Investigation of Hygro-Thermal Aging On Carbon/Epoxy Materials for Jet Engine Fan Sections

This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.
INVESTIGATION OF HYGRO-THERMAL AGING ON CARBON/EPOXY MATERIALS FOR JET ENGINE FAN SECTIONS

Lee W. Kohlman (The University of Akron, NASA GRC)
Gary D. Roberts, Sandi G. Miller, and J. Michael Pereira (NASA GRC)

Objectives:
Determine potential effects of aging on emerging composite engine structures
- Identify primary mechanisms that are active during the aging process for composite materials.
- Measure aging induced changes in the materials.
- Evaluate the potential effects of these changes on material performance.

Challenges:
Evaluate the effects of complex aging mechanisms in an engine service environment
- Impose representative engine aging conditions in a laboratory environment.
- Utilize laboratory test methods to evaluate a wide range of potential changes in chemical, mechanical, physical, and impact properties due to aging.

Approach:
Impose a hygro-thermal cycle that represents the fan section environment during a flight cycle

Resin Chemical Aging
Aging effects that change the chemistry of the resin are confined to the surface of the composite as well as throughout the interior of the laminate. The surface of a non-aged specimen and a series of contrast enhanced X-ray CT images are shown. The composite for the results presented here consists of Epon® E862 with W hardener.

Resin Physical Aging
Physical aging is a process by which the material shrinks, becoming more dense. This aging process can result in resin embrittlement. The development of an endotherm in the DSC data is an indication of physical aging.

Composite Microcracking
Microcracks (transverse fiber tow splits) develop during aging both on the surface of the composite as well as throughout the interior of the 6 layer specimens. The surface of a non-loaded specimen and a series of contrast enhanced X-ray CT images are shown. The composite for the results presented here consists of Epon® E862 and 2D triaxial braided Toray T700s carbon fiber.

Composite Tension Results
Tension failure stress is plotted for 3 different aging conditions. No significant trend is observed up to 2 year of aging. Note that the transverse tension test is known to produce lower than expected results because of test method deficiencies. This is being investigated separately. Solid lines are the mean and dashed lines are two standard deviations from the mean.

Conclusions:
- Mechanisms have been identified in the resin that lead to brittle response. These include post-cure, oxidation, and physical aging.
- Aging causes microcracking in the composite, but the microcracking does not cause a significant reduction in tensile strength. A possible reduction in compression strength needs further investigation.
- Aging does not have a significant effect on impact penetration threshold.
- Additional materials are currently in various stages of aging.

Tensile test results show an embrittlement effect that occurs as a result of the hygro-thermal aging. This embrittlement is shown by reduced strain to failure and changes to the fracture surface.

Composite Compression Results
Compression failure stress is plotted for 3 different aging conditions. A trend toward strength reduction may be present but due to limited material availability and scatter, a statistically significant conclusion can not be drawn. This matter is being investigated separately. Solid lines are the mean and dashed lines are two standard deviations from the mean.