The submission of an abstract is an agreement to complete a final paper for publication and attend the meeting to present this information. In order to ensure receipt of paper selection notification and the meeting invitation, please be sure to complete all information requested in the author and co-author information sections. Abstracts must be submitted electronically; please see submittal instructions located in the call for papers. The deadline date for the receipt of abstracts is October 11, 2010.

ABSTRACT INFORMATION

Title: Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain

Submitted for consideration to:
- JPM
- CS
- APS
- EPSS
- PSHS
For inclusion in Technical Area:
-
-
-
-
-
-
-
Security Classification of Presentation:
- Secret
- Unclassified
Security Classification of Paper:
- Secret
- Unclassified
Contract Number(s) Under Which Work was Performed: NNM06AA01Z

Is this paper an update?
- Yes
- No
Has it been presented elsewhere?
- Yes
- No

AUTHOR INFORMATION

<table>
<thead>
<tr>
<th>Author/Presenter Name</th>
<th>Affiliation</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
<th>Telephone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew Johnson</td>
<td>Science Applications International Corporation</td>
<td>300 Voyager Way</td>
<td>Huntsville</td>
<td>AL</td>
<td>35803</td>
<td>256 544 8799</td>
<td>Telefax</td>
<td>matthew.d.johnson@nasa.gov</td>
</tr>
<tr>
<td>Mike Hannan</td>
<td>NASA Marshall Space Flight Center</td>
<td>MSFC / EV41</td>
<td>Huntsville</td>
<td>AL</td>
<td>35812</td>
<td>256 544 1403</td>
<td>Telefax</td>
<td>mike.r.hannan@nasa.gov</td>
</tr>
<tr>
<td>Jay Brandon</td>
<td>NASA LaRC</td>
<td>Mail Stop 308, NASA LaRC</td>
<td>Hampton</td>
<td>VA</td>
<td>23681</td>
<td>757 864 1142</td>
<td>Telefax</td>
<td>jay.brandon@nasa.gov</td>
</tr>
<tr>
<td>Stephen Derry</td>
<td>NASA LaRC</td>
<td>Mail Stop 308, NASA LaRC</td>
<td>Hampton</td>
<td>VA</td>
<td>23681</td>
<td>757 864 7412</td>
<td>Telefax</td>
<td>s.d.derry@nasa.gov</td>
</tr>
</tbody>
</table>

MANAGEMENT APPROVAL

The individual below certifies that the required resources are available to present this paper at the above subject JANNAF meeting.

Responsible Manager authorizing presentation: Mark West

Title/Agency: Chief: Control Systems Design and Analysis Branch

Telephone Number: 256 544 1443
Email: mark.e.west@nasa.gov
Date: Oct 6, 2010
A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test.

This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle’s preflight uncertainty models.
The following chart lists each subcommittee and its mission areas. Please choose the subcommittee and mission area that is appropriate for your abstract and mark the abstract form accordingly.

<table>
<thead>
<tr>
<th>Mission Area</th>
<th>JPM</th>
<th>CS</th>
<th>APS</th>
<th>EPSS</th>
<th>PSHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tactical Propulsion</td>
<td>Guns</td>
<td>Conventional Ramjet Propulsion</td>
<td>Exhaust Plume Flow Field Analysis</td>
<td>Thermal Decomposition and Cookoff</td>
</tr>
<tr>
<td>2</td>
<td>Missile Defense/Strategic Propulsion</td>
<td>Solid Propellants & Combustion</td>
<td>Scramjet Propulsion</td>
<td>Exhaust Plume Radiation</td>
<td>Impact/Shock-Induced Reactions</td>
</tr>
<tr>
<td>3</td>
<td>Propulsion Systems for Space Access</td>
<td>Explosive Performance/ Enhanced Blast</td>
<td>Scramjet Propulsion/Structures</td>
<td>Exhaust Plume Effects</td>
<td>Insensitive Munitions Technology</td>
</tr>
<tr>
<td>4</td>
<td>Gun and Gun-Launched Propulsion</td>
<td>Airbreathing Combustion</td>
<td>Scramjet Component/Engine Testing</td>
<td>Other Exhaust Plume Related Problems</td>
<td>Gun Propellant Vulnerability</td>
</tr>
<tr>
<td>5</td>
<td>Propulsion and Energetics Test Facilities</td>
<td>Combustion Diagnostics</td>
<td>Combined/ Advanced Cycle Propulsion</td>
<td>Signatures and Spectral and In-Band Radiometric Imaging of Targets and Scenes (SPIRITS)</td>
<td>Propulsion Systems Safety and Hazard Classification</td>
</tr>
<tr>
<td>6</td>
<td>Sensors for Propulsion Measurement Applications</td>
<td>Liquid, Hybrid, and Novel Propellants Combustion</td>
<td>Small/Expendable Turbopropulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>Fuel Technology</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Component Modeling and Simulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>