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This paper presents a new adaptive control approach using Gébyshev orthogonal polynomials as basis
functions in a least-squares functional approximation. Tk use of orthogonal basis functions improves the
function approximation significantly and enables better cavergence of parameter estimates. Flight control
simulations demonstrate the effectiveness of the proposediaptive control approach.

[. Introduction

In many physical applications, there is no clear certaifigua the structure between the input and output of
a process. This uncertainty is called unstructured. Inesystwith unstructured uncertainty, the transfer function
between the input and output is usually not known. y @) € R be the output with an unknown transfer function,
expressed as

y=f(x 1)

wherex(t) € 2 c RP andf (x) € R is an unknown function but assumed to be bounded functien in

When the structure of the uncertainty is unknown, functippraximation is usually employed to estimate the
unknown function. In recent years, neural networks havaegha lot of attention in function approximation theory
in connection with adaptive control. Multi-layer neurakwerks have the capability of approximating an unknown
function to within an arbitrary value of the approximatiamag. The universal approximation theorem for sigmoidal
neural networks by Cybenkand the Micchelli’'s theoreffor radial basis functions provide a theoretical justificat
of function approximation using neural networks. The usenofti-layer neural networks can create an additional
complexity in the back propagation gradient-based trginirtes.

Polynomial approximation is a well-known regression tegha for function approximation. In theory, as the de-
gree of an approximating polynomial increases, the appration error is expected to decrease. However, increasing
the degree of the approximating polynomial beyond a thaaidimit could lead to oscillations in the approximating
polynomial due to over-parametrization. Regularizatiechhiques to constrain parameters have been developed to
prevent over-parametrization.

In this paper, we explore the use of a special class of polyasnpknown as Chebyshev orthogonal polynomials,
as basis functions for function approximation. The Chebygtolynomials have been shown to provide the “best”
approximation of a function over any other types of polynaisft The use of the Chebyshev polynomials in the
context of adaptive control with unstructured uncertaistyemonstrated in this paper. Simulation results dematestr
a significant improvement in the effectiveness of Chebygudynomials in the adaptive control setting over a regular
polynomial regression.

*AIAA Associate Fellow, nhan.t.nguyen@nasa.gov
TAIAA Member, john.burken@nasa.gov
*abe.ishihara@west.cmu.edu

1of21

American Institute of Aeronautics and Astronautics



[I.  Polynomial Approximation

Any sufficiently smooth functiori (x) € " can be expanded as a Taylor’s series about somgg

f(x) = f (%) + Ofx (X0) (X—Xo) + % (x—%0) " D2fx (X0) (X—X0) + - - @
Thenf (x) can be represented as

f)=0"To(x) ~e(x) ®3)

where®@* € R™ x R" is a matrix of constant but unknown coefficierts(x) € R9 is a vector of regressors in terms of
monomials ofx

PX=]1 x X ... Xp X XX ... X5 ... x] xlngl X (4)

ande (x) is a function approximation error which dependson
f (x) is then approximated by a polynomialgdegree

f(x)=pg(x) =0 P (x) (5)

where® € R™ x R" is the estimate o®*.

The coefficient®d can be computed using various least-squares methods silbh batch least-squares, least-
squares gradient method, or RLS method. Note that €rce (x) is an approximation of an unknown functiérix),
the approximation error will not be asymptotic regardlebethlier or notb (x) is persistently exciting.

The Weierstrass's theorérstates that given any sufficiently smooth functioix) € % [a,b] andgy > 0, there exist
a polynomialpy(x) for some sufficiently large such that|| f(X) — pq (x)||oo < &. This means that any sufficiently
smooth function can be approximated by a polynomiaj-ti degree. Then the function approximation error could
be made sufficiently small on a compact domaix stich that sup., || € (x)|| < & forallxe 2 C R".

There are several types of polynomial approximation of afiom. The regular polynomial regression using
monomials as basis functions is frequently used for fumctjoproximation. Orthogonality is a property of a function
that belongs to a metric space endowed with an inner pro@ieen two functiong (x) andh(x), theng(x) andh(x)
are orthogonal to each other if their inner product is zetwatTs

(9(¥);h(x)) =0 (6)

where(.,.) is an inner product operator that takes on two real-valuadtfans and returns with a constant. The inner
product has a concrete mathematical definition dependingealass of functions.

A regular polynomial does not possess this orthogonalibperty. In contrast, certain classes of polynomials
such as Chebyshev polynomials and Legendre polynomialsriregonal polynomials. One advantage of an orthog-
onal polynomial over a regular polynomial is that a low-dagorthogonal polynomial can provide a good function
approximation with minimal loss of accuracy as comparedhaher-degree regular polynomial.

Chebyshev polynomials are special polynomial functioas éne associated with the solution of a class of Sturm-

Liouville differential equations
dy  dy
VAN ARV A 2y —
(1 x)dx2 X TNy 0 (7
forxe [-1,1].
This differential equation is known as the Chebyshev diffial equation of the first kind. The Chebyshev differ-
ential equation of the second kind is of the form
d?y . dy

(1—x2)m—3x&+n(n+2)y:o (8)

The Chebyshev polynomials of the first kind are given by a gativey function
Tnr1(X) = 2XTh (X) = Ta-1(X) )
whereTp (x) = 1 andTy (X) = x.

The first several terms of the Chebyshev polynomials arengigefollows:
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To(x)=1
Ti(x)=x
T (x)=2x*—1
T3 (x) = 4x3 — 3x
T4(x) =8x*—8x°+ 1

(10)

A solution of a Sturm-Liouville differential equation cditates an orthogonal basis that spans any Hilbert space
which is a complete, inner product space with a weightedripneduct definition

900:h() = | w(9g(0h(x dx 1)
a
The Chebyshev polynomials are orthogonal with respect teighting function
1
W(X) = 12
(= (12)
such that
0 n#m
1
Tn (X) Tm (X)
Th(X), Tm (X)) = — dx= m 13
(M) Tm() = [ mon=m=0 13)
7 n=m

Any subspace” in an inner product spac€ has an orthogonal complemest- such that their bases completely
span the inner product spa¢é Therefore
C =90t (14)

Since the Chebyshev polynomials are orthogonal, they foooraplete basis for an real-valued function. This
implies that any unknown, non-singular functibfx) can be approximated by a Chebyshev polynomial of degree

n

f(X) = 600To(X) + B TL(X) + -+ O Tn(X) = ZG.Ti (x) =0"Td(x) (15)
i=

where the polynomial coefficients are approximated by

1

o [ F

forxe [-1,1].

lll. Least-Squares Estimation

The input-output transfer function of a system is given bgteof measurement data ft) € R" as a function of
some independent variabtét) € RP, expressed as data pairs,yi), i = 1,2,...,N. Furthermore, suppose the transfer
function betwee(t) andy (t) can be linearly parametrized as

y=0"To(x) (17)

where®* € R™x R" is a matrix of constant but unknown coefficients antk) € R™ is a bounded regressor (or basis
function) vector and is assumed to be known.
Lety(t) be an estimate of(t) such that

y=0"d(x) (18)
where® is an estimation o®*.
Formulating an approximation erreft) as
E=y-y=0'®(x) -y (29)
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Consider the following cost function

1 N
=5 .ZAeiT & (20)

WhenJ(0) is minimized, the approximation error is also minimized.efly approximatey in a least-squares
sense. Thus, the parameter identification problem is pasadunctional minimization.
The necessary condition is given by

N N dg
96~ e (©@=2 Far & Zq’ x) [T

wherelJp is called a gradient af with respect t@®.
Thus,® can be found by solving the following least-squares regmassguation

X)©—yf | = (21)

e=A1B (22)
where N
A= ®(x)® (x) (23)
N N
B=Y ®(x)y’ (24)

andA~1is assumed to exist.
Example:Suppose € R is a scalar variable which can be approximated asttadegree polynomial in terms of
xeRas

p .
y =60+ 61X+ -+ OpxP = %ijl =0"'d(x)

.
where@Tz[ B 61 ... Hp andqa(x):{l X ... xp} .
The least-squares regression equation is expressed as
AO=B (25)
where
Z,i:I:ll Zu 11 Eﬂzlxiz Z 1;(3rl
N YimXi p 1XI Zi:lxi e Y Tk
A=Y O (x)P" (%)= , 1 x5 - x|= _ X!
2 ; e,
PIME Z Xy 1X1p+ ZiN:1Xi2p
(26)
ziN”:ll z. Wi
N Tit1X I 1>w|
B=Yox)y' =| 7 |vi= i (27)
powi =| % e
S 2i:1X1 Yi

This least-squares regression method is essentially apwiial curve-fitting technique. For example, et 2,
then the quadratic curve-fitting coefficients can be founith wi

N o shix s YN
A= shix s s [ B=| SN ixy (28)
shoE SR s T XY,

When all available data are used in the least-squares ségnarethod, it is sometimes called a batch least-squares
method. This is usually when there are sufficient data ovevendgime interval and the estimates of the unknown
coefficients are not needed immediately at each time step.
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A. Convex Optimization and Least-Squares Gradient Method

When the estimates of the unknown coefficients are needeathttane step® can be estimated recursively using
each pair of datéx;, y;) at each time step.
Consider the following cost function

J(©) = %sTe (29)
The gradient of the cost function with respectds given by
2J ([ o¢ T T
56 = Mo (0) = (—aeT)g =d(x)e (30)

To determine a least-squares estimation based on a givampditat each time step, the concept of convex opti-
mization is now introduced.

A subset¥ is said to be convex if there existy in . and a constard € [0, 1] such thatrx+ (1—a)yis also in
. A function f is said to be convex in a convex sgtif for everyx, yin ., then

fax+(1—a)y) < af () +(1—a)f () (31)

Note that] (©) is convex since

1 1 1
Slae+(1-a)g] [ae+(1—a)a]=Za’ e+a(l—a)e a+=(1—a)’e &

2 2 2

1 1
=_a? (sTe - ZeTel) +ag' e+-(1—-a)’g e (32)
2 2
buta? < a and(1—a)®><1—aforalla €[0,1], so

(1—a)£f81§a}eT£+(1—a)}£lTel (33)

1 T T T 1
a(e £—2¢ 81)+a£ &+ 5 5

2 2
If f €1, i.e.,fis differentiable at least once, then
f(y) > f(x)+(0f(x)" (y—x (34)

If f e %2, thenf is convexifd2f > 0 where2f is called the Hessian df.
Now consider the minimization af(©). ©* is said to be a global minimum dfif

J(©7) <J(9) (35)

This implies thatlJe (©*) = 0 and12Je (©*) > 0 sincel (O) is twice-differentiable with respect 1.
Utilizing Taylor’s series expansion, one writes

NJo (0%) = Do (OF + AG) + 1% (0" + AG) AO + & (A@TAG) (36)
R —
Since(Jp (0*) = 0, 0Jp (6" +AB) = 0Jp (0), and[1?Jg (0* + AG) = %) (©), then
NO = — [1%6(©)] "Dl (0) (37)
Equation (37) can be written in discrete-time form as
i1 =0 — [12Je (0)] e (©) (38)

This is known as a second-order gradient or Newton’s metboddnvex optimization. It is noted that the inverse
of the Hessian matrix is generally numerically intensive.aSirst-order approximation can be made by recognizing
that(02Jp (0©) ~ 12Jo (©*) = € > 0, wheree is a small positive parameter, whéis in the neighborhood @*. This
approximation leads to the well-known steepest descentstrdider gradient method for convex optimization.

Oiy1=0i — 1) (G) (39)
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Now dividing both sides byt and taking the limit aé&t — 0 yield
0 =—-T0Jp(0) (40)

wherel =TT > 0ec R™x R™is a positive definite adaptation rate matrix that effetyiveplacess. This is the
continuous-time version of the gradient method.

Returning to the minimization of (©) to estimate®*, the differential form of the least-squares estimatio®of
can be expressed using the gradient method as

O=-T0l(®) =-Td(x)e" (41)

Notice the resemblance of this least-squares gradientodétha model-reference adaptive law, where the approx-
imation errore (t) replaces the tracking erre(t).
Example:For the example in Section 6.1, the least-squares gradietiod is

90 1 X s xP 90

y
O I B e I @2)
0 o i e | e | |y
B. Persistent Excitation and Parameter Convergence
Let®(t) = ©(t) — ©* be the estimation error, then
£=0"P(X)O—y=0"d(x) (43)
The least-squares gradient method can be written as
O=0=-To(x)d (x)O (44)
Now, choose a Lyapunov candidate function
V(0) = trace((:)TF’l(:)) (45)

Then
V(0) = 2trace(éTF’1(i)) = —2trace((:)T<D(x) D' (x) é) = 20" ()OO D (x) = —2¢"e=—2|¢||><0 (46)

Note thatV (C:)) can only be negative semi-definite becaVs(é) can be zero whe (x) = 0 independent o®.
One can establish thktt((:)) has a finite limit ag — o since

V(t—>oo):V(to)—2/ e[| 2dt < oo (47)
to
which implies

2 [ elPdt=V(to) -V (t— ) <o (48)

to
Thereforeg (t) € >N .%.. Moreover, sinceb (x) € %, by the problem statement, th@n(t) € %, but there is
no assurance th@(t) — 0 ast — o which implies parameter convergence.
One cannot conclude th‘s(t(@) is uniformly continuous since
V(8) = —4cTE = —4¢" |07 () +0TD(X) -y (49)

is not necessarily bounded because there is no other camgiticed or (x) andy(t) except for® (x) € £, and
y(t) € Z. ForV (©) to be uniformly continuous, additional conditions thatx) € %, andy(t) € Z. are required.
Then, using the Barbalat's lemma, one can concludeutt{&) — 0 or & (t) — 0 which also implies tha® (t) — 0 as
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t — o. Note that from Eq. (44p (t) — 0 does not necessarily imply thét(t) — 0 since® (x) @' (x) can also tend
to zero instead o® (t). _

So up to this point, one can only show that the approximatioor & (t) can tend to zero ifp (x) € %, but not
necessarily the estimation erréx(t) since® (x) can be a zero signal at some time interval. To examine the isbu
parameter convergence, suppose for a moment, Eq. (44) &éaa sguation whose solution is

t
O(t)=exp [—r / DX (x) dr} O(to) (50)
to

Note thaix(t) is an independent variable as a function.6Fhen for® (t) to be exponentially stable which implies
an exponential parameter convergence, the following d¢mmdis required

1 t+T
T/t (X" (xdr > al (51)
forallt >ty and somex > 0.

This condition is called a persistent excitation (PE) ctindiwhich essentially requires an input signal to be
persistently exciting (PE), that is, a signal that does aibgzero after some finite time when parameter convergence
has not been reached. Another interpretation of the pergisikcitation condition is that for parameter identifioati
to converge exponentially, an input signal must be suffityerich to excite all system modes associated with the
parameters to be identified. It should be noted that whilsignt excitation is needed for parameter convergence, in
practice, input signals that are persistently excitingleaad to unwanted consequences such as exciting unknown or
unmodeled dynamics that can exacerbate stability of a digasystem.

Another observation to be made is thax{t) is a state variable of a closed-loop system, one cannot &sthanh
the persistent excitation condition can easily be satisfiedis can be explained as follows: suppose a parameter
identification is used for adaptation, then closed-loopifita usually implies parameter convergence to the ideal
values of the unknown parameters. However, parameter ogpenee requires persistent excitation which depends on
x(t) which in turn depends on parameter convergence. This isalairargument and, therefore, it is difficult to assert
the PE condition. However, ¥(t) is an independent variable, then the persistent excitatodition can be assumed
to be satisfied. Suppose that this is the case, then the &stinearor is given by

|6@t)| < |B(to)|e ™ VL€ [tr,ts +T], ty > to (52)

wherey = Anin (1) is the smallest eigenvalue Bf Thus,0 (t) is exponentially stable wit® (t) — 0 ast — . Hence,
the parameter convergence is established. It follows tiesapproximation error is also asymptotically stable (lmit n
necessarily exponentially stable becaus®¢x)) with € (t) — 0 ast — co.

C. Recursive Least-Squares
Consider the following cost function

1 t
J(O) == / gledr (53)
2 Ji,
which is the continuous-time version of the cost functiontfatch least-squares.

The necessary condition is

T t
0Jo (©) = % - /t ®(x) [qﬂ (x)e—yT] dr=0 (54)
from which® is obtained as t 1
0= {/ D(x) T (x)dr} / ®(x)y'dr (55)
to to

assuming the inverse qt;qb(x) ®T (x)dt exists. Note that the matrisp (x) @7 (x) is always singular and is not
invertible. However, if the PE condition is satisfied, thf%m) (x)®" (x)drt is invertible.
Introducing a matriR(t) = R' (t) > 0 € R™ x R™where

R= Mq:(x)qf (x)dr} ° (56)

0
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Then

Rlo=[ oxy'dr (57)
to
Upon differentiation, this yields
. —1
R 1o+ dit O=0(x)y" (58)
From Eq. (56)
drR? -
g =P (x) (59)
Therefore _
O=—-ROP(X) |®' (x)O—y | =—Rd(x)e" (60)
Now sinceRR1 =1, then
er 1+ rIR o 61)
dt
Thus _
R=—-Ro(x)®' ()R (62)

Both Egs. (63) and (62) constitute the well-known recurkast-squares (RLS) parameter identification method.
The matrixR is called the covariance matrix and the RLS formula is simiathe Kalman filter where Eq. (62) is a
differential Riccati equation for a zero-order plant modeébmparing Eq. (41) with Eq. (63R plays a role of” as
a time-varying adaptation rate matrix and Eq. (62) is eifety an adaptive law for the time-varying adaptation rate

matlig(t.é (t) = ©(t) — ©* be the estimation error. Singe= @' ®(x), then
O=-ROX)D' (x)O (63)
Choose a Lyapunov candidate function
V(0) = trace((:)TR’l(:)) (64)
Then

dl;;l (:)) = trace(—ZC:)TqJ (x) ol () 0+0"0 (X) oy (x) é)

V(0) = trace(ZéT R19+6
= —trace((:)TdJ(x) D' (x) é) ——¢g'e=—|g)?<0 (65)

One can establish thla{t((:)) has a finite limit a$ — o since

V(t— ) =V(to)— [ [e]?dt < (66)

to

Thereforeg (t) € £2N.Z.. Sinced (x) € Z by the problem statement, thént) € %, but there is no guarantee
thatO (t) — 0 ast — « which implies parameter convergence, uni®gg) is PE. s

Note thav (G)) is not necessarily uniformly continuous since this woulgliee thayv (@) is bounded. Evaluating
V(0) as

V(@) =-2Te= 26" [6T0()+87D(x)| =25 [-OT@(X) @ (X)RP(X) + BT D(X)]
=2

t -1
—0To(x) D" (x) [ / D)D" (x)dr} P(x)+O " d(x)| (67)
to

ThereforeV (é) is bounded if the following conditions are imposed:

e D(X) € L
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-1
o [ft;qb(x) ol (x)dr} is invertible which impliesb (x) is PE

If these conditions are satisfied, then using the Barbdkatigna, it can be shown tha{t) — 0 ast — . In addition,
O(t) — 0 ast — = and the parameter convergence is achieved.

Note that there are various versions of the RLS method. Opelpoversion is the RLS method with normalization
where the adaptive law fdr is modified as follows:

. RO(X®T (YR
R=""1iwe (68)
where 14+-n? = 1+ @ (x) RP(x) is called a normalization factor.
The time derivative of the Lyapunov candidate function fer RLS method with normalization is
. ~ ~ ~ e T T e ~ ~
V(0)= trace(—ZG)TqJ X)®" (x)O+ %ﬂ:ﬂ(x)@) = —trace(@TqJ X)®" ()0 (1+ 2n2))
=—¢e'e(1+2n%) = —|eg|*(1+2n?) <O (69)

Note thatV (©) is more negative with than without normalization. Therefahe effect of normalization is to
make the adaptive law fd® more stable, but the parameter convergence is slower.

Another popular version is the RLS method with forgettingtée and normalization which is given by without
derivation
RO (x)@' (x)R

R=pBR—
B 1+ n?

(70)

where 0< 8 < 1 is called a forgetting factor.

IV. Adaptive Control with Unstructured Uncertainty

The RLS method has been used in adaptive control applicatinod demonstrated to be highly effective in esti-
mating parametric uncertainty in adaptive control. In avfmes study, a hybrid direct-indirect adaptive controltwit
the RLS was developed. Other techniques based on the RLSbleaverecently developed such as the RLS-based
modification in adaptive contrdlIn this study, the approach is considered to be a direct agagntrol method.

Consider a second-order SISO system

y+ay+cy=blu+ f(y)] (71)

wherea, b, andc are known and (y) is an unstructured uncertainty
The state-space form of the system is

X=Ax+Bu+ f (y)] (72)
-
wherex = [ y vy } eR?and
A= © 1],3_[01 (73)
c a b
A reference model is given by
wherexy, € R2, r € R, and
0 1 0
= , Bmn= 75
e e || (75
with > 0 andw, > 0.
The nominal system is designed to track the reference mattebwnmominal controller
U= —KyX+ kT (76)
whereA — BKy = A, andBk; = Bpp,.
-1
Ke=(B'B) "B (A~Aw) (77)
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-1
ke — (BTB) BT B (78)
Note that(BTB)f1 BT is the left pseudo-inverse &and is equal to

(BTB)ABT - éBT (79)

To accommodate the uncertainty, an adaptive controllecisided in the controller

where the adaptive controller
Uag = —O' P (y) (81)
is designed to estimate the unstructured uncertainty wtachbe expressed as
f(y)=0"Td(y)—£(y) (82)

where®* € RP is an unknown constant ideal weight matriix(y) € RP is a vector of known bounded regressors or
basis functions, ané(y) € R is an approximation error.

In general, @ (y) can be any bounded regressor function. However, with th&eraf Chebyshev polynomials,
these regressor functions are also true basis functioistivéir endowed orthogonality properties. Basis functions
provide a better approximation of an unstructured unaatdhan non-basis regressor functions.

Alternatively, an unstructured uncertainty can also be@gdmated by a neural network

fy)=eTo(wTy) (83)

where®* ¢ RP*! andW* € R? are unknown constant ideal weight matricgs; f 1y ]T eR™, o (WTy) €
RPHL,
Invoking the Weierstrass'’s theorem(y) can be made sufficiently small in a compact domairy @§ such that
SURo |I€(Y)[l < &Vy € Z C R by a suitable selection @b (y).
Define a desired plant model as
Xd = AmX+ Bl (84)

Then formulating a plant modeling error as
£=X4—X=Ax+Bu—x=BO'®(y)+Bs (85)
The RLS adaptive law for estimatir@is given by
. _ -1
©=—Ro(y)¢'B(BB) (86)

R=-nRo(y)®' (y)R (87)

where 0< n < 1.
The estimation error equation for the RLS adaptive law is thigtained as

O=—Ro(y) [qf (y)®BT + eTBT} B (BTB) T _Rowy) (07 (y)B+eT (88)
The tracking error equation can be expressed in terms ofgpeaimation error as
€= Xm— X = Xm— Xq + X4 — X= Ane—+ € = Ane+BO ®(y) + B (89)
Now, choose a Lyapunov candidate function

V(e0) = eTPe+trace(C:)TR*1C:)) (90)
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ThenV is
V- T T <o 1k, ardR 1~
V(e ©) = —e'Qe+2e'Pe +tracel 20 R 'O+ 0O T(9
=—e'Qe+ ZeTPe_thrace( 2070 ( )[ ( )O+£T} +n@To(y)o’ (y)é)
——e'Qe+2e'Pe—(2—-n)®" (y)OO ®(y) - 2¢O D (y)
<—e'Qe+2e'Pe—d" (y)OO ' d(y)—2:"OTd(y) (91)

Note that
% =o' ()OO d(y) +2e 'O d(y)+e'e (92)
Therefore
V (€.8) < —Auin(Q) llel2+ 2P e] €] - :';7 . (93)
wheregg = suRc [|€ (Y) |-
Define a compact se¥’
7= {(e,s‘>|Am<Q>||e||2—2Am< ) lell 18]+ |'|' '|2 _50} (04)

V (e,©) > 0 inside of.#, butV (e,®) < 0 outside.”. Therefore,e(t) € %, and(t) € L. Definegy =
SURc ll€ ()|, then

() -+ A (P) 8+ A (@) (5 -/ IBIP)

e|l>r= 95
el > y—e) (95)
It can be shown that(t) is uniformly ultimately bounded with an ultimate bound
Amax (P)
P =\ Ruin P ©0)

Example:Consider a first-order scalar system with unstructured nigicgy
Xx=ax+bu+ f (x)]

wherea andf (x) are unknown, bub = 2. For simulation purpose,= 1 andf (x) = 0.2 (sin X+ cos&k+ e*Xz).
The reference model is given by
Xm = @mXm + bmf

whereay, = —1, by =1, andr (t) = sint.
Sincef (x) is unknown, a regular polynomial gfdegree is used to approximdtéx) as
f(x)=ag+ax+---+apd—e(x) =0 Td(x) — £(x)

wherea;, i =0,1,...,q are constant unknown coefficients.
The controller is designed as
U=k (t)Xx+kr—0" (t)d(x)

whereky (t) and®© (t) are computed by the least-squares gradient adaptive laws as

e

b
ro(x)e
b

I-(X -

0=
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with ks (0) =0,©(0) =0,y=1, andl =1, where

£ = ax+bu—x
4= am— bky
U= keX+ker

The tracking error foq = 1,2,3,4 are shown in the following plots. Note that the trackingpeimproves for
g > 2. Even the tracking error improves, the functibfx) does not seem to be well approximated as shown in Fig. 3.
This is also due to the poor convergencépnd®.

1 1
05 05
-0.5 g=1 -0.5 =2
1 50 00 o 50 100
t t
1 1
05 05
) 0 ) 0
-05 q=3 -05 q=4
1 50 00 o 50 100

Fig. 1 - Tracking Error due to Least-Squares Gradient Methitid regular Polynomial Approximation

¥ =1 ¥ q=2
-1 -1

0 50 100 0 50 100
t t

1 1%

o© o

>0 6=3 S .
_1\W _1\1‘\\1\/\/\\\,\\\/\%\“

0 50 100 0 50 100
t t

Fig. 2 -ks and® due to Least-Squares Gradient Method with regular PolyabApproximation
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— ax+bf(x)
N

r - - ~ax+b0'd(x) g=1 |

4 n T

i -~ ~ax+bO d(x) q=2

-3¢ - - ~ax+bO"d(x) g=3 |

- - ~Ax+bOd(x) g=4

-1 -0.5 0 0.5 1
X

Fig. 3 - Function Approximation dat= 100 due to Least-Squares Gradient Method with regular Pohyal
Now suppose the Chebyshev orthogonal polynomials are nséshid. Then
f(X)=ag+aTy(X)+- - +agTq(X) — £(x) = ©*Td(x) — £(X)

The simulation results are as shown. ot 1, the result is the same as the regular polynomial. Howéveain
be seen that the tracking error significantly reducesfer2 with the Chebyshev polynomial and is even smaller than
that forq = 4 with the regular polynomial. Far= 4, the Chebyshev polynomial approximation results in a sergl|
tracking error. The unknown function is very well approxiedby a £'-degree Chebyshev polynomial as shown in
Fig. 6.

1 1
05 05
) 0 ) O | Wnwvvvwwwwew
-0.5 g=1 -0.5 9=2
i 50 100 o 50 100
t t
1 1
05 05
) 0 () 0
-05 q=3 -05 q=4
i 50 100 o 50 100

Fig. 4 - Tracking Error due to Least-Squares Gradient Methitid Chebyshev Polynomial Approximation
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- - - Ax+beTd(x) g=1 |
= - - “ax+beTd(x) g=2
-2r, - - - Ax+bO"d(x) g=3
- - - Bx+bo"d(x) g=4

-1 -0.5 0 0.5 1
X

Fig. 6 - Function Approximation at= 100 Least-Squares Gradient Method with Chebyshev Polyadomi

In contrast, let us compare the least-squares adaptiveotevith the standard model-reference adaptive control
(MRAC). The MRAC update laws are givenby
kX - Vxeb
O=-Td(x)eb

wheree = Xy — X.

Figure 8 illustrates parameter convergence of MRAC. Asdhdtee tracking error is not as good with the MRAC
as with the least-squares gradient method. The param&terand© (t) are more oscillatory. The function approxi-
mation by the MRAC adaptive laws is poorer than that by thetlsguares gradient method. Furthermore, for systems
with unstructured uncertainty, MRAC is known to be non-rsttgince the parameter estimation error is not necessarily
bounded. Therefore, robust modification or a projectiorhm@imust be used to ensure that the parameter estimation
error is bounded.
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Fig. 9 - Function Approximation dat= 100 due to MRAC with Chebyshev Polynomial
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V. Flight Control Application

Consider the short-period dynamics of an aircraft with wrettired uncertainty (a) as a function of the angle of
attack due to nonlinear aerodynamics

o Z 0 1 a %
6 | = 0 0 1 6 |+ 0 [Oe+ T (a)] (97)
q Mg+ MaZa 0 Mg+Mgy q Mg, + ~r2
whereZy, Zs,, Ma, Mg, Mg, andMs, are stability and control derivatives; ands the trim airspeed.
A pitch attitude controller is designed to track a desirazbse-order pitch attitude dynamics according to
B+ 2 wnbm + wWh b = Wi (98)

wherew, = 1.5 rad/sec ang = 0.85 are the desired natural frequency and damping ratio gfitble attitude response,
and@; is the pitch attitude command..
The pitch rate equation is written as

MaZa

6— (Ma+ >a-(|v|q+|v|d)é_( >[6e+f( )] (99)

The elevator input is designed with the following propanad-derivative (PD) control law

8o = —ka —kg (8 — Bc) — ke — O D (1) = —Kyx+ kg — O D (a1) (100)

Wherex:[a 2] q}T,KX:{ka ke qu,and

MC{+ MGZG
Ko = ——wr7— (101)
Mg, + iz M"Z‘%
o2
kg = —F—— (102)
Mg, + aZee
kg = —Mazde a (103)
Mge +

The numerical model of the short-period dynamics is given by

a ~0.7018 0 09761 a ~0.0573

o | = 0 0 1 0 |+ 0 O +f(a)
q ~26923 0 —0.7322 q 35352 u

X A X B

For simulation purpose, the unstructured uncertaintyrgatesents nonlinear aerodynamics is described by

f (a) = 0.1coso® — 0.2sin1Gx — 0.05¢

-
The feedback gain is computed to le= [ 0.7616 —0.6365 —0.5142 | . The nominal closed-loop plant is
then chosen to be the reference model as

Om —0.6582 —-0.0365 09466 am 0.0365

Om | = 0 0 1 Om | + 0 r

am 0 —2.2500 —-2.5500 dm 2.2500

_ —_——— —o —

Xm Am Xm Bm
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The plant modeling error is computed @s- X4 — X = ApX+ Bmr — X, assuming that the angle of attack rate and
pitch acceleration are measurable from the vertical aca@bm sensors. The uncertainty is modeled with the first fou

terms of the Chebyshev basis polynomials
O’ (a) =61+ 60 + 63 (2a% — 1) + 64 (40> — 3a1)

The RLS parameter estimation is computed by wjth- 0, which effectively is a least-squares gradient method,
andn = 0.2. The covariance matrix is chosen toRe- 20l. The aircraft longitudinal responses fpe= 0 andn = 0.2
are as shown in Figs. 10 and 11.
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Fig. 10 - Aircraft Response with Least-Squares Gradientpfida Control § = 0)
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Fig. 11 - Aircraft Response with RLS Adaptive Contrgl£ 0.2)

It can be seen that the least-squares gradient method (Rh$wi 0) results in a very good tracking performance,
but the RLS method witlp = 0.2 exhibits poor performance. This is expected as the ratau@frpeter convergence
for the RLS is proportional te- (2—n) ||.£_|\2 according to the Lyapunov analysis. However, the slow patam
convergence of the RLS can improve stability robustnesdaptive control in the presence of time delay or unmodeled

dynamics, as will be shown later.
For comparison, the parameter estimation is computed bstémelard MRAC method using the same Chebyshev

basis polynomials according to _
O=-Td(a)e'PB (104)

wheree = Xy — X.
In addition, instead of using the Chebyshev basis polyntsmatwo-layer neural network with the sigmoidal
activation function is used to approximate the unstructwmgcertainty as

fla)=0"d (wToT) (105)
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_ T
wherea =| 1 a andW is the sigmoidal function.
The neural network adaptive control is specified by the faithg adaptive laws

O=_Tod (WToT) e PB (106)
W= —rwae PRV o' (WToT) (107)
where®@" = |\, VT } :

The aircraft responses with MRAC & Mg = 'y = 101) using the Chebyshev polynomial and the neural network
are as shown in Figs. 12 and 13.
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Fig. 12 - Aircraft Response with MRAC
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Fig. 13 - Aircraft Response with Neural Network MRAC

The responses both exhibit initial high frequency osédlad which are indicative of incipient instability, even
though the subsequent tracking performance is very good.n€nral network adaptive control has much more pro-
nounced high frequency oscillations which are due to thghtsiinitialization with random numbers.

To illustrate the issue of robustness and show that the Rla8tisally better able to handle a time delay or un-
modeled dynamics than the least-squares gradient metHdéRAC, a numerical evidence of the time delay margin
is computed for each of the four adaptive laws. The resuétshown in the following table:

Adaptive Law Numerical Evidence of Time Delay Margih
Least-Squares Gradient 60 ms
RLS withn =0.2 260 ms
MRAC 10 ms
Neural Network MRAC 60 ms
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Table 1 - Estimated Time Delay Margins

The RLS method has the best time delay margin than the oth#roci® The standard MRAC has very poor
robustness which is a well-known faéttGenerally, the standard MRAC has to be modified to improveisoiess
using the well-knowro-modificatior? ande-modificatior? or the recently developed optimal control modificafion
and adaptive loop recovery.

The aircraft responses due to a 60-ms time delay for the-tepsires gradient method, RLS wiph= 0.2, and
neural network MRAC are illustrated in Figs. 14, 15, and 16e Rircraft response due to a 10-ms time delay for
the MRAC is plotted in Fig. 17. As can be seen, the least-sgugradient method maintains a very good tracking
performance even with a 60-ms time delay. Both the MRAC andgalenetwork MRAC exhibit high frequency
oscillations. The RLS method with = 0.2 exhibits low frequency transients even though it is muchiemwobust
than the other three adaptive laws. Thus, if the time delaypigoo large, the least-squares gradient method seems to

perform the best among the adaptive laws.
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Fig. 14 - Aircraft Response with Least-Squares Gradienipdida Control ¢ = 0) with 60-ms Time Delay

5 T T T T T
2 a
S 0 o H
5]
5 { i i i i
0 10 20 30 40 50 60
t, sec
10 T T T T T
2 —8
S 0 — 8, H
=)
~10 i i i i i
0 10 20 30 40 50 60
t, sec
10 T T
8 —q
2 o\ \M\ A s Im
o
5
i

10 20 30 40 50 60
t, sec

-10
0

Fig. 15 - Aircraft Response with RLS Adaptive Contrgl£ 0.2) with 60-ms Time Delay
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Fig. 17 - Aircraft Response with MRAQ)(= 0.2) with 10-ms Time Delay

VI. Conclusions

This paper presents an adaptive control method for systdthamstructured uncertainty. The adaptive control
method uses Chebyshev orthogonal polynomials as basiidnado approximate the unstructured uncertainty. The
Chebyshev polynomials have many desirable features irtihbmapproximation and can be shown to be the “best”
polynomial function approximation. A recursive least-agps adaptive control method is developed for second-order
systems using Chebyshev polynomials as basis functiommfameter estimation. The adaptation is driven by a plant
modeling error as opposed to the usual tracking error in taederence adaptive control. Simulations demonstrate
the superior performance of Chebyshev polynomials in aptagacontrol setting over regular polynomials and even
neural networks. The least-squares gradient method deératassto outperform both the recursive least-squares-adap
tive control and the standard, unmodified model-referedagtive control. On the other hand, recursive least-sguare
adaptive control is shown to be much more robust to time dateyunmodeled dynamics than all the other adaptive
control methods being studied. However, this robustnessescat an expense of tracking performance. Thus, in
practice, the least-squares gradient method may strivéter ralance between tracking performance and robustness.
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