Fundamental Aeronautics Program

Subsonic Rotary Wing Project

SRW Aeromechanics Overview/UH-60 Airloads Wind Tunnel Test Summary

Thomas R. Norman
Technical Lead
Aeromechanics Discipline

2011 Technical Conference
March 15-17, 2011
Cleveland, OH

www.nasa.gov
Agenda

• Aeromechanics Overview
 – Aeromechanics Objectives and Task Areas
 – Recent Accomplishments
 – Aeromechanics Near-Term Plans

• UH-60 Airloads Wind Tunnel Test Summary
Objectives

- Advance the understanding of phenomena in aerodynamics, dynamics, and active control of rotorcraft
- Develop and validate first-principles tools
- Acquire data for tool validation from small- and large-scale testing of existing and novel rotorcraft configurations
Aeromechanics Task Areas

- Aeromechanics Discipline organized into 6 interrelated task areas
 - CFD/CSD Tool Development and Applications
 - Structured
 - Unstructured
 - Icing
 - Active Rotors
 - Advanced Configurations
 - Rotor Aerodynamics and Interactions
 - Rotor Dynamics and Control
Recent Accomplishments

• CFD
 – Made significant improvements in structured and unstructured rotorcraft CFD methods (OVERFLOW and FUN3D)

• Icing
 – Continued development of high-fidelity icing analysis tools
 – Completed test of oscillating airfoil in Icing Research Tunnel (IRT)
 – Developed plans and began detailed preparations for subscale rotor test in IRT
Recent Accomplishments

• Active Rotors
 – Actuators developed, blade fabrication initiated, and test prep continuing for Active Twist Rotor (ATR) in Transonic Dynamics Tunnel (TDT)

• Advanced Configurations
 – Completed design and began fabrication of Tiltrotor Test Rig (TTR) and supporting equipment (balance calibration stand, model prep facility) for future testing in 40x80
Recent Accomplishments

• Rotor Aerodynamics and Interactions
 – Completed UH-60 Airloads rotor testing in NFAC 40x80 tunnel
 – Completed 1st phase of downwash/outwash hover testing
 – Completed testing and analysis of small-scale active flow control for fuselage drag reduction
 – Completed actuator development, fuselage fabrication, and test preparations for 14x22 test of active flow control fuselage with rotor
Aeromechanics Near-Term Plans

• Continue development and validation of structured and unstructured rotorcraft CFD methods
• Conduct icing test of sub-scale rotor in IRT
• Conduct Active Twist Rotor test in TDT
• Complete fabrication and development of TTR and conduct checkout test in 40x80
• Continue data evaluation/reduction and analysis validation with data from UH-60 Airloads wind tunnel test
• Downwash/outwash hover testing
• Conduct active flow control evaluation for fuselage in presence of rotor in 14x22
UH-60A Airloads Wind Tunnel Test Summary
Outline

• Test Objectives
• Test Description
• Test Phases and Conditions
• Sample Results
• Summary
• Near-Term Plans
Test Objectives

• Objectives
 – Acquire comprehensive set of validation-quality data (including airloads) to challenge SOA modeling and simulation tools
 – Acquire data to evaluate similarities/differences between small-scale wind tunnel, full-scale wind tunnel, and full-scale flight tests

• UH-60A Airloads Test successfully completed (May 2010) in USAF 40- by 80-Foot Wind Tunnel
Hardware

- Testing conducted in USAF National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-Foot Wind Tunnel

- UH60A rotor system mounted on Large Rotor Test Apparatus (LRTA)
 - Rotor system uses same blades as used during 1993 flight testing, including pressure blade
 - Production UH-60 rotor system (hub, spindles, shaft extender, swashplate, pitch links)
 - LRTA provides rotor mount and calibrated rotor balance
Instrumentation

• 456 unique measurements acquired at each data point
• Key Instrumentation
 – Blade Pressures
 • 235 pressure transducers, mostly in chord-wise arrays at 9 radial stations
 – Rotor Performance
 • 28 LRTA balance gages to determine rotor forces and moments
 – Blade Structural Loads
 • 28 blade bending gages at 9 radial stations
 – Blade Root Motion Measurements
 • Two sets of 12 measurements each to measure blade root motion
Data Acquisition

• Two Primary Data Acquisition Systems
 – NFAC Data Acquisition System for most data
 • Standard wind tunnel system, 16-bit
 • Data acquired at 256 samples/rev
 – Rotor Mounted Data Acquisition and Transmission System (RMDATS) for blade pressures
 • New rotating data system designed for this test, 16-bit
 • Data acquired at 2048 samples/rev

RMDATS Rotating Subsystem
Independent Measurement Systems

- Three new systems developed specifically for this test
 - Blade Displacement System
 - Blade displacement and deformation
 - Retro-reflective Backward Oriented Schlieren (RBOS)
 - Tip vortex trajectory and orientation
 - Particle Image Velocimetry (PIV)
 - Flow velocities and vortex properties
Test Phases and Conditions

- 1-G Level Flight Sweeps
- Parametric Sweeps
- Airloads Flight Test Simulation
- DNW Wind Tunnel Test Simulation
- Slowed Rotor Testing
- PIV Testing
Test Phases and Conditions

• 1-G Level Flight Sweeps
 – Simulated 1-g level-flight speed sweeps (matching lift and propulsive force)
 – Advance ratio sweeps up to 0.4 for 3 lift levels

• Parametric Sweeps
 – Controlled variations of thrust, advance ratio, hover tip Mach number, and shaft angle across and beyond flight operating conditions
 – Thrust sweeps at 6 advance ratios, 3 tip Mach numbers, and 5 shaft angles
Test Phases and Conditions

• Airloads Flight Test Simulation
 – Matched conditions from Airloads Flight Test, including derivative points around the baseline to determine sensitivities
 – 3 flight conditions matched (c8425, c8525, c9020)

• DNW Wind Tunnel Test Simulation
 – Matched conditions from DNW small-scale test, including derivative points around baseline
 – 3 DNW conditions matched (11.24, 13.12, 13.20)
Test Phases and Conditions

• Slowed Rotor Testing
 – Parametric sweeps to evaluate non-conventional operating envelopes made possible by large reductions in rotor RPM
 – Collective sweeps at 3 hover tip Mach numbers and 3 shaft angles up to advance ratios as high as 1.0

• PIV Testing
 – Acquired detailed velocity data at selected test points to better understand flow physics
 – 11 different flight conditions
Sample Data – Stall Sweep

- Thrust vs. collective for collective pitch sweep (Mtip=0.625, mu=.30, alpha=0)
- Roll-off of thrust at high collectives indicative of stall
Sample Data – Stall Sweep

- Radial plots of section normal force (M2CN) at nominal and deep stall conditions (Mtip=0.625, mu=.30, alpha=0)
- Significant changes in lift distribution at stall

Nominal Thrust, $C_T/\sigma=0.08$

Deep Stall, $C_T/\sigma=0.125$
Sample Data – Stall Sweep

- Time history of section normal force (M2CN) at $r/R = 0.92$ for collective pitch sweep ($M_{tip}=0.625$, $\mu=.30$, $\alpha=0$)
- Lift stall evident at $\psi= 290$ deg and 340 deg at high collective
- Evidence of first stall cycle as low as 4.1 deg collective
Summary

- UH-60A Airloads Test successfully completed (May 2010) in NFAC 40x80 Ft Wind Tunnel
 - Measurements included blade pressures, rotor performance, blade loads, blade displacement, and rotor wake (using large-field Particle Image Velocimetry (PIV) and Retro-reflective Background Oriented Schlieren (RBOS))
 - Data acquired (including airloads) should provide excellent resource for validation of SOA modeling and simulation tools

- Data acquired over wide range of test conditions
 - Speed and thrust sweeps up to 175 kt and 32000 lb
 - Specified conditions from previous full-scale flight test and small-scale DNW wind tunnel test
 - Slowed-rotor simulation data at reduced RPM, achieving advance ratios up to 1.0
Summary

• Unique accomplishments
 – Most highly-instrumented rotor test ever conducted in the NFAC (including 235 rotating pressure transducers)
 – First test of production UH-60 rotor at high advance ratios (up to 1.0)
 – Successful acquisition of PIV data over the largest area ever attempted in NFAC (4 ft by 13 ft)
 – First ever use of an 8-camera, 4-quadrant photogrammetry technique to measure blade displacements

Laser for Particle Image Velocimetry

Retro-reflective Blade Displacement Targets
Near-Term Plans

• Prepare publications documenting test and techniques
 – 3 at May 2011 AHS Forum
 • Test overview
 • Slowed rotor
 • Analysis correlation
 – 2 at June 2011 AIAA meeting
 • PIV system development
 • Blade Displacement system development
• Continue data review, evaluation, and data reduction
• Prepare for external data release (documentation, data formatting)