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Demanding aerodynamic modeling requirements for military and civilian aircraft have 

provided impetus for researchers to improve computational and experimental techniques. 

Model validation is a key component for these research endeavors so this study is an initial 

effort to extend conventional time history comparisons by comparing model parameter 

estimates and their standard errors using system identification methods. An aerodynamic 

model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its 

body axes is developed. The model includes linear aerodynamics and deficiency function 

parameters characterizing an unsteady effect. For estimation of unknown parameters two 

techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory 

wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model 

used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in 

response prediction, parameters estimates, and standard errors are compared and discussed.  

Nomenclature 

 
                                                           
1
 Senior Research Engineer, Dynamic Systems & Control Branch, MS 308, Associate Fellow. 

2
 Professor Emeritus, Dynamic Systems & Control Branch, MS 308, Associate Fellow. 

3
 Senior Research Engineer, Configuration Aerodynamics Branch, MS 499, Associate Fellow. 

4
 Senior Research Engineer, Flight Dynamics Branch, MS 308, Associate Fellow. 

Aj, Bj = Fourier coefficients 

a, b1, c  =  deficiency function parameters 

b  =  wing span, ft 

Cl,Cn = rolling and yawing-moment coefficients 

CY   =  side-force coefficient 

c  = mean aerodynamic chord, ft 

f = frequency, Hz 

Fa =  deficiency functions 

k  =  reduced frequency, /bf V  

m = No. of harmonics in Fourier expansion 

N = number of data points 

p, r = roll and yaw rates, rad/sec 

R
2
  =  multiple correlation coefficient 

s  =  estimated standard error 

S = reference area, ft
2
 

T   =   dimensional time constant, sec 

t = time, sec 

V = velocity, fps 

 = angle of attack, rad or deg 

0 = mean angle of attack, rad or deg 

 = sideslip angle, rad or deg 

 = roll angle, rad or deg 

 = state variable 

 = standard error 

 = dummy integration variable 

 = non-dimensional time constant,
1

1 2V

b b

 
 
 

 

 = angular frequency, rad/sec 

 = yaw angle, rad or deg 
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I. Introduction 

INCE the early days of flight, aerodynamicists have focused on the problem of finding an adequate aerodynamic 

model for aircraft with good prediction capability. The problem has become more acute over time due to 

increasing demands from both military and civilian sectors. Demanding mission requirements from the military and 

safety requirements for civilian aircraft have created a need for more general aerodynamic models that can 

adequately predict aircraft response even in nonlinear unsteady flight regimes. Researchers have followed two paths 

to address this modeling problem. A numerical path using Computational Fluid Dynamics (CFD) technology and an 

experimental path using direct measurements of aircraft responses in flight or scale models in wind tunnels along 

with System Identification (SID) technology to extract mathematical models. Advances in both computational and 

experimental technologies have created opportunities for the combination of these technologies to make significant 

improvements in managing more difficult aircraft modeling problems and reducing costs. 

In order to realize this opportunity, one area of modeling research that needs to be addressed more carefully is 

model validation. The best model validation results are demonstrated by adequate prediction of aircraft responses in 

flight test. For legitimate validation tests, the validation data should be different from the data used for model 

identification. When flight test validation data are not available or practical to obtain then CFD predictions and 

ground-based experimental data are often compared to corroborate the results. Typically this comparison is limited 

to time history comparisons. A more general comparison can be made by comparing model parameters identified 

from the time history data. Model parameters are key elements of flight dynamics simulations, stability analysis, and 

control design. This comparison requires mean values along with uncertainty bounds in order to be statistically 

accurate. Although it is not common practice for wind tunnel experimentalists or CFD researchers to present results 

with associated error bounds, some efforts
1-3

 are being made to improve this shortcoming. Although CFD results do 

not contain random errors, there are potentially large uncertainties due to systematic and modeling errors. 

Significant uncertainty, for example, can be generated where sensitivities to turbulence models, grid selection, or 

time steps, are large. Sources of uncertainty for ground-based experiments are well known and can include a variety 

of systematic and random errors such as direct measurement uncertainty, similitude errors, and modeling errors. 

A common denominator that facilitates comparisons of wind tunnel and CFD results is to consider aircraft 

stability and control (S&C) characteristics in the form of a general aerodynamic model identified from those results. 

For preliminary evaluations, the commonly used in-phase and out-of-phase coefficients that capture important 

dynamic S&C frequency characteristics are useful. These preliminary evaluations of S&C characteristics can be 

made from well established conventional dynamic wind tunnel testing methods. This testing provides time histories 

of aerodynamic coefficients of an aircraft scale model while undergoing one-degree-of freedom forced oscillations 

about its body axes. Test conditions typically include selected angle of attack, amplitude, and frequency conditions. 

For dynamic testing, Reynolds number selection is typically limited to capabilities of the wind tunnel and dynamic 

test rig. Analysis of these data provides conventional in-phase and out-of-phase coefficients.  

Because of recent participation by NASA
3,4

 in a 3-year NATO/RTO AVT-161 Task Group titled "Assessment of 

Stability and Control Prediction Methods for NATO Air & Sea Vehicles", a unique opportunity is afforded to the 

authors to explore and validate a range of strategies for creating CFD-derived nonlinear flight simulation models 

within a collaborative international environment. The focus of AVT-161 was to investigate the applicability of 

current CFD tools for predicting S&C characteristics of air and sea vehicles. As summarized in Ref. 5, the team 

made remarkable progress through the leveraged efforts of many engineers and researchers from 9 countries by 1) 

conceiving a generic unmanned combat air vehicle (UCAV) focus configuration (Fig. 1) called the Stability and 

Control Configuration (SACCON), 2) designing and building a wind-tunnel model, 3) conducting two test entries in 

Germany and one in the United States
3,6-8

, and 4) conducting and coordinating several multinational CFD studies. 

Experimentalists within the AVT-161 team conducted dynamic wind-tunnel tests on SACCON undergoing forced 

oscillation in pitch, roll, and yaw to measure the dynamic stability and aerodynamic characteristics
3,8

. Other team 

members ran parallel dynamic computational studies following a similar approach of modeling SACCON 

undergoing pitch, roll, and yaw oscillation with their respective CFD tools
4,7-14

. The collective experiences from 

S 
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these studies have confirmed the difficulty of achieving accurate and efficient computation of dynamic stability 

characteristics of highly nonlinear flows, which are highly sensitive to choice of flow solver, characteristic time 

steps, grid size, and turbulence models.  Fortunately, a 3-year follow-on activity to AVT-161 is planned to further 

explore the CFD modeling issues of the SACCON, and develop the techniques for extracting dynamic stability 

derivatives for flight simulation models from CFD solutions. Only a limited number of AVT-161 studies addressed 

the reduced-order modeling of SACCON dynamic S&C characteristics
11,14,15

.  

Since the authors plan to contribute to the AVT-161 follow-on effort, this paper is reporting on a preliminary 

exploratory study to investigate the aerodynamic modeling of SACCON from wind tunnel data and NASA CFD 

predictions of aerodynamic responses to linear and nonlinear flows over a range of conditions. This study is focused 

on model validation using CFD and wind tunnel data, taking into account uncertainty bounds. A second paper is 

planned for the AVT-189 Specialist Meeting in October 2011 to address model identification methodology.  

In the current study, both conventional and advanced modeling methods
16-18

 are applied as appropriate to identify 

aerodynamic model equations as well as in-phase and out-of-phase coefficients. More general models will capture 

both steady and unsteady dynamics as well as linear and nonlinear responses. Measurements for identification of the 

mathematical models will be taken from the two sources. Uncertainty between wind tunnel and CFD will be limited 

to standard errors obtained from estimation of model parameters using system identification methods. For CFD 

simulated data, the model uncertainty will reflect a range associated with uncertainty due to modeling error and 

turbulence model selection; uncertainty related to grid size and time steps choices are not included in this paper.  

This paper describes the model identification problem and provides a more general aerodynamic model structure 

as well as appropriate estimation techniques for analysis of dynamic data. Since standard errors are a natural by-

product of the identification methodology the analysis will facilitate more meaningful comparisons between the two 

sources of data. This approach suggests the importance of experiment design to allow identification of aerodynamic 

phenomenon and validation modeling results. Recommendations for future tests that facilitate wind tunnel and CFD 

comparisons will be provided in the concluding remarks.  

II. Wind Tunnel Measured Data 

A portion of the lateral dynamic data collected for the SACCON model in the NASA Langley 14x22 Subsonic 

Tunnel in Hampton, Virginia, was selected for analysis in this study. An internal six-component stain gauge balance 

was used for the force and moment measurements. The sample rate was 300 Hz with an anti-alias filter at 100 Hz. 

Additional digital filtering was performed with a low pass filter at 4 Hz for this study. The filter was run in both 

directions to ensure no phase error was added to the data. Frequency effects were explored in roll forced-oscillation 

for the configuration with a round leading edge and fixed transition (RLE-FT) at tunnel velocity of 60 fps. The 

selected roll-oscillatory data were obtained at four nominal oscillation angles of attack, 0°, 14°, 15°, and 20°, at ten 

different frequencies from 0.24 Hz to 1.0 Hz, and with amplitude of 5° in bank angle.  

III. CFD Simulated Data 

CFD simulations were computed to correspond with the same conditions as the forced-oscillation SACCON 

wind tunnel test. The specific test conditions chosen presented unsteady behavior during wind tunnel roll forced-

oscillation tests. Consequently, the case studied will highlight more general modeling and validation comparisons. 

The CFD methodology is described next, followed by an overview of the solution process. 

Computations are performed with the USM3D flow solver
19

 that is part of the NASA Tetrahedral Unstructured 

Software System (TetrUSS)
20

. USM3D is a parallelized tetrahedral cell-centered, finite volume compressible RANS 

flow solver. The term “cell centered” means that the finite volume flow solution is solved at the centroid of each 

tetrahedral cell. Inviscid flux quantities are computed across each tetrahedral cell face using various upwind 

schemes. Spatial discretization is accomplished by a novel reconstruction process, based on an analytical 

formulation for computing solution gradients within tetrahedral cells. The solution can be advanced in time by a 2
nd

-

order “physical” time step scheme, a 2
nd

 -order “dual” time step scheme, or to a steady-state condition by an implicit 

backward-Euler scheme. Several turbulence models are available including the one-equation Spalart-Allmaras (SA) 

model and several two-equation models. The two-equation models available are the Jones and Launder k-ε model, 

Menter Shear Stress Transport (SST) model, nonlinear Algebraic Reynolds Stress Models (ARSM) of Girimaji and 

Shih/Zhu/Lumley, and Wilcox 1988 k-ω model. Detached Eddy Simulation (DES) has been implemented in all of 

the turbulence models. A capability to trip the flow at specified locations on aerodynamic surfaces has been 

implemented for the k-ε turbulence model, but fully turbulent flow is assumed for the results in this paper. USM3D 

has capabilities for overset grids and dynamic grid motion, the latter being utilized in the current study. 
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Published guidelines
4
 for computing dynamic forced oscillation solutions on SACCON were employed for the 

CFD computations in this study. A half-span tetrahedral grid was generated on the SACCON configuration with aft-

sting using a developmental version of the VGRID code
21

 with identical spacing parameters as used for Grid 1 in 

Ref. 4. The half-span grid was mirrored to create a full-span grid with 6.5 million cells. For the dynamic solutions, 

the entire grid was rotated in solid body motion about the model roll axis at = 20° to mimic the wind tunnel 

procedure. 

Selection of amplitude, frequency, and angles of attack were chosen to allow direct comparison with the wind 

tunnel tests that ranged from 0.24Hz to 1.0Hz. CFD simulation cases were computed at three additional frequencies 

to expand the range of experimental frequencies, resulting in a total of 10 frequencies, 0.04, 0.14, 0.24, 0.36, 0.44, 

0.55, 0.66, 0.86, 1.00, and 1.20Hz. The corresponding range for reduced frequencies, k, is 0.0106 to 0.3171. The 

CFD simulations presented for this study are for small amplitude roll oscillations (= 5°) at one angle of attack ( 

= 20°), where wind tunnel results show strong frequency dependence in Fig. 2. One potential source of uncertainty 

in CFD calculations is in turbulence modeling. In this study, two turbulence models were used to calculate CFD 

forced-oscillation simulations: (1) the Spalart-Allmaras (SA) one-equation model and (2) the Menter Shear Stress 

Transport (SST) two-equation model.  

A total of 20 dynamic CFD solutions were generated using the most conservative guidelines from Ref. 4. The 

cases were computed at M = 0.2 to improve the solution convergence characteristics. With the assumption of 

incompressible flow, the actual roll frequencies were adjusted to match the correct reduced frequencies. The 

dynamics solutions were restarted from two static time-accurate solutions generated with the SA and SST turbulence 

models at = 20
o
. Each case was oscillated about the body axis with = 5° at the appropriate reduced frequency 

through two cycles of sinusoidal motion. The cycles were discretized in time using 1800 steps per cycle and 20 inner 

iterations (36,000 total iterations per cycle) of the 2
nd

-order physical timestep scheme, which resulted in sample rates 

between 72Hz and 2160Hz. Because of the underlying Reynolds Averaging assumption for the Navier-Stokes 

equations, the dynamic solutions are typically converged to a steady hysteresis of rolling moment Cl vs. after the 

first ¼ to ½ cycle. Hence, the last full oscillation cycle is considered converged. 

Once the CFD solutions were complete, a special process was applied to transform the CFD data into a format 

that is compatible with the wind tunnel data for post-processing with the established aerodynamic modeling 

software. The last full cycle of CFD data at each frequency was replicated 20 times and concatenated to form 

multiple cycles of data. The corresponding time stamps were incremented for each replicated cycle to create a set of 

data continuous in time that mimics the wind tunnel data.  

IV. Aerodynamic Modeling 

The model equations for the lateral coefficients, YC , nC , and lC , represented by aC , where a = Y, n, or l, were 

developed from a general form of the indicial model equations presented in Refs. 22-23. Each coefficient is 

considered in the form 

 

 
0 0 0

( ) (0) ( ) ( ) ( ) ( ) ( ) ( )
2 2

t t t

a a a a ap r

b b
C t C C t d C t p d C t r d

V V
                   (1) 

 

where ( )aC t


, ( )ap
C t , and ( )ar

C t  are the indicial functions and  (0)aC  is the initial value of aC . Two 

assumptions were adopted to simplify the model: (a) the effect of angular accelerations p  and r  on any coefficient 

can be neglected and (b) the indicial functions in Eq. (1) can be expressed as 

 

 ( ) ( ) ( )a a aC t C F t
  

    (2) 

 

where ( )aF t


 is the deficiency function and ( )aC

  is the partial derivative of aC  with respect to   evaluated in 

steady flow conditions.  

The simplified model, which takes into account changes with respect to steady state, has the form  
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0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

t

a a a a ap r

b b
C t C t C p t C r t F t d

V V 
             (3) 

 

where Ca(0) has been subtracted from both sides of Eq. (3). To obtain a model appropriate for identification and 

with a limited number of parameters, the deficiency function is assumed to be a simple exponential function
23

  

 

 1b t
aF ae



  (4) 

 

Models appropriate for an aircraft undergoing one degree of freedom forced oscillation in roll can be obtained using 

Eqs. (3) and (4). Considering one degree of freedom rolling motion in the tunnel  

 

 ( ) [ ( ), ( )]a aC t C t p t  (5) 

 

where roll angle is related to the sideslip angle by the equation 

 

 1( ) sin (sin sin ( ))t t    (6) 

 

Combining Eqs. (3-6), the aerodynamic models can be formulated as 

 

 
( )1

0

( ) ( ) ( ) ( ) ( ) ( )
2

t
b t

a a ap

b
C t C t C p t a e d

V




    

       (7) 

 

By introducing 

 
( )1

0

( ) ( )
t

b t
t e d

    
   (8) 

 

and applying the Leibnitz integral rule, the state space form of Eq. (7) can be written as 

 

 1( ) ( ) ( )t b t t      (9) 

 

 ( ) ( ) ( ) ( ) ( ) ( )
2

a a ap

b
C t C t C p t a t

V
       (10) 

 

From Eq. (7), a steady response can be obtained
24

 as 
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 ( ) sin( ) cos( )a a A a Ap
C t C t C k t


      (11) 

 

where  is the amplitude of roll oscillation, k is reduced frequency, and aC


 and ap
C  are the in-phase and out-of-

phase components, respectively. These components are related to the model parameters, Refs. 24-25, by the 

equations 

 

 
2 2
1

0 2 2
1

( )sin
1

a a

k
C C a

k
 





  


 (12) 

 

 1
02 2

1

( ) sin
1

a ap p
C C a

k





  


 (13) 

 

V. Model Identification 

Roll oscillation data from wind tunnel measurements and CFD simulations provide sufficient information for 

determining adequate models for the lateral aerodynamics. These models have a postulated structure with 

parameters that can be estimated using harmonic analysis and a Two-Step linear regression method. The last step in 

model identification is model validation where the models are evaluated as predictors of response data not used 

previously for identification.  

A. Harmonic Analysis 

A method of harmonic analysis, Ref. 26, was applied to measured aerodynamic coefficients. A mathematical 

model for these coefficients is  

 

      0
1 1

cos sin              ,  or Y
m m

a j j
j j

C t A A j t B j t a l n 
 

      (14) 

 

where 0A , jA , and jB  are the Fourier coefficients. The analysis provides estimates of these coefficients, their 

standard errors, and the multiple correlation coefficient, R
2
. For the model with linear aerodynamics and 0A  = 0, the 

aerodynamic in-phase and out-of-phase components can be expressed in terms of the coefficients 1A and 1B . For the 

roll oscillation case the expressions are 

 

 1
a

A

B
C

 
  (15) 

 

 1
ap

A

A
C

k
  (16) 
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where  is related to  by Eq. (6).  

The multiple correlation coefficient, R
2
, indicates the fraction of the variation in the measured data explained by 

the model and is defined as 

 

 2 21 /SS             0 1E rR SS R     (17) 

 

where 

 2

1

ˆ[ ( ) ( )]
N

E a aE
i

SS C i C i


   (18) 

 

is the residual sum of squares and  

 

 2

1

[ ( ) ( )]
N

r a aE
i

SS C i C i


   (19) 

 

is the total sum of squares. ˆ( ), ( ),a aE
C i C i and ( )aC i  are the measured, estimated, and mean values, respectively.  

Harmonic analysis was performed on roll oscillatory wind tunnel data
 
with amplitude  = 5º. Data were 

obtained from the study in Ref. 3. Results of the harmonic analysis are presented in Fig. 2. This figure shows both 

out-of-phase and in-phase components of the roll moment and the multiple correlation coefficient against angle of 

attack at different frequencies. The results show little or no frequency dependence for angles of attack at 15° and 

below and therefore no unsteady aerodynamic effect. At 20° angle of attack frequency dependence is clearly 

indicated.  

Figure 2 also reveals some variation and lower values of R
2
 for angle of attacks at 14 and 15°. Lower values of 

R
2
 indicate reduced adequacy of the linear model representation given by conventional in-phase and out-of-phase 

coefficients; however, practical experience suggests that values of R
2
 ≥ 0.8 are sufficient to accept the linear model 

structure. As follows from Eqs. (17-19), the estimates of R
2
 are influenced by the value and number of Fourier 

coefficients (harmonic order) in Eq. (14) as well as the measurement noise in ( )aE
C i . Because the Fourier 

coefficients are mutually orthogonal, the estimates of jA  and jB  will not change with the number of coefficients 

included in Eq. (14). Changes will only appear in the corresponding standard errors and residuals defined by Eq. 

(18). This makes R
2
 an effective diagnostic tool to discern the adequacy of a linear first-order model against 

nonlinear higher harmonic models. Higher order models to capture aerodynamic nonlinearities are not necessary in 

this case.  

Figure 3 shows the behavior of out-of-phase and in-phase components as a function of frequency at  = 20º. 

Since the design of this wind tunnel investigation was not intended to investigate unsteady behaviors specifically, 

the range of lower frequencies is limited. In general, this can limit the information content for general modeling and 

identification. Over a wide range of frequencies these terms will typically show an asymptotic behavior reaching a 

constant value for high frequencies and larger values for lower frequencies. Some of this character is visible in the 

figure for the wind tunnel data but additional frequencies would demonstrate this effect more clearly.  

 Fortunately additional data extending the frequency range and demonstrating this expected relationship was 

obtained using CFD simulations. Figure 3 also shows the CFD results for both the SA and SST turbulence models. 

These results show increasing values for lower frequencies and relatively constant or asymptotic behavior for higher 

frequencies. These results represent an intermediary step in the modeling process that can be directly compared with 

wind tunnel results. Future wind tunnel tests will be required to obtain comparable lower frequency data.  
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B. Parameter Estimation Using Two-Step Linear Regression 

Parameter estimation was accomplished using the Two-Step Linear Regression (LR) method. This regression 

method is applied in the frequency domain using Eqs. (12) and (13). Specific application of this method is described 

in Refs. 18, 26-27. The LR method is used for the general case where both in-phase and out-of-phase components 

present frequency dependence and a linear aerodynamic model is adequate. General application of regression and 

other techniques for aircraft are explained and relevant software is provided in Ref. 28.  

An aerodynamic model of an aircraft performing a one degree-of-freedom oscillatory motion about one of its 

body axes can be formulated in terms of the in-phase and out-of-phase components
14

 for rolling motion as 

 

 
 

1

0

( )sin sin

sin

a a

a ap p

C C af

C C af

 
 



  

  
 (20) 

 

where  

 

2 2
1

1 2 2

1
0 2 2

1

1

1

k
f

k

f
k















 (21) 

 

and subscript a  denotes appropriate force or moment coefficient. With the expression,  

 

 

2 2
1

2 2 2 2
1 1

1
1

1 1

k

k k



 
 

 
 (22) 

 

Eq. (20) can be rearranged into a set of equations for m different values of k as 

 

    0 1 ,      1,2,...,y j a a x j j m    (23) 

 

where for rolling oscillations 

 

    0 1

1 1

,

sin

a ap

a ap

x C y C

a C a a C

a








 

   

 

 (24) 

 

In the first step a linear regression is used in estimation of parameters 0a and 1a in Eq. (23) from measured in-phase 

and out-of-phase components at m different frequencies, m > 2.  

The second step of regression follows from Eqs. (20-21) replacing 1 by its estimated value.  The resulting 

equations are 
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   

   
1 0 1 1

2 0 1 2

y j d d x j

y j c d x j

 
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 (25) 

 

where for rolling oscillations these terms are  

 

 

       

       

   

1 2

1 1 2 0

0 1 0

,

sin , sin

sin , ,

a ap

a ap

y j C j y j C j

x j f j x j f j

d C d a c C





 



 

   

    

 (26) 

 

Similar expressions are obtained for pitching and yawing oscillations. More discussion on the development of 

regression equations and estimator properties can be found in Ref. 28.  

 
The LR method was applied to roll oscillatory data from NASA Langley 14x22 Wind Tunnel experiment using 

the SACCON aircraft. Parameter estimates and their standard errors are provided in Table I. To check model fit, 

estimated in-phase and out-of-phase components can be calculated by applying parameter estimates from Table I to 

Eqs. (11-13) and comparing with the wind tunnel values. One approach for checking model fit and consistency of 

the linear relationship in Eq. (23) at the same time is to plot the out-of-phase component against the in-phase 

component for both the measured values and estimated values. The slope of these data is equal to the time constant 

1. Figure 4 shows the model fit and consistency check based on wind tunnel data. The figure shows a very good fit 

of the model to the data as well as a satisfactory linear relationship between in-phase and out-of-phase components.  

Applying the same estimation process to CFD simulated data provides similar model checks. Figs. 5-6 show 

these results for the SA and SST turbulence models, respectively. In this case the SA model appears to satisfy the 

linear relationship except for the lowest frequency data point. The low frequency data point may be an outlier or it 

may reflect an aerodynamic characteristic not captured by the current model structure. Investigating this particular 

data point is beyond the scope of the current study; further wind tunnel tests are required to check the validity of this 

point. For purposes of comparing models in this study and respecting the benefits of a parsimonious regression 

model, it will be retained. The impact will be larger uncertainty bounds on the estimated parameters. Results for the 

SST case show the same characteristic for the low frequency data point and, in addition, a more quadratic shape with 

frequency. For purposes of this study the linear model structure is accepted along with increased model uncertainty.  

A direct comparison of the four model parameters and associated 2 standard deviations is shown in Fig. 7 for 

wind tunnel, SA, and SST cases. For the wind tunnel case, uncertainty in the model parameters is derived from 

measurement noise and model error. For the CFD cases, uncertainty is derived only from model error; however two 

sources of model error are presented. The first source of model error is due to differences in the linear unsteady 

model representation of SA or SST data. This error is reflected in the 2 bounds for each case. The second source of 

model error results from the choice of the two turbulence models. The two turbulence models represent a range of 

model choice that is part of the model uncertainty. The charts for lp
C  and lC


, in Fig. 7, show the uncertainty bars 

overlapping for all three cases. The implication is that no statistical difference exists between cases for these 

parameters, at the 95% confidence level. This result is for a single-case study; consequently the results are not under 

statistical process control as discussed in Ref. 2. Many more replications of the three cases would be needed for that 

Table I. LR parameter estimates, from wind tunnel, for unsteady model at 0 = 20° and A = 5°. 

 

 Step 1 Step 2 

 b1  a Clp Cl 

̂  3.68 6.37 0.75 -0.40 -0.57 

ˆ ( )   (0.34) (0.58) (0.04) (0.47) (0.05) 
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purpose. However, when that option is not available, it is useful to account for any uncertainty within a single case 

study as demonstrated in Fig. 7. The two charts on the right side of Fig. 7 show the parameters for the unsteady 

component of the model. The time constant 1 for the wind tunnel and SA cases are in statistical agreement but the 

SST case produced a statistically different result. For the attenuation factor, a, the SA and SST are in statistical 

agreement but not with the wind tunnel case.  

C. Model Validation 

Validation of models from wind tunnel tests are demonstrated through prediction of dynamic responses using 

measured data not used for model identification. Ideally, a substantially different input would be used during the 

experiment to create validation measurements. For example, a step input provides a suitable test for the new 

unsteady models that have been estimated from sinusoidal data. For these wind tunnel tests step inputs were not an 

option since the LaRC 14x22 dynamic test rig can only produce sinusoidal motion. One option in this case is to 

create a validation data set by removing one frequency case from the estimation process and using it as a validation 

test case. For this case, no significant affect on the estimated model parameters occurs by removing one frequency. 

To demonstrate the model prediction capability of the wind tunnel derived model, a comparison of measured and 

predicted rolling moment coefficient is shown in Fig. 8. The highest and lowest frequencies for the low, middle, and 

high angles of attack are shown. These cases show the largest range of responses obtained from the wind tunnel 

tests. All the model fits to the measured data are very good indicating an adequate model. For at  = 20º, response 

prediction is based on the LR unsteady model and for  < 20º the responses are based on the harmonic models.  

Validation of the SA and SST LR models for the unsteady case at  = 20º, are demonstrated by a comparison of 

measured and predicted rolling moment coefficient as shown in Fig. 9. Time histories at the highest and lowest 

frequencies are compared with the wind-tunnel LR model prediction and measured rolling moment data. The SA 

model is in very good agreement with the wind tunnel model and provides a good fit to the measured data. The SST 

model shows some difference with the both SA and wind tunnel measurements. In spite of steady damping terms 

from wind tunnel and SST models being in reasonable agreement the differences in the unsteady components are 

sufficient to show response prediction differences. Differences between SA and SST model parameters and response 

predictions reflect the range of uncertainty present due to selection of turbulence models.  

VI. Concluding Remarks 

This paper presented two methods, harmonic analysis and two a two-step linear regression, for estimating 

mathematical models useful for stability and control analysis that can be applied to both CFD simulations and wind 

tunnel measurements. This approach offers a model structure that can accommodate unsteady aerodynamic behavior 

and characterize model parameter uncertainty. Conventional stability and control derivatives are retained in the 

recommended models to take advantage of the knowledge base built up through years of aerospace engineering 

practice. Application of harmonic analysis demonstrated that unsteady behavior was present in the rolling moment at 

 = 20° and both wind tunnel measurements and CFD simulated data confirmed this result. Linear regression 

produced linear unsteady models at the same angle of attack. Model parameters between the wind tunnel and CFD-

SA models were in statistical agreement at the 95% confidence level, except for the “a” parameter which is a gain or 

multiplicative factor on the unsteady term. Regression analysis of the CFD-SST simulated data resulted in a steady-

flow damping parameter in statistical agreement with the wind tunnel and CFD-SA cases but not for the unsteady 

term. For the CFD-SST case, the unsteady term was statistically different and with a much larger uncertainty bound 

that either wind tunnel or CFD-SA cases. Time history comparisons confirm the model agreement between the wind 

tunnel and CFD-SA models but the CFD-SST case shows the added uncertainty due to turbulence model selection. 

These results highlight the importance of experiment design considerations to expand wind tunnel test inputs that 

cover an appropriately wide range of frequencies and to provide additional inputs different from sinusoidal motion. 

This paper suggests an approach for model validation using system identification to identify models from CFD 

simulations and wind tunnel measurements. By presenting a modeling methodology that determines an adequate 

model from both sources of data, the approach creates a focus on key aerodynamic model parameters and their 

uncertainties as a method for comparison and extends conventional validation methods that rely solely on time 

history comparisons.  
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Figure 3. Variation of out-of-phase and in-phase 

components with frequency at ° angle of 

attack. Roll oscillatory data, °. SACCON
3
.  
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Figure 7. Two-Step model parameter estimates and 2 error bounds, at =20, using 

wind tunnel and CFD roll oscillatory data, °, SACCON
3
.  
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Figure 6. Out-of-phase vs in-phase component at 

° angle of attack. CFD roll oscillatory data using 

SST turbulence model, °. SACCON
3
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Figure 8. Harmonic model prediction (a<20) and Two-Step Model prediction (a=20). 

Models from wind tunnel roll oscillatory data, °, SACCON
3
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Figure 9. Model response predictions at = 20° for roll oscillatory data, °, 

SACCON
3
. Key: Black = WT measurements, Red = Two-Step model from WT, 

Blue = Two-Step model from CFD-SA, Green = Two-Step model from CFD-SST. 


