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Legacy Heating Data: NASA TND-1372, Circa 1962 £EE
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Protuberance Heating Measurements Revisited

In 2008 a wind tunnel test program was implemented to update the
experimental data available for predicting protuberance heating at
supersonic Mach numbers. For this test the Langley Unitary Wind
Tunnel was also used. The significant differences for this current
test were the advances in the state-of-the-art in model design,
fabrication techniques, instrumentation and data acquisition
capabilities.

This current paper provides a focused discussion of the results of
an in depth analysis of unique measurements of recovery
temperature obtained during the test.
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The Current Protuberance Heating Experiment

Overall View of Test Article Protuberance Models Tested
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A thermal pulse is introduced by
bypassing the tunnel heat
exchanger and increasing the
test section pressure

Two types of data are generated:

- (1) Recovery temperature for
the initial 4 seconds

-(2) Heat transfer data at the time
of maximum difference between
total temperature and wall
temperature

Data fusion allows the
construction of the heat transfer
coefficients
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Contour Map Showing the Reference
Location

Reference Data Using IR and Thin Film Measurements

IR and Thin Film Data Obtained at Mach
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Recovery Temperature
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View Focused on the Separation
Region Ahead of the Protuberance
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,9 Numerically/Experimentally Derived Recovery Temperature

Experimentally

Inferred from measured wall
Temperature T,,(t) and model

properties, pk Numerically

_q(t)
= —-———(TR — Tw) Computed fitting temperatures

In the boundary layer
\ .
Recovery temperature: Measured surfac q( ﬂ) = E

Normally an educated guess

Measured in this study q(tn)
F(T,, location, Mach Nr.) H=
(TR - Tw)
Computed with a zero heat
transfer boundary condition User specified, representative
at the surface, Same code as Surface temperature function
for q(Tw) with a different

wall boundary condition
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Recovery Temp on the Plate Ahead of 90 Degree Protuberances NngA
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) ~ Recovery Temperatures on the Plate Ahead of Different Width 45
y Degree Protuberances

Comparison of Recovery Data Ahead of Models 5 and 6, 45 Degree

Protuberance widths of 0.75 and 5.00
inches were evaluated

Face Forward, Mach 3.51
Taw/T0=094, Separation
. | / Ahead of 90 degree Finite Step
; |
ey TN
. WTauTOMG
© 0% iy :
3 ¢
o o0% ..
‘
0.925 | '
092
0 05 1 15 2

DX, Ins

TFAWS 2011 — August 15-19, 2011




V%

g Recovery Temp Ratio on the Face of a Block Protuberance
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JQ Recovery Temperature Distribution on the Face of Block Protuberances {agi&dad

IR data used to develop the 78 — s
recovery temperature contours 200 ==
shown - Sy S
- k NS
- The qualitative trends show the i \ K R
two dimensional nature of the flow e ) k2 - :m\ % ‘
and the significant edge effects 150 - | = §
away from the centerline = 4 5 §J
> S| | ) "
I g e g /. B
ﬂ i ﬂ "||J i B %8 { i
100 j 20 (& i ..
_ i . i
I i e Jj
L I:&; = ‘{ P
;J;. .
50 |- Ry = - 3
7l
- - ’_ l
50 50 100

TFAWS 2011 — August 15-19, 2011 13



Width =0.75 inch

- The data shows a significant
gradient in the measured
recovery temperature at and
near the protuberance
windward face
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Centerline Recovery Temperature
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Recovery temperatures on a
0.75inch wide protuberance
with 45 and 90 degree
leading edge bluntness are
shown

-90 degree face shows low
local Mach numbers

- 45 degree face shows much
higher local Mach numbers
because of a flow expansion
on the top of the
protuberance

‘Jg Recovery Temperature on the Top of the 45 and 90 Degree Protuberances
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The Effect of Total Temperature on

Total Temperature Effects

The Effect of Mach Number on Term 2
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| ,,9 Recovery Temperatures About a Narrow Block Protuberance

Recovery temperature data was
defined at seven locations, five
of them are highly localized due

to the Interference.

Two locations have ratios very
near unity and high gradients
between adjacent locations

Itis physically impossible to
have a recovery temperature
ratio greater than 1.

Because the measured ratio is
0.99 and the peak cannot be

greater than unity in regions of
high temperature gradients, and

therefore, the potential for

conduction losses is very small

and recovery temperatures is
being measured.

Note: Temperatures cited are for
Comparison only and are based on
Mach 3.51 conditions, T0=609°R

Tr=0.9970
(602.9°R)

Lr=o.9zzm
(561.5°R)

[ Tr=0.94T0

(572.2R)
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Conclusions

The current protuberance experiment is the first clear view of recovery temperature
distribution over/about complex shapes

- The work is exploratory in nature and would benefit from additional supporting
measurements and computations

- Contour plots of recovery temperature data have been observed to contain as
much structure and geometric sensitivity as heating rate data

- Apparent scatter in past heating rate parameters could well be due to the spatial
variations in recovery temperature; a component of these parameters

- These recovery temperature measurements are accurate and easy to acquire in
legacy, continuous flow facilities with temperature stabilized flow

- Unless recovery temperature measurements are a part of the experimental data
acquisition, data should be acquired at higher Mach numbers or higher total
temperatures to minimize the impact of this uncertainty

- Recovery temperature data has been observed to be sensitive to local Mach
numbers within the flow and could be a useful measurement in CFD validation



	The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers�Richard D. Neumann�Delma C. Freeman
	Legacy Heating Data: NASA TND-1372, Circa 1962
	  	Protuberance Heating Measurements Revisited
	The Current Protuberance Heating Experiment
	Photograph of Test Setup 
	  Thermal Pulse Operation of the Langley Unitary Tunnel
	Reference Data Using IR and Thin Film Measurements
	Recovery Temperature
	Numerically/Experimentally Derived Recovery Temperature
	Recovery Temp on the Plate Ahead of 90 Degree Protuberances
	Recovery Temperatures on the Plate Ahead of Different Width 45 Degree Protuberances
	Recovery Temp Ratio on the Face of a Block Protuberance
	Recovery Temperature Distribution on the Face of Block Protuberances
	Recovery Temperatures on the Top of a Block Protuberance
	Heat Transfer on the Top of the 0.75” and 5” Wide Protuberances
	Recovery Temperature on the Top of the 45 and 90 Degree Protuberances
	Total Temperature Effects
	   Recovery Temperatures About a Narrow Block Protuberance
	Conclusions

