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Abstract: 

Human space travelers experience a unique environment that affects homeostasis and 

physiologic adaptation.  Spaceflight-related changes have been reported in the musculo-skeletal, 

cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment 

further subjects the traveler to noise and gravitational forces, as well as airborne chemical, 

microbiological contaminants, and radiation exposure. As humans prepare for longer duration 

missions effective countermeasures must be developed, verified, and implemented to ensure 

mission success. Over the past ten years, synthetic biology has opened new avenues for research 

and development in areas such as biological control, biomaterials, sustainable energy production, 

bioremediation, and biomedical therapies. The latter in particular is of great interest to the 

implementation of long-duration human spaceflight capabilities. This article discusses the effects 

of spaceflight on humans, and reviews current capabilities and potential needs associated with 

the health of the astronauts where synthetic biology could play an important role in the pursuit of 

space exploration. 
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Introduction 

Space is not nearly an object of commercial exploitation or of scientific investigation, nor an 

arena limited to engineers, scientists and entrepreneurs.  It is indeed, a vast realm into which the 

human species is expanding physically and intellectually.  This expansion not only has the 

potential to enhance the human condition, but also the power to transform it radically (Finney 

and Lytkin, 1999).  It is in this context that we celebrated, in 2011, the 50th anniversary of the 

first human in outer space and the first to orbit Earth. This coincides with the 30th anniversary of 

the first space shuttle mission, and the 10th anniversary of the International Space Station (ISS), 

by far the most complex and challenging international scientific project in history. Over the past 

few decades, the National Aeronautics and Space Administration (NASA) has been at the 

forefront of human spaceflight and space exploration. Accordingly, NASA’s mission is to 

pioneer the future in space exploration, scientific discovery and aeronautics research. 

Within that pioneering context, the NASA Ames Research Center has embark upon a synthetic 

biology initiative in order to harness biology in reliable, robust, engineered systems to support 

NASA’s exploration and science mission, to improve life on Earth, and to help shape NASA’s 

future (Langhoff et al., 2011). This initiative represents a new challenge of designing, 

constructing, and testing of new methodologies, and ultimately engineered organisms, to perform 

reliable tasks to sustain human spaceflight and space exploration. Synthetic biology techniques 

are not only efficient and potentially applicable to space-flight scenarios, but they are also easily 

minimizable, and do not require use of terribly sophisticated equipment in most cases. The 
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NASA Ames Research Center and the National Academies Keck Futures Initiative co-sponsored 

a weekend workshop on the 30th-31st October, 2010 to develop ideas that demonstrate the 

potential role of synthetic biology in NASA’s missions. During the two-day workshop, NASA’s 

experts experienced in the science and engineering of space missions interacted with scientists 

involved in basic and applied synthetic biology in order to define the future research agenda for 

synthetic biology within NASA. During the workshop five different working groups where held 

in parallel, and included biological in situ resource utilization, biosensors, biomaterials and self-

building habitats, synthetic biology and human health, and life support for long term space travel 

and habitation. 

The current manuscript is a result of that intellectual interaction which took place during the 

meeting. Our working group focused on the human health perspective of synthetic biology and 

its potential to sustain long-duration spaceflight. While our group has not exhaustively and 

comprehensively reviewed all the potential human health applications of synthetic biology, the 

first section of the manuscript provides a brief introduction to synthetic biology and describes 

some diagnostic, therapeutic, and nutritional applications. The second section reviews the space 

environment and its impact on astronaut physiology. Finally, the third section aims to look at 

potential synthetic biology applications for human spaceflight, and how those could be tested and 

monitored prior and during future NASA missions. 

Synthetic Biology 

Synthetic biology is a newly emerging interdisciplinary field which aims to rationally engineer 

novel biological systems (Andrianantoandro et al., 2006; Ball, 2004, 2007; Benner and Sismour, 

2005; Endy, 2005; Keasling, 2008; Rai and Boyle, 2007). Traditional genetic engineering has 
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had a tremendous impact on biotechnology and relies heavily on naturally-existing templates, 

such as excising a gene from one DNA molecule with restriction enzymes, and pasting it to 

another with DNA ligase.  In contrast, synthetic biology allows the creation of synthetic 

sequences from scratch using de novo DNA synthesis technology. In essence, it may be possible 

to design customized metabolic pathways that are not naturally observed in nature (Figure 1). 

The field of synthetic biology is developing at an astonishingly rapid pace.  The ability to write 

synthetic DNA is increasing in an exponential fashion and the cost is decreasing (Carlson, 2010).  

In 1970, it took 20 man-years to synthesize a 75 base pair (bp) DNA sequence, but today 

researchers can easily order several tens of thousand-bp sequences from DNA synthesis 

companies at an affordable cost and reasonable turnaround time (Agarwal et al., 1970).  A 

completely chemically synthesized and “booted” Mycoplasma mycoides genome, JCVI-Syn1.0 

(1.08 Mbp), further validates the enormous power of DNA synthesis for biological engineering, 

quite literally transforming the landscape of life sciences (Gibson et al., 2010). 

With synthetic biology, biological systems and living organisms can effectively be programmed.  

In general, it can be understood as a catalyst for all biotechnology, including agriculture.  Even 

though synthetic biology is still in a very early stage, it already shows great potential to address 

many human challenges here on Earth.  This section will give some diagnostic and therapeutic 

examples of the current state of synthetic biology technology applied to human health.  

Diagnostic and Therapeutic Applications of Synthetic Biology 

Diagnostics and therapeutics based on molecular biology are reshaping our understanding of 

human health. Advances in synthetic biology as a field may enable a migration from the current 

paradigm of instruments with biological components to systems with living organisms. Synthetic 
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biology systems may enable a level of miniaturization and integration not achievable using other 

approaches, although there remain many unanswered questions about the safety, efficacy, and 

robustness of synthetic biology systems. Molecular diagnostic approaches are used to identify 

genetic disorders, and in the diagnosis of infectious diseases and cancer, among other 

applications. Monoclonal antibodies, perhaps the first wave of biotechnology, have dramatically 

transformed diagnostic procedures, and are currently on the market as cancer therapeutics, e.g. 

Herceptin (Alley et al., 2010). Molecular therapeutics such as gene therapy while showing great 

potential, have yet to result in commercial therapies, in part because of safety concerns but also 

because of the relative complexity of the in-vivo environment (Alexandrova, 2009; Deakin et al., 

2010).  

Diagnostics 

Synthetic biology finds great application in biosensing.  Biosensors combine a specific biological 

recognition element (e.g., cells, enzymes, nucleic acids, etc) with a transducer for signal 

processing, allowing for visualization or measurement of any biological interaction.  One of the 

most common biosensors is the glucose monitor used in the control of diabetes; another is the 

disposable pregnancy test.  The application space is large, reaching into areas of health, 

environmental monitoring, epidemiology, and even national defense, but the commercialization 

of biosensors has lagged in part because of the large up-front investment in R&D (Luong et al., 

2008). 

Synthetic biology can lower these costs by making the biological components of the detector and 

reporter easier to engineer, while advances in microfluidics and microelectronics are also 

contributing to faster and less expensive development.  Whole cell biosensors, which use 
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genetically engineered microorganisms as both the recognition element and transducer, offer 

many advantages, including self-manufacture and the ability to detect environmental input with 

high sensitivity, accuracy and reliability (Khalil and Collins, 2010). 

Despite the fact that various highly accurate laboratory methods have been developed to detect 

different kinds of environmental input, whole-cell biosensors are currently a promising solution 

due to speed of growth, ease of manipulation and high cost effectiveness. To illustrate this point, 

a team of synthetic biologists from the University of Edinburgh (including one of us, YC) 

developed a whole-cell biosensor to detect arsenic contamination in drinking water, a serious 

health problem in developing countries, in particular Bangladesh. The current monitoring system 

for arsenic contamination in water is the use of a colorimetric chemical test kit based on the 

Gutzeit method, which involves reductions of arsenite and arsenide to toxic arsine gas, which 

reacts with mercury (Hg) salts to generate a colored compound. These kits are reportedly 

insufficiently sensitive and fail to reliably detect levels of contamination below 100ppb (Sarkar 

et al., 2011). Moreover, Hg is also a toxic heavy metal, leading to potential issues with disposal. 

The arsenic biosensor developed by the Edinburgh group is composed of three major operons, 

which respond to three different arsenate concentrations that result in different pH outputs 

(Figure 2). The system can respond to arsenate concentrations as low as 5 ppb, while the current 

World Health Organization recommendation is 10 ppb and in many countries a more relaxed 

limit of 50 ppb is in operation (Aleksic et al., 2007). The future development of this kind of 

biosensor will lead to a cheap, reliable and foolproof field test device, which will help for 

example prevent the ongoing chronic arsenic poisoning in Bangladesh (Frisbie et al., 2009). 

Another example is yeast cells that have been engineered to detect specific chemicals.  

Dhanasekaran and colleagues developed a Saccharomyces cerevisiae strain containing 
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components from the human olfactory signaling pathway that could detect and report via 

fluorescence the presence of the odorant 2,4-dinitrotoluene (DNT), a mimic for the explosive 

trinitrotoluene (TNT) (Radhika et al., 2007).  Similar systems could “sniff” out everything from 

leaking equipment to microbiotic changes in waste processing systems. 

One of the promising diagnostic tools is DNA microarrays, a multiplex assay where microscopic 

spots of oligonucleotide DNA probes of known specific sequence are covalently attached to or 

synthesized directly on a solid surface, typically a glass slide, silicon chip, or bead (Seidel and 

Niessner, 2008).  Labeled target DNA (or cDNA or RNA) is then quantifiably detected by 

hybridization to each probe.  Hundreds of thousands of probes can thus be rapidly tested in a 

single experiment.  Among the applications for which arrays are employed include 1) the 

detection of single nucleotide polymorphisms (SNPs) for genetic testing (Eriksson et al., 2010; 

Pang et al., 2010), 2) changes in gene expression levels (Slonim and Yanai, 2009), e.g., between 

normal and cancerous cells, and 3) for molecular taxonomy of bacteria or identification of other 

species or tissues (Huyghe et al., 2008). However, they are still important challenges that need to 

be considered for successful translation of a microarray based gene profile into a routine 

diagnostic test implemented to benefit human health (Roepman, 2010). 

Finally, DNA or RNA sequencing itself is a very powerful diagnostic tool, and the current 

generation of sequencers, including those made by 454-Roche (http://www.454.com), Illumina 

(http://www.illumina.com) and Ion Torrent (http://www.iontorrent.com/) utilize sequencing by 

synthesis (SBS) mechanisms. The next-generation massively parallel sequencing approaches are 

increasing the throughput and decreasing the cost of nucleotide-resolution genomics, making 

whole transcriptomes, exomes, and genomes readily achievable (Shendure and Ji, 2008). Thus, 

rapidly evolving sequencing technologies have empowered enormous growth in the breadth and 
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depth of cancer research. However, the technology is still not mature enough for clinical 

applications and challenges related to computational analysis and interpreting the results of 

sequencing individual cases remain to be overcome (Cloonan et al., 2010; Taylor and Ladanyi, 

2011). 

Therapeutics 

Synthetic biology is well suited to the manufacture of therapeutics by bringing exceptional 

control to the manipulation of the genetic code, which in turn directs the manufacture of 

medically useful output. 

A common application is the production of a single protein or enzyme with therapeutic value.  

Genentech, considered one of the first biotechnology companies, demonstrated the feasibility of 

this approach when it made bacteria capable of synthesizing human somatostatin, a hormone that 

inhibits the release of growth hormone, in 1977.  Their first marketed compound was synthetic 

human insulin in 1982, which transformed the way we treat diabetes.  Amgen Inc., based in 

Thousand Oaks, California, used similar techniques to develop human erythropoietin and 

granulocyte-colony stimulating factor (G-CSF), hormones for, which respectively stimulates, the 

production of red and white cells. 

Antibodies are proteins that are commonly employed both as the sensing component of many 

assays and biosensors and more recently as therapeutic agents.  One advantage for drug 

development is that most of the antibody molecule remains constant, with only the antigen-

binding site changing from drug to drug, reducing pharmacokinetic variation.  While used 

extensively in vaccinations (e.g., hepatitis), monoclonal antibodies have been approved for 

cancer treatments, treating transplanted organ rejection, and for various autoimmune diseases 
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(Ball and Broome, 2010; Czaja, 2010; Klipa et al., 2010).  Synthetic biology is making 

engineered antibodies easier to manufacture, a boon to research and the development of new 

treatments (Flueck et al., 2009). 

A powerful case for the successful application of synthetic biology to therapeutics is the 

engineering of cellular metabolism to produce an antimalarial drug. Malaria is a notorious 

infectious disease affecting 300-500 million people annually and killing more than 1 million,  

worldwide, according to estimates by the CDC (Brunette et al., 2009). The majority of malaria 

patients live in sub-Saharan Africa, where inexpensive drugs would be highly desired.  Many 

malaria species have developed resistance to the more common antimalarials. One of the most 

effective antimalaria drugs is artemisinin, which is a chemical compound derived from the sweet 

wormwood plant, used extensively in Chinese traditional medicine. Yet, extracting artemisinin 

from plants proves to be a significant limiting step in the mass-production of this antimalaria 

drug. Keasling et al. pioneered the engineering of a synthetic E.coli to produce amorphadiene, 

the artemisinin precursor (Ro et al., 2006). The outcome of this synthetic biology application is 

tremendous – it could create an affordable antimalarial drug and save millions of patients in 

developing countries. The significance of this achievement using synthetic biology was quickly 

recognized by the Bill and Melinda Gates Foundation with a $42.6 million award in 2004. 

Another exciting area of therapeutic development is aptamers, small pieces of DNA, RNA, or 

peptide of random sequence which, like antibodies, have features that allow them to be both a 

sensor and a therapeutic (Cho et al., 2009).  Aptamers can be evolved to sense virtually any 

chemical compound, for example drugs like cocaine (Stojanovic et al., 2001) and theophylline 

(Ferapontova et al., 2008).  Some, like Macugen®, have already been approved by the FDA for 

clinical use, in this case for macular degeneration.  Similar to aptamers are RNA interference 
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(RNAi), microRNA (miRNA), and small interfering RNA (siRNA) therapeutics able to 

selectively induce mRNA silence, cleavage, translational repression, and cleavage-independent 

mRNA decay (Sliva and Schnierle, 2010).  

Vaccines are another important therapeutic area for synthetic biology. These typically contain a 

component of an agent or organism (or attenuated versions of them) that, when administered, 

will stimulate an immune response.  Viruses require a host cell to replicate, and hence the 

attenuated influenza strains used in the production of the flu vaccine are cultured in chicken 

eggs. To satisfy the demand for vaccine during a typical flu season, this requires hundreds of 

millions of eggs and about 6 months lead-time in manufacturing, necessitating the prediction of 

which flu variant will be prevalent each season.  Recently, Synthetic Genomics announced the 

formation of a vaccine unit in collaboration with Novartis that will utilize synthetic biology and 

genomics technologies to accelerate the production of the influenza seed strains required for 

vaccine manufacturing (Kowalski, 2010). The seed strain is the starter culture of a virus, and is 

the base from which larger quantities of the vaccine virus can be grown. Under this collaboration 

both groups will work to develop a bank of synthetically constructed seed viruses ready to go 

into production as soon as the world health organization identifies the flu strains. The technology 

could reduce the vaccine production time by up to two months. 

As with diagnostics, whole cell engineering has application in therapeutics.  Yeast cells were 

engineered to produce alkaloids, a group of natural compounds that includes morphine and other 

painkiller molecules (Hawkins and Smolke, 2008).  Meanwhile, engineered cells could prove 

important in treating cancers or even spinal damage, acting as miniature biopharmaceutical 

production plants, or combined with 3D fabrication, even the manufacture of synthetic tissues or 

organs.  
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Finally, synthetic viruses could prove to be valuable workhorses for synthetic therapeutics, 

because of their small genome size (facilitating synthesis), self-assembly processes, and ability to 

deliver genetic payloads to targeted cells.  Many viruses are currently in development as gene 

therapies, oncolytic cancer treatments, and as antibiotic agents (Khalil and Collins, 2010). 

Synthetic Biology and Nutrition 

Optimal, balanced nutrition is a major determinant of human health (Gibney et al., 2009). As 

stated by Hippocrates, the “Father of Medicine” 2500 years ago: “Let thy food be thy medicine 

and thy medicine be thy food”, nowadays nutrition still plays an essential role in prevention of 

diseases and promotion of human well-being (Shils et al., 2005). With hundreds of millions of 

food- and nutrition-deprive people globally and the increased awareness and demand of better 

nutrition strategies with the aging population, we are seeking novel ways to solve the world food 

crisis and improve human nutrition (Pinstrup-Andersen, 2008). Synthetic Biology again offers a 

unique and exciting solution to this problem, opening new possibilities into ways of guaranteeing 

better human nutrition through improving nutrient intake, absorption, and use as well as 

nutritional monitoring (Benner and Sismour, 2005). Adequate caloric intake is the prerequisite of 

optimal nutrition (Gibney et al., 2009). Synthetic Biology offers techniques useful in providing a 

more efficient supply of bio-energy (Marner, 2009; Picataggio, 2009; Wackett, 2008) and 

improving both quality and quantity of nutrients (Floros et al., 2010). For example, Synthetic 

Biology can be used to produce novel crops with superior productivity, nutritional quality, and 

tolerance to stress and environmental extremes than natural plants or to transform inedible waste 

materials into digestible food (French, 2009). In addition, Synthetic Biology is expected to 

revolutionize nutritional absorption and biodistribution by producing probiotics as dietary 

supplements of live organisms that provide health advantages for people (de Vrese and 
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Schrezenmeir, 2008), and by replacing part of the existing human microbiome with a new 

microbial community that can facilitate nutrient absorption and use, according to an individual’s 

internal and external environment (Brenner et al., 2008). Another exciting application of 

Synthetic Biology is to design and construct a microbial community in humans with the 

capability of producing various proteins or nutraceuticals which can prevent disease (Singer, 

2009), e.g., producing micronutrients vitamin C and folate, both of which we depend on from 

external sources (Leferink et al., 2009; Wegkamp et al., 2005). Synthetic Biology is also a 

promising avenue for nutrition monitoring by designing and producing family-usable bio-chips 

which can diagnose an individuals’ nutritional status as well as requirements in a quick, efficient 

and user-friendly way (Langer and Tirrell, 2004). Lastly, synthetic biology can be applied to a 

wide variety of nutraceuticals to target specific at risks physiologic pathways. 

The Space Environment 

Space is a unique and challenging environment for human beings.  The space environment is 

composed of 4 key parameters: neutral gas density (near vacuum), extreme temperature 

variations (hot and cold), weightlessness, and energetic charged particles.  The later is one of the 

main limiting factors for long duration space exploration missions, such as a mission to Mars 

(Jones and Karouia, 2008). 

Weightlessness also has an important impact on organisms.  In practice, perfect 

weightless conditions are very difficult to attain due to many factors including the disturbances 

from drag, vibrations, constantly changing gravitational vector while in orbit, so the term 

microgravity is used to describe the actual conditions during space travel.  The microgravity 

environment is responsible for the following main consequences  for onboard space system; (i) 
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no hydrostatic pressure, (ii) no weight, (iii) no sedimentation, (iv) no natural convection, and (v) 

reduced gravitational effects (Monti and Savino, 1999). 

Human Physiology Associated with Spaceflight 

The effects of microgravity on human physiology are critically important and are a 

function of mission duration.  They have been the source of extensive investigations to better 

understand them, and ultimately develop adequate countermeasures as we increase human 

presence in space.  Microgravity effects include; 1) cardiovascular dysfunction, which mainly 

results in post-flight orthostatic intolerance and reduced exercise capacity (Convertino and 

Cooke, 2005; Cooke and Convertino, 2005); 2) bone loss, which results in a decrease in bone 

mineral density at a rate of 1% from the lumbar spine and 1.5% from the hip and femur per 

month respectively (Lang et al., 2004; McCarthy, 2005); 3) muscle atrophy, which results in a 

decrease of at least 5-10% in muscle size and over 20% in muscle strength (Adams et al., 2003; 

Trappe, 2002); 4) hematological factors, which result in decreased plasma volume, blood flow, 

and blood cell mass (Sonnenfeld, 2005; Zayzafoon et al., 2005); 5a) neurovestibular factors, 

which result in spatial disorientation, postural and visual illusions and a wide variety of 

symptoms (best known as space motion sickness or space adaptation syndrome) where post-

flight results indicate peripheral and central neural processes are physiologically and functionally 

altered (Clement et al., 2005); 5b) neurological factors, which result in acute and/or delayed 

effects on the central nervous system (CNS) neuroplasticity (Vazquez, 1998); and 6) the immune 

system dysfunction, which result in reduction in T-cell counts and decreases in Natural Killer 

(NK) cell concentration and functionality (Levine and Greenleaf, 1998; Sonnenfeld and Shearer, 

2002), neutrophils have a lower phagocytosis and oxidative burst capacities (Kaur et al., 2004), 

but there is a decrease in cytotoxicity after returning to Earth (Konstantinova et al., 1995), 
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monocytes have reduced antimicrobial functions (Kaur et al., 2005), there is an increase in 

urinary interleukin-6 (IL-6) both in space and after landing (Stein and Schluter, 1994), there is a 

decreased production of interleukin-2 (IL-2) (Crucian et al., 2000), and shedding frequencies of 

Epstein-Barr virus (EPV), cytomegalovirus (CMV), and varicella-zoster virus (VZV) increase in 

astronauts during space shuttle missions (Mehta et al., 2004; Mehta et al., 2000; Payne et al., 

1999). Additionally, space radiation exposure may have synergistic effects on the previous 

factors and could impair the safety of the astronauts by stochastic or deterministic effects (Jones 

and Karouia, 2008; Manti, 2006; Shearer et al., 2005; Todd et al., 1999). 

Microorganisms in the space environment 

Previous space flight experience has demonstrated that microorganisms are just as ubiquitous in 

space habitats as they are on Earth (Pierson, 2001).  Accordingly, studies on-board spacecraft, 

Apollo, Space Shuttle, Salyut, Mir, and the International Space Station (ISS), have also shown 

the presence of a large variety of bacterial and fungal species (Castro et al., 2004; Ilyin, 2005; 

Maule et al., 2009; Novikova et al., 2006; Novikova, 2004; Ott et al., 2004; Pierson, 2001; Wong 

et al., 2010).  Several opportunistic organisms that may turn pathogenic have been identified 

onboard and emphasize that potential conditions for infectious outbreaks on future space 

missions remain a realistic concern. Furthermore, for the last four decades, multiple spaceflight 

and simulated microgravity experiments have shown changes in phenotypic microbial 

characteristics such as microbial growth, morphology, metabolism, genetic transfer, antibiotics 

and stress susceptibility, and expression of virulence factors (Horneck et al., 2010; Nickerson et 

al., 2004).  
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Therefore, space agencies must develop strategies to limit microbial contamination aboard the 

ISS and future space vehicles, by adequate disinfection and sterilization of space flight materials 

during assembly and transport to the ISS, in addition to rigorous cleaning procedures.  

Ultimately, monitoring of biological contamination is imperative and will lead, hopefully, to 

improvement in countermeasures. 

Finally, in addition to their introduction as commensal tourists attached to spacecraft or space 

habitat surfaces, natural and engineered microbial communities will be intentionally introduced 

for 1) waste processing in bioregenerative life support systems, 2) biofuels, and 3) in-situ 

resources utilization (Drysdale et al., 2003; Roepman, 2010; Rothschild and Cockell, 1999). 

Workshop Session: Synthetic Biology and Human Health 

During the meeting, five different working groups where held in parallel which included, 1) 

biological in situ resource utilization, 2) biosensors, 3) biomaterials and self-building habitats, 4) 

synthetic biology and human health, and 5) life support for long term space travel and habitation. 

Group number 4, composed of researchers and scientists from academia, the biotechnology 

industry, research institutes and governmental agencies; focused on the human health aspects of 

synthetic biology and its potential applications for human spaceflight. Some of the discussion 

initially centered on the need within the next 5 years to test synthetic biology systems in 

microgravity on the ISS, in order to assess its potential use for space application. Additionally, 

some mentioned the utility of developing a repertoire of sensing elements incorporated into 

synthetic organisms and the value of undertaking a comprehensive microbial ecology assessment 

of the biome onboard the ISS, i.e. the astrobiome, and the crew’s microbiome. Projecting the 

potential of synthetic biology within the next 15 years led to some ideas in drug delivery 

Page 16 of 54



Proof For Review

capabilities and radioprotectants. Accordingly, the development of therapies such as 

reprogrammable drug delivery patches, the engineering of probiotics as radiation protectants, and 

therapeutics for acute radiation exposure were discussed. Finally, within a 30-year timeframe, 

the use of gene knock-out, RNAi, and stem cell therapies might be implemented as 

countermeasures to the physiological changes induced in humans by the space environment. 

Similarly preventive reprogramming of the crew genome was also discussed. Finally, the need to 

perform ground studies identifying the basis for the crew’s individual susceptibility to disease 

and variability in effects and reactions to disease and the testing of large-scale genetic circuits, 

i.e. DNA sequence of defined structure and function, for their susceptibility to the space 

environment were also discussed. The astronaut selection based on individual susceptibility to 

disease still remains controversial and difficult to implement for obvious ethical reasons. 

However population-based studies of genetic susceptibility or sensitivity to disease likely will 

prove of value in assessing long-term health risks (Brackley et al., 1999). 

Potential Synthetic Biology Applications for Human spaceflight 

As we have already seen, synthetic biologists have successfully engineered a wide range of 

functionality into artificial gene circuits. Some of these engineered gene networks have been 

applied to perform useful tasks such as population control, decision making for whole cell 

biosensors, genetic timing for fermentation processes, image processing, and have begun to be 

used to address important medical and industrial problems (Lu et al., 2009). The latter is of great 

interest to sustain and implement long-duration human spaceflight capabilities. We are reporting 

here, not exhaustively, some potential synthetic biology therapeutics delivery and treatment 

applications that could be beneficial for human spaceflight.  The manuscript summarizes some 

research findings known to be related in some way to some of the issues faced by astronauts 
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during long-duration spaceflight. These different synthetic biology initiatives may one day 

contribute to the development of suitable countermeasures for problems associated with human 

spaceflight. 

Therapeutics delivery and treatment: 

Synthetic biologists have made good progress in mimicking some of the most basic features of 

regulatory networks and cellular pathways for the controlled delivery of drugs as well as gene 

therapy (Mukherji and van Oudenaarden, 2009). Synthetic oscillator circuits, genetic circuitry, 

and programmed time-delay circuits offer the autonomous capability of the synthesis and release 

of chemical compounds for suitable health applications (Atkinson et al., 2003; Stricker et al., 

2008; Tigges et al., 2009; Weber et al., 2007). For example, a recent study in cultured cells and 

in animal models has demonstrated the sophisticated kinetic control of synthetic hormones which 

may yield therapeutic advantages and reduce undesired side effects (Stavreva et al., 2009). 

Accordingly, attention to the kinetics of therapy in patients with glucocortinoid-responsive 

diseases such as rheumatoid arthritis might provide a new approach to decreasing the 

glucocorticoid side effects, while maximizing the benefit afforded to patients by these therapies 

(Schacke et al., 2002). 

RNA interference/Gene Silencing 

RNA interference (RNAi) is a process by which the presence of double-stranded RNA (dsRNA) 

induces the selective or catalytic degradation of the homologous mRNA by an endogenous cell 

machinery (Lund et al., 2010). Small interfering RNA (siRNA) is capable of knocking down 

targets in various diseases in vivo (de Fougerolles et al., 2007). Cancer associated cellular 

pathways such as oncogene and anti-apoptotic gene expression and regulation are effective 
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targets for this technology, as are genes that play a role in host-tumor interactions, and those that 

confer resistance to radio- and chemotherapy (Ellis and Hicklin, 2009). Accordingly, in vivo 

investigations and successful treatment of bone and ovarian cancer has been reported with 

siRNA (Halder et al., 2006; Takeshita et al., 2005). Over the past few years, an important role of 

micro RNA (miRNA) in cancer pathogenesis has emerged and many studies have reported a link 

between cancer and unregulated expression of miRNAs (Calin and Croce, 2006). Therefore, 

synthetic biology might be a suitable system to tackle many of the obstacles related to 

carcinogenesis and tumor progression. Furthermore, synthetic circuits, by their ability to silence, 

activate, and tune the expression of desired genes, provide a more suitable approach to gene 

therapy. As such, a genetic switch that couples transcriptional repressor proteins and an RNAi 

module for tight, tunable, and reversible control systems over the expression of desired genes in 

mammalian cells models has been developed (Deans et al., 2007). This type of an approach is 

particularly attractive given its efficacy. Application of these techniques towards gene silencing 

had shown to be extremely promising with a yield > 99% for target gene repression. 

Recombinant Adeno-Associated Virus (rAAV) 

In terms of applying some of these technologies to the field, an ideal gene transfer vector should 

be efficient, safe, economic, and have ease of use (Monahan and Samulski, 2000). Viral vectors, 

e.g. retrovirus, lentivirus, adenovirus, and adeno-associated virus are considered to be an 

effective delivery system as they are efficient, associated with higher infection efficiency, and 

provide more pre-clinical and clinical utility than non-viral vectors (Bonadio and Cunningham, 

2002). Accordingly, recombinant adeno-associated virus (rAAV) holds promise as a gene 

therapy vector for a multitude of genetic disorders.  
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For example, promising findings include the use of rAAV as a gene therapy vector to treat 

hemophilia, cystic fibrosis and the muscular dystrophies (Schultz and Chamberlain, 2008). 

Additionally, rAAV vector is one of the most promising systems for the correction of bone 

defects, cartilage lesions, and rheumatoid arthritis (Dai and Rabie, 2007). More recently, a 

combination of lyophilized rAAV and biomaterials, e.g. hydroxyapatite, presents a promising 

strategy for bone regenerative medicine (Nasu et al., 2009). 

Some of the major drawbacks of cancer therapies are problems with inefficient drug delivery, 

drug resistance, and the undesired effects some drugs have on normal cells (a lack of tumor 

specificity). Replicating viruses could overcome these drawbacks and be designed to selectively 

replicate in and lyse tumor cells, while leaving normal tissue unaffected. Interestingly, p53 and 

E2F transcription factor pathways are altered frequently in human cancers and are among 

regulatory targets for cancer therapy (Polager and Ginsberg, 2009). Accordingly, an rAAV has 

been engineered to contain a novel regulatory circuit to synergize replication of the virus to the 

state of the p53 pathway in human cells (Ramachandra et al., 2001).  Thus, usual expression of 

p53 in normal cells resulted in the inhibition of viral replication, whereas wild type viral 

replication levels and subsequent cell killing were observed in tumors cells, where the p53 

expression is altered. Similarly, cancer-targeting E. coli were engineered so their ability to target 

cancer cells was specifically linked to sensing heterologous environmental signals from the 

malignant cell microenvironment (Anderson et al., 2006). Thus, the method could be used to 

engineer bacteria to sense the microenvironment of a tumor and respond by selectively killing 

cancerous cells, thru the release of cytotoxic agents. 

Synthetic Matrix 
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Regenerative medicine is a new therapeutic strategy that promotes the healing of diseased or 

damaged organ, e.g. skin. Advances over recent years have been a result of collaborative 

research among biomaterial, pharmaceutical, and biological fields (Huang and Fu, 2010). 

Accordingly, research has shown that optimal healing environments are induced by moist wound 

healing. This resulted in the development of various occlusive synthetic dressings that improved 

acute and chronic wound environments. These new synthetic polymer dressings maintain an 

ideal moist wound environment, help autolytic debridement, prevent infection, and speed up 

granulation and epithelialization (Limova, 2010). Similarly, a large subset of biologically active 

materials and synthetic skin substitutes has been developed to address the various challenges of 

wound healing in general and minimize problems created by fluid loss and infection (Shores et 

al., 2007). 

Antimicrobial Agents 

Synthetic biology provides new grounds to circumvent drug development problems by offering 

promising antimicrobial strategies. For example, a bacteriophage engineered to over-express 

cellular proteins and attack gene networks that are not directly targeted by antibiotics has been 

created (Lu and Collins, 2009). This work revealed that suppressing the SOS network, i.e. 

regulatory network induced by DNA damage, in E. coli by the non-lytic M13 phage enhanced 

the killing by three major classes of antibiotics both in vitro and in murine models. Thus, 

engineered bacteriophage targeting non essential gene networks can be implemented to 

supplement other antimicrobial strategies to reduce the incidence of antibiotic resistance and 

enhance bacterial killing. 

Biofilms 
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Bacterial biofilms are differentiated communities of sessile cells. Cellular encapsulation and 

attachment is provided by the expression of extracellular matrix components curli fimbriae and 

cellulose (Wang et al., 2006). The large collection of cells and the materials that hold them 

together make them naturally resistant to antibiotics, as the core cells do not typically come in 

contact with the antibiotic. Biofilms are also difficult to remove from the surface they attach to. 

Infections involving biofilms play a major role in diverse medical conditions presenting a 

significant threat to human health. Biofilms were common problem on the Russian space station 

MIR, as were astronaut skin reactions (Jones et al., 2004; Pierson, 2001). Therefore, the 

development of novel, efficient, and cost-effective treatments are needed to impede the current 

trend of antibiotic resistance and biofilm formation (Hoffman et al., 2005). Specially engineered 

bacteriophage have been used to express a biofilm degrading enzyme to simultaneously attack 

the bacterial cells in the biofilm and the biofilm matrix upon infection (Lu and Collins, 2007), 

resulting in over 99% removal of biofilm bacterial cells. The applicability of synthetic biology, 

by engineering bacteriophage, paves the way in helping to circumvent important medical and 

industrial problems.  

Testing of Synthetic Biology 

Synthetic biology offers tremendous new opportunities to benefit all aspects of life, and human 

health in particular. In order to assess the applicability of synthetic biology for the space program 

scientists will have to test those systems under the stringency of the space environment. This will 

help to reduce the uncertainties associated with cellular and organismal responses to 

microgravity and the space environment. Scientific experiments involving spaceflight are 

particularly difficult due to relatively infrequent flight opportunities, restrictions on up and down 

mass, significant planning expenses, and limitations in crew time. Some measures have been 
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taken to address these limitations by modeling space environment conditions right here on Earth. 

To investigate cellular alteration under simulated microgravity, NASA’s Johnson Space Center 

developed a new type of cell culture instrument, the Rotating Wall Vessel (RWV) that is based 

on the principle of clinorotation (Klaus et al., 1998). The underlying principle is the nullification 

of gravitational forces by a slow rotation around one axis which creates a low shear environment 

(Figure 3). This new technology paralleled the efforts of the European Space Agency in the 

development of a Random Positioning Machine (RPM), which uses a two-axis system. Although 

some reports point towards similar effects on cells, it remains controversial whether one is 

superior to the other (Patel et al., 2007; Villa et al., 2005). 

The RWV was initially developed for the purposes of cell culture in simulated microgravity. 

Previous studies on bacteria, revealed that the conditions of either a Low Shear Modeled 

Microgravity (LSMMG) or spaceflight provoque an environmental signal that induces significant 

molecular changes on the organism (Nickerson et al., 2003; Nickerson et al., 2004; Wilson et al., 

2007).  As such, 1) bacterial growth kinetics are usually increased under an LSMMG 

environment as compared to Earth gravity controls, 2) simulated microgravity does not have a 

universally negative effect on secondary metabolites, 3) simulated microgravity confers bacterial 

resistance to environmental stresses and antibiotics, and 4) simulated microgravity environment 

increases the virulence of pathogenic bacteria. Furthermore, it seems that the bacterial response 

to simulated microgravity is species-specific, and thus a comprehensive assessment of the 

applicability of synthetic biology altered microorganisms to the space environment will have to 

be undertaken. 

Such efforts will pay off, however, both helping to ensure mission success and improving life on 

this planet in the process. As is often the case, materials and technologies developed for the 
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space mission context have practical applications on Earth. The possible developments of 

synthetic biology systems for space applications carry important considerations for Earth-based 

pathologies and clinical applications. The use of microgravity or simulated microgravity may 

alter cell behavior including growth pattern, apoptosis and gene expression, in order to take 

advantage of some of these changes for a particular application. Hence, one could think of this 

concept as using physical properties of the environment to bring or alter a cell’s behavior for a 

certain function. A few examples are presented below: 

- use of 3-D culture of human small intestinal epithelial cell line to infect human cells 
by nanovirus, which was previously not possible in other cell cultures (Straub et al., 
2007), 

- in vivo use of cartilage created using the RWV to heal injuries (Yoshioka et al., 
2007), 

- use of RWV in combination with extracellular matrix to influence embryonic stem 
cell differentiation (Chen et al., 2007b; Philp et al., 2005), 

- use of engineered myocardial patch to replace myocardium following infarction 
(Bursac et al., 2007), 

- use of the RWV environment to produce stroma for corneal tissue engineering (Chen 
et al., 2007a), 

- culturing of pancreatic islets in RWV to improve the success of islet transplantation 
in diabetic patients (Rutzky et al., 2002; Stepkowski et al., 2006), 

- use of the simulated microgravity environment to make use of a unique growth 
pattern of endothelial cells, which could potentially have an impact for angiogenesis 
and cardiovascular disease (Grimm et al., 2010). 

 

Overall, in addition to spaceflight applications, the use of simulated microgravity for cell biology 

presents new venues to treat diseases on Earth, particularly with tissue engineering. This has 

been recognized in the past decades by the scientific community (Abbott, 2003). It will be 

interesting to see where this exploration takes us in the future.  

Monitoring of synthetic biology 
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Monitoring of synthetic biology systems is a prerequisite for the use of these systems in the 

space environment. Monitoring would provide a level of assurance that SB systems remain 

functional and safe, even in unpredictable situations. Critical monitoring functions could include: 

1) an ability to detect the presence/absence of SB organisms including the ability to sequence 

their genetic material, and 2) the ability to monitor their performance, whether at the level of 

gene expression, protein expression, or other measures. 

 NASA is currently funding early development of the Search for Extra-Terrestrial 

Genomes (SETG) instrument, which would have the capability to isolate, detect, and sequence 

DNA or RNA (Isenbarger et al., 2008). SETG is based on the hypothesis that life on Mars, if it 

exists, may be related to life on Earth, and hence have common genetic systems. The 

approximately one billion tons of rock thought to have been transported between these planets, 

due to meteorite impacts mainly between 3.5-4 Gya, may have carried viable microbes (Javaux, 

2006). If so, such microbes may continue to survive on Mars today, or we may all be Martians. 

Thus, SETG will target life-as-we-know-it by isolating, detecting and sequencing RNA or DNA 

in situ from soil, ice, or brine samples on Mars (Figure 4). The most viable approaches for 

automating these instrument functions require biological components, including nucleotides, 

DNA primers, and enzymes such as DNA polymerase and reverse transcriptase. These 

components, while far from some definitions of synthetic biology, are already synthetic: primers 

are synthesized from nucleotides and are often modified in both novel ways, and those that exist 

in nature. Polymerases have been widely engineered to improve, remove, or add functionality 

(Wang et al., 2004). Other instruments including some already slated for flight, depend upon 

similar biological components. On a related note, antibodies are a critical component of the Life 

Marker Chip, developed for the ExoMars mission; this instrument will use an immunoassay 
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approach in an attempt detect specific organic molecules (Parnell et al., 2007; Thompson et al., 

2006). These components must withstand a number of challenging aspects of the space 

environment including potential large temperature fluctuations, and a more intense and diverse 

radiation environment. Understanding how to safely store these components over long periods of 

time and how to protect them from the extreme conditions in space will support the development 

of space systems with increased biological heritage. If these systems ultimately utilize living 

synthetic organisms, the ability of these organisms to survive in the space environment will also 

inform our search for the origin of life on Earth and in particular of the probability that life has 

been spread via meteoritic transfer, i.e. the panspermia hypothesis (Mileikowsky et al., 2000). 

SETG’s intended application is to search for life on Mars that could be ancestrally related to life 

on Earth (or vice versa), but it can also be used in planetary protection, space medicine, and 

environmental health applications. It may also have a role in monitoring space applications of 

synthetic as well as natural biology. 

 Some of the stress factors, microgravity and space radiation, have a tremendous impact 

on expanding our needs for space exploration and could benefit our understanding of the limits 

of life. Real-time microbial gene expressions analyses during exposure to the harsh environment 

of space can provide new means and insights into cellular processes. However, current protocols 

to assess how the space environment alters cellular activities, performed either on the ISS, other 

spacecrafts (e.g. small satellites), and high altitude balloons, require fixing the cells in space after 

short- or long-term exposure, then conducting wet laboratory studies in ground facilities. This is 

due to the lack of flight qualified analytical instruments for biological studies. Thus, the 

development of an instrument that could perform in situ microbial gene expression analysis for 

small satellites and the ISS is needed.  
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Accordingly, NASA is also funding the development of a space-based instrument for measuring 

in situ gene expression of microorganisms. This miniaturized fluidic system will automate all the 

steps involved in growing microorganisms, extracting RNA from these organisms, and 

hybridizing nucleic acids to DNA microarrays (Pohorille et al., 2010). The prototype under 

development in collaboration with CustomArray Inc. (Mukilteo, WA) will be a small integrated 

and automated system part of the nanosatellite platforms developed by NASA’s Ames Research 

Center’s Small Spacecraft Office. The system will perform the automated cultivation and 

measurements of gene expression of the photosynthetic bacterium Synechococcus elongates (a 

cyanobacterium) exposed to polar orbit for a proposed period of 6 months. S. elongatus and other 

cyanobacteria in general, exhibit remarkable metabolic diversity and resilience to adverse 

conditions (Gao et al., 2009; Lopez-Gomollon et al., 2009; Olsson-Francis et al., 2010; 

Rothschild and Mancinelli, 2001). For this reason, NASA considers cyanobacteria to be ideal 

model organisms for research on the adaptation of terrestrial organisms to the space 

environment. Subsequently, understanding the underlying mechanisms of adaptation of these 

microorganisms to microgravity and ionizing radiation, as provided by long-term cultivation in a 

small satellite, can provide details about the suitability of cyanobacteria and other 

microorganisms (including those manipulated by synthetic biology) for space applications. Once 

developed, the system can be used with minor modifications for multiple experiments on 

different platforms in space, including extensions to higher organisms and microbial monitoring. 

Thus, the instrument will support multiple objectives in astrobiology, fundamental biology and 

biomedical space sciences. 

 Finally, monitoring of organics from natural or synthetic biology systems could be 

accomplished using tools such as the Mars Organics Analyzer (MOA) (Benhabib et al., 2010). 
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The multichannel MOA, a portable instrument for the sensitive microchip capillary 

electrophoresis analysis of organic compounds such as amino acid biomarkers and polycyclic 

aromatic hydrocarbons has been developed as part of the quest to search for signs of past or 

present extraterrestrial life on the Martian surface . The instrument includes all the necessary 

microfluidics, optics, and electronics for in situ capillary electrophoresis analysis of a variety of 

organic molecules (Stockton et al., 2010). Interestingly, the MOA is one of the analytical 

elements of the Urey Instrument (Figure 5), which was developed for the Pasteur payload of the 

ExoMars rover (Aubrey et al., 2008). 

 No doubt there are numerous other instruments and programs that would also contribute 

to our ability to monitor and control synthetic biology systems. While we have not exhaustively 

reviewed them here, we feel such monitoring is useful from a verification perspective, as it is 

also enabling by combining synthesis tools with monitoring tools which could facilitate in situ 

synthetic biology, such as engineering a synthetic biology system to produce a medicinal 

compound identified after the start of a spacecraft mission. 

These tools also highlight a potential path to development of synthetic biology systems 

for spaceflight: initially, such systems will be conventional instruments with synthetic or 

biological components, later, such components may be replaced with more-integrated synthetic 

components and ultimately synthetic organisms. Whether such systems can achieve the 

robustness required for space operations remains to be seen. Additionally, the systems presented 

are complementary and could be part of an integrated microbial monitoring system. Such 

systems could support planetary protection efforts, hardware reliability, and help to sustain crew 

health during exploration class missions (Venkateswaran et al., 2010). 
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Recommendations and conclusions: 

The current manuscript is a brief snapshot of a workshop held at the NASA Ames Research 

Center where experts involved in the science and engineering of space missions were interacting 

with scientists involved in basic and applied synthetic biology research in order to frame the 

potential research agenda for synthetic biology within NASA missions. During the meeting five 

different working groups where held in parallel. The synthetic biology in human group was 

primarily looking at the human health aspect of synthetic biology and its potential applications 

for human spaceflight. A broad spectrum of human health applications have promising potential 

for human spaceflight and will help circumvent some of the physiological challenges 

encountered by astronauts during long-duration spaceflight, thus helping to ensure mission 

success. Some of the applications discussed herein are promising technologies that have direct 

applications to many facets of space travel. Their practicality in the harsh and stressful space 

environment, however, remains to be demonstrated. It is the opinion of this panel, however, that 

the development and implementation of trial experimentation and assessment should be 

considered in the very near future.  

NASA Ames initiative 

The NASA Ames Research Center (ARC) synthetic biology initiative is intended to assess, 

develop, and implement the potential use of synthetic biology for space applications(Langhoff et 

al., 2011). Such applications could gravitate around potential development of biosensors to 

understand the astrobiome, conduct experiments to help us tailor life off the planet using 

appropriate platforms, e.g. ISS and nanosatellites, and research the production of bioproducts to 

sustain long-duration spaceflight. These initiatives will be implemented by the development of a 
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synthetic biology program at ARC that will include opportunities for research fellows to perform 

cutting edge research that has a direct impact on NASA missions with NASA scientists as 

mentors, and the possibility to accommodate groups of talented undergraduate students over the 

summer to work on a particular synthetic biology research project. It will be important, within 

NASA to acknowledge the potential technical and economical benefits associated with the 

synthetic biology initiative to implement the current missions and programs, and subsequently 

expand towards the more challenging goals of space exploration.  A goal for NASA also would 

be to develop low-cost, low-power, automated, and miniaturized, space-qualified microarray and 

sequencer instruments for environmental monitoring and health diagnostic applications to sustain 

and implement space exploration. These could be implemented by providing new sources of 

funding to the scientific community to tackle those particular challenges. 

One interesting opportunity worth considering is the International Genetically Engineered 

Machine (iGEM) Competition. Since 2004, iGEM provides undergraduates with an opportunity 

to design and create unique synthetic biology research projects. The competition is held each 

year at the Massachusetts Institute of Technology (Cambridge, MA) and gives an opportunity to 

the students to present their work and be recognized through different prizes for their efforts and 

achievements (Purnick and Weiss, 2009). As a result of this competition, a plethora of research 

projects have significantly contributed to the field of synthetic biology, many of which have led 

to publications in the field. NASA has a unique opportunity given its community role, the agency 

and its mission inspire the public in general, and the youth in particular, to undertake the 

initiative to host groups of students that will participate in the iGEM competition. Furthermore, it 

might also be a good initiative for NASA to sponsor a space related prize within iGEM, where 

research projects contributing to NASA missions could be recognized. 
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Synthetic biology has emerged as a new and vibrant discipline that has the potential to impact 

how we interact with the environment and how we approach human health. Subsequently, we 

will need to consider both the potential benefit and harms to Earth and our society. Thus, 

synthetic biology raises several ethical issues that will have to be addressed. For example, the 

issues associated with the risk that knowledge from synthetic biology will be misused in 

biological terrorism or warfare is of great concern (Douglas and Savulescu, 2010). Furthermore, 

as noted during the workshop, the negative public perception of synthetic biology and the 

creation of artificial life in particular are still very strong. These concerns will have to be 

addressed and the scientific community could certainly play an important role in reaching out 

through the traditional media, teaching courses at all levels, presenting public seminars, and the 

use of social media to present a case for these techniques and the potential synthetic biology 

benefit to the environment and human health. Finally, the requirements for space applications are 

different from those on Earth and therefore will have to also be addressed with the international 

NASA partners through COSPAR (committee on Space Research). 

The aim of this manuscript was to give an introduction of synthetic biology in the context of 

human health, present some of the challenges that the astronauts have to face during long-

duration spaceflight, and give some examples of current synthetic biology initiatives that might 

impact human spaceflight. The latter provides a summary of the literature on particular synthetic 

biology topics related to human spaceflight. It is clear that synthetic biology offers tremendous 

potential to both Earth based medicine and space crew health to help address some of the risks 

associated with humans venturing into extreme environments.  
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Legends for figures: 

Fig. 1. Schematic illustration of synthetic biology. 

Fig. 2. Schematic diagram of the complete arsenic biosensor system. The system is controlled 

by two repressor proteins, ArsR (responding to low concentrations of arsenate or arsenite) and 

AsrD (responding to higher concentrations). In the presence of lactose, but absence of arsenate, 

urease is induced and the pH rises. When low amounts of arsenate are present, an ArsR-

repressed promoter is induced, leading to expression of lambda cI repressor, switching off urease 

production. Thus the pH remains neutral. If higher amounts of arsenate are present, LacZ 

expression is induced through an ArsD-responsive promoter, leading to a fall in pH. 

Fig. 3. Overview of the Operating Orientations of the RWV and the Effects of RWV 

Rotation on Microbe Suspension.  A. Picture of the High Aspect Rotating Vessel (HARV) 

attached to the rotating/aerating platform (Synthecon Inc., Houston, TX).  B. The two operating 

orientations of the Rotating Wall Vessel are depicted.  In the Low Shear Modeled Microgravity 

(LSMMG) orientation (i), the axis of rotation of the RWV is perpendicular to the direction of the 

gravity vector.  In the normal gravity orientation (ii), the axis of rotation is parallel to the gravity 

vector.  C. Effects of RWV rotation on cell suspension.  When the RWV is not rotating or in the 

normal gravity orientation (i), the cells in the apparatus will sediment and settle on the bottom of 

the RWV due to gravitational force.  When the RWV is rotating in the LSMMG position (ii), 

cells are continually suspended in the medium.  The medium within the RWV rotates as a single 

body, and the sedimentation of the cells due to gravity is offset by terminal velocity. 
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Figure 4. The Search for Extra-Terrestrial Genomes (SETG) instrument. This 2.5 

centimeter by 2.5 centimeter (or 1 inch by 1 inch) microfluidic chip is part of the SETG 

instrument prototype, which performs amplification and detection of DNA. Tiny channels feed in 

the samples to be analyzed and control the fluidic circuitry on the chip. Blue light excites 

fluorescent dyes that help identify DNA within 3072 cubic chambers, each about the width of a 

human hair, or one billionth of a liter in size. Image credit: C. Carr. 

Figure 5. Computer Assisted Design of the Urey Instrument. The Urey instrument uses a 

Sub-Critical Water Extractor (SCWE), the Mars Organic Detector (MOD), and a Micro-

Capillary Electrophoresis (µCE) analyzer to investigate the target organic compounds in samples 

collected during the ExoMars rover activities. Samples will be analyzed to detect the presence of 

organic compounds and to determine their composition. If detected, amino acids are analyzed 

further to determine their chirality. Image courtesy of NASA 
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Fig. 2.  
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