) = k \frac{dT}{dz} \]

User specified, representative surface temperature function

Computed with a zero heat transfer boundary condition at the surface. Same code as for \(q(T_w) \) with a different wall boundary condition

TFAWS 2011 – August 15-19, 2011
Protuberance widths of 0.40, 0.75 and 5.00 inches were evaluated.
Recovery Temperatures on the Plate Ahead of Different Width 45 Degree Protuberances

Protuberance widths of 0.75 and 5.00 inches were evaluated.

Comparison of Recovery Data Ahead of Models 5 and 6, 45 Degree Face Forward, Mach 3.51

Taw/T0=0.94, Separation
Ahead of 90 degree Finite Step

Taw/T0 M5
Taw/T0 M6

DX, Ins

Model 6
W=0.75”

Model 5
W=5.00”
Recovery Temp Ratio on the Face of a Block Protuberance

Solid symbols are W=3/4” block protuberances. Open symbol is the W=0.4” block protuberance.
IR data used to develop the recovery temperature contours shown

- The qualitative trends show the two dimensional nature of the flow and the significant edge effects away from the centerline
Width = 0.75 inch

- The data shows a significant gradient in the measured recovery temperature at and near the protuberance windward face.
Heat Transfer on the Top of the 0.75” and 5” Wide Protuberances

Centerline Recovery Temperature

Centerline Heat Transfer Coefficient
(IR measured heat transfer coefficient derived using measured recovery temperature)
Recovery temperatures on a 0.75 inch wide protuberance with 45 and 90 degree leading edge bluntness are shown.

- 90 degree face shows low local Mach numbers.
- 45 degree face shows much higher local Mach numbers because of a flow expansion on the top of the protuberance.
Total Temperature Effects

The Effect of Total Temperature on Term 2

\[\frac{H_{PK}}{H_{REF}} = \left(\frac{q_{pk}}{q_{REF}} \right) \left(\frac{T_{R-REF}-T_{w-REF}}{T_{R-PK}-T_{w-PK}} \right) \]

The Effect of Mach Number on Term 2

Term 2

UPWT
Twall ref = 570°R
Twall pk = 640°R

Ideal Shock Tunnel
Twall ref = 540°R
Twall pk = 540°R

T0 = 680°R
T0 = 1200°R

Total Temperature, Degs R

Mach Number

TFAWS 2011 – August 15-19, 2011
Recovery temperature data was defined at seven locations, five of them are highly localized due to the Interference.

Two locations have ratios very near unity and high gradients between adjacent locations.

It is physically impossible to have a recovery temperature ratio greater than 1.

Because the measured ratio is 0.99 and the peak cannot be greater than unity in regions of high temperature gradients, and therefore, the potential for conduction losses is very small and recovery temperatures is being measured.

Note: Temperatures cited are for Comparison only and are based on Mach 3.51 conditions, T0=609°R.
Conclusions

The current protuberance experiment is the first clear view of recovery temperature distribution over/about complex shapes

- The work is exploratory in nature and would benefit from additional supporting measurements and computations

- Contour plots of recovery temperature data have been observed to contain as much structure and geometric sensitivity as heating rate data

- Apparent scatter in past heating rate parameters could well be due to the spatial variations in recovery temperature; a component of these parameters

- These recovery temperature measurements are accurate and easy to acquire in legacy, continuous flow facilities with temperature stabilized flow

- Unless recovery temperature measurements are a part of the experimental data acquisition, data should be acquired at higher Mach numbers or higher total temperatures to minimize the impact of this uncertainty

- Recovery temperature data has been observed to be sensitive to local Mach numbers within the flow and could be a useful measurement in CFD validation