Risk Management Issues - an Aerospace Perspective

Jeevan S. Perera, PhD, JD
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas 77058

Aviation Logistics & the Resources Sector 2011
Perth, Australia
11 May, 2011
Agenda

♦ NASA’s Current Environment
♦ Space Exploration Systems
 • Short Video
♦ NASA’s Risk Management Paradigm
♦ Risk Management Lesson Learnt
♦ Summary
♦ Q&A
Exploration Strategy Themes

♦ Pursue scientific activities to address fundamental questions about the solar system, the universe, and our place in them

♦ Extend sustained human presence to beyond Earth

♦ Use near Earth destinations to prepare for future human and robotic missions to Mars and other destinations

♦ Expand Earth’s economic sphere with direct benefits to life on Earth

♦ Strengthen existing and create new global partnerships

♦ Engage, inspire, and educate the public
NASA’s Current Uncertain Environment

♦ Obama’s proposal is to cancel most of the new Space Initiatives proposed by President Bush in 2004

- Design, develop and fly the Shuttle replacement vehicle (Orion: Crew Exploration Vehicle) by 2015
- Return to the Moon around 2020
- Extend human presence across the solar system and beyond (starting with Mars)

♦ Instead focus on:

- Collaboration with commercial sector to develop and operate “taxi services” to low-earth orbit (Shuttle replacement) – SpaceX (Falcon 9), Orbital (Taurus II), etc
- Developing technologies vs. developing systems (NACA)
 - Fund technology aimed at enabling future deep-space exploration systems including new types of rocket engines /propulsion, heavy-lift launch vehicles, fueling spacecraft in orbit (on-orbit fuelling stations), etc
 - Enhance robotic exploration of space (including precursors to human missions)
 - Research and development of remote autonomous space factories for in-situ utilization
- Develop a simplified MPCV vehicle to provide multipurpose utility for space explorations. Also, use MPCV as part of the technological foundation for advanced spacecraft for future deep space missions.
- Human exploration to asteroids (2025) and eventually Mars (2030s)
- Foster more International collaboration on future missions/projects (e.g. ISS)
- Initiate development of a heavy-lift launch vehicle in 2012
Launch Vehicle Comparisons

Space Shuttle
- Height: 184.2 ft
- Gross Liftoff Mass: 4.5M lb
- 55k lbm to LEO

Ares I
- Height: 321 ft
- Gross Liftoff Mass: 2.0M lb
- 48k lbm to LEO

Saturn V
- Height: 364 ft
- Gross Liftoff Mass: 6.5M lb
- 99k lbm to TLI
- 262k lbm to LEO

Falcon 9
- Height: 180 ft
- Gross Liftoff Mass: 0.7M lb
- 23k lbm to LEO
- 10k lbm to GTO

S-IVB
- (1 J-2 engine)
- 240k lb LOx/LH2

S-II
- (5 J-2 engines)
- 1M lb LOx/LH2

S-IC
- (5 F-1)
- 3.9M lb LOx/RP

Upper Stage
- (1 J-2X)
- 280k lb LOx/LH2

5-Segment Reusable Solid Rocket Booster (RSRB)

Crew

Lander

S-IVB

(1 J-2 engine)

240k lb LOx/LH2

S-II

(5 J-2 engines)

1M lb LOx/LH2

S-IC

(5 F-1)

3.9M lb LOx/RP

Upper Stage

(1 J-2X)

280k lb LOx/LH2

Falcon 9

Volume: 245 ft³ (pressurized)
Payload Up Mass: 13K lbm
Up to 7 crewmembers

Dragon

Volume: 245 ft³ (pressurized)
Payload Up Mass: 13K lbm
Up to 7 crewmembers
Multi-Purpose Crew Vehicle (CEV)

♦ Requirements similar to Apollo
 • Simpler design, higher reliability/safety, broader missions, faster and cheaper development
 • Capsule scaled up from Apollo (which provide significant increase in volume with reduced development time and risk)

♦ Separate Crew Module and Service Module

♦ Variable Crew size

♦ Deliver a quality design that ensures simplicity and addresses all aspects of human spacecraft development, certification, operations and safety

♦ Meet objectives within an established cost, schedule, and technical baseline.
 • Maximize the use of existing technology in the design and production of the MPCV.
 • A blunt body capsule is the safest, most affordable, with quickest development time
 • Base the vehicle design on an Open Systems Architecture for varied flexibility.
 • Simplify the interface design between the MPCV and Launch Vehicle to optimize integration.
 • Design the MPCV spacecraft and ground systems to achieve innovative and streamlined operations and sustainability/maintainability.
Video Clip
Risk Management Paradigm

Risk Management Environment

Schedule
Cost/Budget
People
Technical
Environment
System Engineering
Safety
Safety & Mission Assurance
Configuration Management

Project Control

Control Document
Identify
Plan
Analyze
Track
Sources of Risk

Equipment Failure
- Independent Failures
- Common Cause Failures

External Events
- Hurricanes
- Earthquakes
- Flooding
- Fires

Human Errors
- Inattention
- Operator Error
- Misdiagnosis
- Sabotage

Institutional Failure
- Training
- Morale
- Unclear Roles/Responsibilities
- Management Attitude
RM Tools & Techniques

QUANTITATIVE
◆ Stochastic and Deterministic Modeling
 ▪ Probabilistic Risk Assessments (PRA)
 ▪ Other Statistical based Modeling and Analysis techniques
◆ Cause & Effects Analysis
 ▪ Failure Modes & Effects Analysis (FMEA) & Failure Modes, Effects & Criticality Analysis (FMECA)
 ▪ Fault Tree Analysis (FTA)
◆ Systems Engineering Analysis and Risk Assessments

QUALITITATIVE
◆ Root Cause Analysis
◆ Hazard Analysis
◆ Brainstorming
◆ Process Mapping and Analysis (Human Factors)
◆ Taxonomy-Based Questionnaires
◆ Pareto Method
◆ Affinity Grouping
Enterprise Risk Management

♦ Primary purpose of ERM is to improve the quality of decision-making throughout the organization
 ▪ Help prioritize strategic and operational decisions
 ▪ Ensure planned objectives & missions are fully achieved
 ▪ Synthesize projects and allocate risk and agency resources optimally
 ▪ Improve mission & project performance to meet agency goals
 - Projects delivered on time, on budget within requirements/specifications

♦ Treating risks in a holistic manner
 ▪ Managing all risks and their interactions effectively (not just within silos). Done at the agency level not just at the traditional project or program level
 - Consistency of risk processes and the mitigation of risks
 - Even seemingly insignificant risks on their own have the potential, as they interact with other events and conditions to cause great damage.
 ▪ Risk management becomes part of overall project management with comprehensive, structured and integrated processes
 ▪ Integrated and synthesize Risks & Opportunities, Contingency Planning, Crisis Management, Continuity of Operations, Disaster Recovery, etc.
 ▪ Facilitate structured communications throughout the organization and with all stakeholders (internal & external) – avoid filtering of information
Risk Management Implementation Strategy

♦ Covers all phases of the life cycle

♦ Provide a risk management communication infrastructure to store, analyze and deal with problems proactively – overlay on existing management infrastructure
 ▪ Deploy the risk process, tools and systems within the whole enterprise and integrate with other management systems (integrate risk management with other programmatic functions, including safety & mission assurance, system engineering, analysis and project control/cost & schedule) and also within contractors/subcontractors and supplier base.

♦ Require risk identification and management to occur in a tiered, integrated, structured manner
 ▪ Remove roadblocks preventing entry into risk management system (ensure risk management accessible to all levels of the organization)
 ▪ Analyze and individually quantify the risk consequence categories (e.g., Safety, Performance, Schedule, & Cost) for comprehensive understanding of risk impacts – to aid in risk prioritization
 ▪ Analyze how individual risks aggregate or are interrelated. Look for systemic problems and overall trends.
 ▪ Manage risks by developing appropriate risk handling/mitigation strategies (assign resources based on prioritization) & then monitor/control (include all necessary stakeholder assistance to ensure comprehensive closure) – prepare fall-back plans
 ▪ Accountability - assign risk ownership to the individual best suited to effectuate effective closure (usually the technical expert). Risk owner is responsible for shepherding the risk through closure and coordinating with all players.
 ▪ Dissenting opinions are encouraged – they are documented and evaluated within the standard risk processes
Risk Management Implementation Strategy

♦ Prioritize and escalate risks appropriately, only escalate issues that need resolution from above
 ▪ Prioritization includes Cost/Benefit Analysis
 ▪ Information is flowed up, resources and prioritizations are flowed down, while coordination is made with all responsible stakeholders
 ▪ Manage risks at the lowest level possible where the subject matter experts are and where it is the easiest to implement risk mitigation strategies and monitor its effectiveness
 ▪ Ensure that risks receive the appropriate level of management review and resources to effectively mitigate significant threats as early as possible (as cheaply as possible). Risks will be presented at each management level

♦ Criteria for Risk escalation (to the next level): Risks should be elevated to the next level control board for discussion if:
 ▪ A decision is needed by the next level management or higher
 ▪ Additional resources are required to effectively mitigate the risk
 ▪ Coordination/Integration is needed with other organizations/stakeholders outside the current level
 ▪ Awareness or visibility by the next level management or higher is generally needed

♦ Ongoing monitoring activities are conducted to periodically reassess risk and the effectiveness of controls to manage risk
Risk Coordination and Integration

Program Manager
Project Managers
Element Managers
System Managers
Team Members
Contractors/suppliers/vendors

Risk Escalation and Reporting
Resources and Direction
Coordination and Integration
ORION (CEV) RISK SCORECARD

Likelihood Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Likelihood</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Very High</td>
<td>Qualitative: Likely to occur. Quantitative: $10^{-1} < P \leq 10^{-3}$ (for risks with primary impact on human safety) or $P = 50%$ (for risks with primary impact on cost, schedule, or performance)</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>Qualitative: Probably will occur. Quantitative: $10^{-2} < P \leq 10^{-5}$ (for risks with primary impact on human safety) or $10% < P \leq 33%$ (for risks with primary impact on cost, schedule, or performance)</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>Qualitative: May occur. Quantitative: $10^{-3} < P \leq 10^{-6}$ (for risks with primary impact on human safety) or $33% < P \leq 50%$ (for risks with primary impact on cost, schedule, or performance)</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Qualitative: Unlikely to occur. Quantitative: $10^{-5} < P \leq 10^{-8}$ (for risks with primary impact on human safety) or $1% < P \leq 10%$ (for risks with primary impact on cost, schedule, or performance)</td>
</tr>
<tr>
<td>1</td>
<td>Very Low</td>
<td>Qualitative: Occurrence improbable. Quantitative: $P \leq 10^{-6}$ (for risks with primary impact on human safety) or $P < 1%$ (for risks with primary impact on cost, schedule, or performance)</td>
</tr>
</tbody>
</table>

Risk Matrix

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Consequences

<table>
<thead>
<tr>
<th>Consequence Rating</th>
<th>1 - Very Low</th>
<th>2 - Low</th>
<th>3 - Moderate</th>
<th>4 - High</th>
<th>5 - Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>A condition that could cause the need for minor first aid treatment though would not adversely affect personal safety or health (Class IV)</td>
<td>A condition that may cause minor injury or occupational illness (Class III)</td>
<td>A condition that may cause severe injury or occupational illness (Class II)</td>
<td>A condition that may cause permanently disabling injury (Class I-A)</td>
<td>A condition that may cause death or loss of crew (Class I-A)</td>
</tr>
<tr>
<td>Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities, Equipment, or Other Assets</td>
<td>A condition that subjects facilities, equipment, or flight hardware to more than normal wear and tear (Class IV)</td>
<td>A condition that may cause minor property damage to facilities, systems, equipment, or flight hardware (Class III)</td>
<td>A condition that may cause major property damage to facilities, systems, equipment, or flight hardware (Class II)</td>
<td>A condition that may cause destruction of non critical facilities or assets (Class I-B)</td>
<td>A condition that may cause destruction of critical facilities on the ground, major systems, or vehicle during the mission (Class I-A)</td>
</tr>
<tr>
<td>Environment</td>
<td>Negligible OSHA/EPA violation - non reportable</td>
<td>Minor reportable OSHA/EPA violation</td>
<td>Moderate OSHA/EPA violation requiring immediate remediation</td>
<td>Major OSHA/EPA violation causing temporary stoppage</td>
<td>Serious or repeat OSHA/EPA violations resulting in action terminating project</td>
</tr>
<tr>
<td>Performance (Mission Success including impacts to operations and supportability)</td>
<td>Negligible impact to requirements, mission objectives or technical goals</td>
<td>Minor impact to requirements, mission objectives or technical goals</td>
<td>Moderate impact to requirements, mission objectives or technical goals</td>
<td>Major impact to requirements, mission objectives or technical goals</td>
<td>Technical goals not achievable with existing engineering capabilities/technologies</td>
</tr>
<tr>
<td>Cost</td>
<td><$100K (Negligible impact to budget)</td>
<td>>$100K but <$1M (Minor impact to budget)</td>
<td>>$1M but <$10M (Moderate impact to budget)</td>
<td>>$10M but <$50M (Major impact to budget)</td>
<td>>$50M (Possible project cancellation)</td>
</tr>
<tr>
<td>Schedule</td>
<td>Negligible schedule impact</td>
<td>Minor overall schedule impact (Accommodate with reserve, no impact to critical path)</td>
<td>≤ 1 month impact to critical path/milestones</td>
<td>>1 and ≤ 5 month impact to critical path/milestones</td>
<td>>5 month impact to critical path/milestones or possible project cancellation</td>
</tr>
</tbody>
</table>

Timeframe

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Time to Initiate Handling Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near</td>
<td>0 to 3 months</td>
</tr>
<tr>
<td>Mid</td>
<td>3 to 9 months</td>
</tr>
<tr>
<td>Far</td>
<td>> 9 months</td>
</tr>
</tbody>
</table>

September 2006
Risk Management Lessons Learnt

♦ Risk management supported by leadership, team members and stakeholders and active involvement by all
 ▪ Uses it and promotes it

♦ A well defined, structured and understood risk management processes and tools
 ▪ A formally documented risk management process
 ▪ Comprehensive and structured risks identification processes and tools (Establish risk toolbox for identifying and analyzing risks)
 ▪ Proper incentives and disincentives to foster good practices
 ▪ All team-members are expected to participate in risk management
 ▪ Not overly complex, must be understood and used (minimize overhead & foster adherence)
 ▪ A proactive risk training program

♦ Continuous and iterative assessment of risks
 ▪ Provide elements of independence of the risk analysis function from the program/project

♦ Integrated with program/project decision-making processes (RIDM)
 ▪ Continuous, event-driven technical reviews (incl project milestones) to help define a program that satisfies the customer’s needs within acceptable risk
 ▪ Continuous prioritization, assessments and mitigation planning and appropriate funding

♦ Risk management integral to the acquisition process

♦ A continuous process improvement strategy that monitors and improves risk management processes and tools

♦ Weaving Risk Management into the cultural fabric of the organization is critical, but difficult
Summary

♦ Phased-approach for implementation of risk management is necessary
♦ Risk management system will be simple, accessible and promote communication of information to all relevant stakeholders for optimal resource allocation and risk mitigation
 ▪ Risk management should be used by all team members to manage risks – risk office personnel
 ▪ Each group is assigned Risk Integrators who are facilitators for effective risk management
 ▪ Risks will be managed at the lowest-level feasible, elevate only those risks that require coordination or management from above
♦ Risk reporting and communication is an essential element of risk management and will combine both qualitative and quantitative elements
♦ Risk informed decision making should be introduced to all levels of management
♦ Provide necessary checks and balances to insure that risks are caught/identified and dealt with in a timely manner
♦ Many supporting tools, processes & training must be deployed for effective risk management implementation
♦ Process improvement must be included in the risk processes
Questions?
Prior Exploration Roadmap

Robotic Precursors

Commercial Crew/Cargo for ISS

Space Shuttle

CEV Development

CLV Development

Lunar Lander Development

Lunar Heavy Launch Development

Earth Departure Stage Development

Surface Systems Development

Lunar Outpost Buildup

Mars Dev.