
Combustion Dynamics and Control for  
Ultra Low Emissions in Aircraft Gas-Turbine Engines 

Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining 
the reliability and operability of present day engines.  The demands for increased performance and 
decreased emissions have resulted in advanced combustor designs that are critically dependent on 
efficient fuel/air mixing and lean operation.  However, all combustors, but most notably lean-burning low-
emissions combustors, are susceptible to combustion instabilities.  These instabilities are typically caused 
by the interaction of the fluctuating heat release of the combustion process with naturally occurring 
acoustic resonances.  These interactions can produce large pressure oscillations within the combustor and 
can reduce component life and potentially lead to premature mechanical failures.   

Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can 
provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, 
and thus can provide flexibility during the combustor design process.  The NASA Glenn Active Combustion 
Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft 
engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the 
technology maturity of active combustion control to advance to eventual demonstration in an engine 
environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced 
algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a 
combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are 
aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as 
those employing multi-point lean direct injection. 
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Outline

• NASA’s Active Combustion Control interests

• Motivation: Ultra-low emissions, lean-burning, 
Multi-point Lean Direct Injection combustors 
– More susceptible to instability 

• Possible approaches for dealing with combustor• Possible approaches for dealing with combustor 
thermo-acoustic instabilities

• Active Combustion Control as an enabling g
technology

• Approach and outcomes of instability control 
i texperiments

• Future plans
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Effect of Fuel Injection Schemes on NOx Emission 
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Conventional Combustion:
Single-Point Rich Front End Injection
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Lean-Burning, Ultra-Low-Emissions Combustion:
Multi-Point Lean Direct Injection

uniformly
warm

1. Energetic quick-mixing before auto ignition at high power condition

2. Lean and uniform front end makes less CO and NOx initially

3. Less CO initially, shorter combustor needed

4. Shorter combustor, shorter residence time, less additional NOx
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Lean-Burning, Ultra-Low-Emissions Combustors 
Are More Susceptible to Thermoacoustic Instabilities

1. Higher performance fuel injectors => more turbulence

2. No dilution air => reduced flame holding

3. Reduced film cooling => reduced damping

4. More uniform temperature distribution => acoustically homogeneous

5 Shorter combustor => higher frequency instabilities
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5. Shorter combustor > higher frequency instabilities



How do we deal with combustor instabilities?

1. Smart design
2. Modulate air to get out-of-phase cancellation
3. Fuel-modulation to get out-of-phase cancellation

Method 1 is preferred, but we’re not sure it’s enough

Method 2 requires lots of actuation power input and bulk

Method 2 also may induce diffuser flow separation 
due to flow perturbation.

Method 3 requires the least actuation power and bulkMethod 3 requires the least actuation power and bulk 
and produces the most energy change
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Synergistic Technologies to Enable 
Ultra-Low Emissions CombustionUltra Low Emissions Combustion
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Combustion Instability

Combustor Combustion

Closed-Loop Self-Excited System
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Combustion Instability Control Strategy

Objective: Suppress combustion thermo-acoustic instabilities when they occur

Combustor Combustion

Closed-Loop Self-Excited System
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Artificial control process

SensorControllerActuator
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Why is instability control so difficult?
signal

Phase inversion
signal
inversion-response
sum

Ti d l & h hiftTime delay & phase shift

Low signal-to-noise ratio – What frequency? What phase?

∆t

Low signal to noise ratio What frequency? What phase?
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Our Technical Challenges

Control methods required to:• Control methods required to: 
– identify instability
– suppress instability in presence of large time delay, 

substantial noisesubstantial noise

• Combustor dynamics largely unmodeled

• Liquid fuel – introduces additional unmodeled dynamics 
including time delay (atomization, vaporization, …)

• Actuation system – enough bandwidth and authority not just• Actuation system – enough bandwidth and authority, not just 
valve (also feedline, injection, …)

• Experimental testbed for actuation, feedline dynamics required

• Simplified models needed for control design evaluation
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Active Combustion Instability Control Via Fuel Modulation

High-frequency fuel delivery 
system and modelssystem and models

•Acoustics•NL

•White Noise •Instability Pressure

Advanced control methods

High-temperature 
sensors and electronics

•Phase Shift
•Controller

•Fuel 
•Valve

•Fuel lines, Injector
•& Combustion  •Flame

•+•+
•+

•Pressure from
•Fuel Modulation •Combustor Pressure

sensors and electronics

Ph i b d i t bilit d l

Controller

•Filter

S d b k

Combustor Instrumentation 
(pressures, temp’s)

Physics-based instability models

Fuel Injector
Emissions Probe

Realistic combustors, rigs for research
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Team Members - from Multiple Disciplines

• Controls and Dynamics Branch• Controls and Dynamics Branch
– Dan Paxson: Dynamic Models
– George Kopasakis: Control Methods
– Joe Saus: Actuators

C b ti B h• Combustion Branch
– Clarence Chang: Combustion Science

• Sensors and Electronics Branch
– Robert Okojie: Harsh Environments Pressure Sensorsj

• Engineering Directorate
– Dan Vrnak: Control Software

• Supersonics Project
Dan Bulzan Supersonics (and Subsonics) Combustion API– Dan Bulzan – Supersonics (and Subsonics) Combustion API

• Other NASA Participants
– Materials, Combustion and Flow Diagnostics, Experimental Staff,…

• NRA Participants
– Georgia Tech, Penn State, Virginia Tech 
– Other NRA's associated with Combustion Science
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Control Strategies to Deal with Combustion Instability

• Objective
– Perturb the fuel with the right amplitude and at the right phase to 

cancel the instabilityy

• Challenges
– Control action delay, noise, unknown disturbancesy, ,

• Approach
– Use reduced-order models for developmentp
– Use simplified physics-based model for validation before test

• Control methods
– Empirical:  Adaptive phase shifting based on achieved cancellation
– Model-based: Set the proper phase for cancellation based on a 

model of the predicted instability and disturbances
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Adaptive phase shifting control:
“Adaptive Sliding Phasor Averaged Control” – G. Kopasakis
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Motivation for Combustion Instability Simulation

• Successful active control design requires accurate modeling and
simulation.

–The essential physical phenomena should be correctly captured
• (e.g. self-excitation).

–Characterization and control design necessitate rapid simulationCharacterization and control design necessitate rapid simulation
• (i.e. relative simplicity).

–Simulation must lend itself to implementing a variety of sensing and
actuation strategiesactuation strategies.

• The developed simulation method must achieve these goals for
combustor configurations:combustor configurations:

– in which the potential instabilities propagate axially

– that contain abrupt changes in cross sectional area

at Lewis Field
Glenn Research Center

Combustion Dynamics Modeling

Detailed, physics-based dynamicSimplified Quasi-1DReduced-order oscillator Detailed, physics based dynamic 
models

Fundamental understanding of 
combustor dynamics to aid passive, 

active instability suppression

Simplified Quasi 1D 
dynamic models

Allow physics-based control 
method validation

Reduced order oscillator 
models

Run fast to allow parametric 
studies in support of control 

system development
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Combustion Instability Simulation Features

• Time-accurate

• Physics-based, Sectored 1-D, Reacting

• Computationally efficient area transitions

Sector 3

Sector 1

p y

• Upstream and Downstream boundary conditions modeled to match rig

Sector 2

Sector 1

Injector Region

• One-Dimensional

• Perfect Gas

Within Each Sector: Combustor Region
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Perfect Gas

Low Emissions Combustor Instability Model Development

Perforated platePerforated plate

CE5B-STAND 1 SIMULATION LAYOUT

airflow

Blockage ratio = 0.83

P0' = 1.01

T0' = 1.00 

P4DynDn

Blockage 
ratio = 0.885airflow

Blockage ratio = 0.83

P0' = 1.01

T0' = 1.00 

'u' = 0.005

P4DynDn

Blockage 
ratio = 0.885

P4DynUpFuel

0

28.4 in. 35.7 in.

Water spray

P4DynUpFuel

0

28.4 in. 35.7 in.

Water spray

at Lewis Field
Glenn Research Center

1.34 in.1.34 in.



Combustion Instability Simulation Results Match 
Experimental Results for Multiple Operating Conditions
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Fuel Delivery System Dynamic Response

PrimaryPrimary
Fuel

Secondary
Fuel

Stroboscopic Image of Dynamic 
Fuel Injection (courtesy UTRC)
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Fuel Injection (courtesy UTRC)



High-Bandwidth Fuel Actuator Characterization Testing

Accumulator

P

Dynamic Pressure
Transducers
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Valve, Feed-system Characterization Rig at NASA GRC
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Steady-State Operational Data

High-Bandwidth Fuel Actuator

GaTech high-
response fuel 
valve in 
characterization 
rig in CE7A

Frequency Response Dynamic 
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High-Bandwidth Fuel Actuator

300Hz 600Hz

Combustor Pressure Response to Fuel Modulation
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High Temperature Dynamic Pressure Sensors and 
Electronics 

Newly developed 800oC sealing glass demonstrated 
on a dummy sensor and AlN package header.

Modified MEMS-DCA package to support 
800˚C pressure sensor operation.
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Diff amp test waveforms showing 
<5% change despite 6500 hrs at 
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Differential amplifier circuit 
using two SiC transistors.

Design of SiC amplifier for 
dynamic pressure sensor.
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Combustion Instability Control Test Implementation

• Control methods
Sensed Combustor Pressure

• Control methods 
implemented in real-time 
computer

dS
• Rig operated at nominal 

engine temperature and 
pressure

dSpace 
Controls 

Computer

pressure

Fuel Valve
Commanded 
Fuel FlowFuel Supply
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Active Combustion Instability Control 
Demonstrated Experimentally for Conventional Combustor

•8

•10

•12
•pla1c1, Run 423 and 425, 040527 - 040603

Large amplitude, low-frequency instability 
suppressed by 90%

•4

•6

•A
m

pl
itu

de
, p

si

•100 •200 •300 •400 •500 •600 •700 •800
•0

•2

•Frequency, Hz

0 4

Liquid-fueled combustor rig emulates engine 
observed instability behavior at engine 
pressures, temperatures, flows

•0.2

•0.25

•0.3

•0.35

•0.4

m
pl

itu
de

, p
si

•Open-loop
•Adaptive Phase-Shift Control

High-frequency, low-amplitude instability 
is identified, while still small, and 
suppressed almost to the noise floor

•0 •100 •200 •300 •400 •500 •600 •700 •800 •900 •1000
•0

•0.05

•0.1

•0.15

•A
m

•Frequency Hz

at Lewis Field
Glenn Research Center

suppressed almost to the noise floor. Frequency, Hz



Low-Emissions Combustor Prototype with 
Observed Instability

R f C b t O ti C diti•Range of Combustor Operating Conditions

•0.9 – 4.0•Air Flow, lbm/s

•400 – 1000•Inlet Temperature, F

•65 – 250•Inlet Pressure (psia)

•approx. 100 –
approx. 400

•Fuel Flow, lbm/hr

at Lewis Field
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Low-Emissions Combustor Prototype
Instability Amplitude Observed to Increase

with Increasing Fuel/Air Ratio
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Trend in Instability Amplitude vs. FAR
for Multiple Test Runs
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Fuel/Air RatioFuel/Air Ratio

Trend in Instability Frequency vs. FAR
for Multiple Test Runs
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Low-Emissions Combustor Prototype 
with Observed Instability as installed in CE5B-Stand 1

Pressure Sensor

Combustor

Fuel Actuator (other side)
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Low-Emissions Combustor - Instability Control Results
Adaptive Sliding Phasor Averaged Control (ASPAC) able to suppress combustion instability

Uncontrolled

Combustor Pressure Amplitude Spectra Combustor Pressure Time History
Run 1018, Date 101123, Variable P4DynDn_psi Page 1/1
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Use P3’ (1000ºF) rather than P4’ (3000ºF+) as feedback?
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Future Plans

Mature and demonstrate active combustion control technologies
– High temperature sensors, high-frequency fuel actuators and feed system 

models, combustion dynamics models, control methods
– Utilize Fundamentals rig in CE13C (5 atm) and medium/high pressure testing 

in CE5 (30 atm) and ASCR (60 atm)

• Future platform(s) - LDI Multi-point injection and/or Industry advanced conceptsFuture platform(s) - LDI Multi-point injection and/or Industry advanced concepts

– Instability control demonstration(s) – 2012+

• Other potential advanced technologies

– Control methods that exploit multipoint injection
– Multidimensional models
– Incorporate technologies from Fundamental Aeronautics NRA’s

H i b h i d l d t l• Harmonic, sub-harmonic models and control
• Flame Transfer Function models
• Dynamic stability margin management
• Static instability (LBO) detection and control 
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Long Term Goal for Active Combustion Control

I f d t l d t di f th• Improve fundamental understanding of the 
combustor processes

in order to…

More effectively integrate multi point combustor• More effectively integrate multi-point combustor 
design, controls, sensor, and actuator technologies 

to provide…

• An intelligent fuel/air management system with• An intelligent fuel/air management system with                 
temporal and spatial fuel modulation for
– Instability avoidance/suppression

• Thermoacoustics, blowout
– Pattern factor control
– Emissions minimization

blto enable…
 Combustors with extremely low emissions 

throughout the engine operating envelope 
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