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The problem of accommodating unknown sensor bias is considered in a direct model
reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor
faults can occur during operation, and if the biased state measurements are directly used
with a standard MRAC control law, neither closed-loop signal boundedness, nor asymp-
totic tracking can be guaranteed and the resulting tracking errors may be unbounded or
unacceptably large. A modified MRAC law is proposed, which combines a bias estimator
with control gain adaptation, and it is shown that signal boundedness can be accomplished,
although the tracking error may not go to zero. Further, for the case wherein an asymp-
totically stable sensor bias estimator is available, an MRAC control law is proposed to
accomplish asymptotic tracking and signal boundedness. Such a sensor bias estimator can
be designed if additional sensor measurements are available, as illustrated for the case
wherein bias is present in the rate gyro and airspeed measurements. Numerical example
results are presented to illustrate each of the schemes.
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I. Introduction

Control of uncertain systems in the presence of actuator and sensor faults is an important and challenging
problem. Two traditional approaches to this problem are fault detection, identification (FDI)-based control
reconfiguration, and direct adaptive control. Although considerable research effort has focused on actuator
fault accommodation in the past, literature addressing sensor fault accommodation appears to be rather
limited. However, sensor faults have been determined to be a cause in several aircraft accidents (e.g., radio
altimeter fault,1 angle-of-attack sensor fault,2 airspeed sensor fault3).

Direct model reference adaptive control (MRAC) methods aim to control uncertain systems using con-
troller gains that are adaptively adjusted to achieve a performance close to that of a reference model while
maintaining system stability and close tracking of the reference model response. Direct MRAC has been
known to be an effective method for state- or output- tracking. Direct MRAC schemes that use state feed-
back for state-tracking (SFST) have the advantage of simplicity of implementation while achieving effective
state tracking in the presence of parameter uncertainties.4 Such schemes have also been extended to the case
with actuator failures,5,6.7 However, aside from actuator faults, sensor faults may corrupt the measurements.
Any sensor bias prior to the operation can be compensated for by appropriate off-line calibration methods.
However, unknown biases can appear during operation in sensors such as rate gyros, accelerometers, altime-
ter, etc. The most common approach to deal with such sensor faults is to use redundant sensor packages.
However, common-mode failures can occur across all the sensors, and moreover, each sensor may develop a
different unknown bias. If used directly in a MRAC control law, such offsets in sensor measurements can
have detrimental effects on closed-loop stability.

Sensor bias estimation and accommodation has been a topic of considerable research. For example, bias
estimation for multisensor systems has been investigated in,8,9.10 The problem of setpoint tracking with
sensor bias was discussed in,11 and MRAC schemes for output feedback for output tracking in the presence
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of sensor faults have been developed (e.g.,,1213). However, accommodating sensor bias in SFST-MRAC has
not been investigated to the knowledge of the authors.

In this paper, it is assumed that all the a priori bias has been compensated for by off-line calibration
methods, and trim values of the system states are available at the start of the control operation. Then,
direct MRAC is considered in the presence of any constant unknown sensor bias that may appear during
the operation. If biased sensor signals are used directly in the MRAC law, signal boundedness and tracking
cannot be proved, as discussed in Section II. A logical extension of the standard MRAC is proposed in
Section III, which incorporates sensor bias estimation in the MRAC law, and shows that signal boundedness
and bounded tracking error can be accomplished. To compensate for the effect of bias, an additional adaptive
gain is included in this control law. The case wherein a sensor bias estimator is available is considered in
Section IV. If the sensor bias estimator has asymptotic convergence properties, a modified MRAC law can
be developed, which can guarantee signal boundedness and asymptotic tracking. As an example, Section
V considers a longitudinal aircraft dynamics model with constant biases in the pitch-rate measurement
gyroscope and in the airspeed measurement. Based on the availability of reliable pitch angle and position
measurements, non-model-based observers are constructed and used in conjunction with adaptive control.
The resulting MRAC scheme is shown to provide asymptotic tracking and signal boundedness. Section VI
contains application examples of the proposed schemes, and concluding remarks are given in Section VII.

II. Sensor Bias and Standard MRAC

Consider a linear time-invariant plant described by:

ẋ (t) = Ax (t) +Bu (t) (1)
y (t) = x(t) + β

where A ∈ Rn×n is the system matrix assumed to be unknown, B ∈ Rn×m is a known input matrix,
x (t) ∈ Rn is the system state, and u (t) ∈ Rm is the control input. y (t) ∈ Rn is the available state
measurement with an unknown constant bias β ∈ Rn.

The objective is to design an adaptive feedback control law using the available measurement y (t) with
unknown bias β, such that closed-loop signal boundedness is ensured and the system state x (t) tracks the
state of a reference model described by

ẋm (t) = Amxm (t) +Bmr (t) (2)

where xm ∈ Rn is the reference model state, Am ∈ Rn×n, Bm ∈ Rn×m, and r(t) ∈ Rmr (1 ≤ mr ≤ m) is a
bounded reference input used in system operation (e.g., pilot input in the case of aircraft).

It is assumed that the system (A,B) and the reference model (Am, Bm) satisfy the SFST matching
conditions, i.e., there exist gains K1 ∈ Rn×m, K2 ∈ Rm×mr such that

Am = A+BKT
1 ; Bm = BK2. (3)

The reference model is customarily designed to capture the desired closed-loop response of the plant. For
example, the reference model may be designed using optimal and robust control methods such as LQR, H2,
or H∞ methods. For the adaptive control scheme, only Am and B need to be known. Moreover, there exist
positive definite matrices P = PT , Q = QT ∈ Rn×n, such that the following Lyapunov inequality is satisfied:

ATmP + PAm < −Q. (4)

The standard MRAC SFST control law is given by

u = K̂T
1 y + K̂2r (5)

where K̂1 (t) ∈ Rn×m, K̂2 (t) ∈ Rm×mr are the adaptive gains. Substituting (5) into (1), the closed-loop
plant is given by:

ẋ = Ax+B
(
K̂T

1 y + K̂2r
)

= Ax+B
(
KT

1 y +K2r
)

+B
(
K̃T

1 y + K̃2r
)

=
(
A+BKT

1

)
x+B

(
K̃T

1 y + K̃2r
)

+BK2r +BKT
1 β (6)
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where the fact that y = x+ β was used, and K̃1 = K̂1−K1; K̃2 = K̂2−K2. Using the matching conditions
(3) in (6), we get

ẋ = Amx+Bmr +B
(
K̃T

1 y + K̃2r
)

+BKT
1 β. (7)

The last term in (7) represents a bias disturbance term, which will need to be compensated for by the
adaptive control law. Defining the tracking error e = x− xm, and using (2) and (7), we have

ė = Ame+B
(
K̃T

1 y + K̃2r
)

+BKT
1 β.

Due the presence of unknown sensor bias, x(t) cannot be measured; therefore the tracking error e (t) is
not available. Thus, the standard MRAC control law in (5) cannot guarantee signal boundedness (including
boundedness of the tracking error) in the presence of sensor bias in state feedback. The next section proposes
a modified adaptive control law that aims to estimate and compensate for the sensor bias.

III. Modified MRAC with Sensor Bias Estimation

In this section, a bias estimator is proposed as a part of the adaptive control law that uses the available
(biased) measurements, and can provide bounded state tracking error along with signal boundedness.

Let β̂ (t) denote an estimate of the unknown sensor bias β. Using β̂, define the ‘corrected’ state x̄(t) ∈ Rn
as

x̄ = y − β̂. (8)

Therefore,
x̄ = x+ β − β̂ = x+ β̃. (9)

where β̃ = β − β̂. Design an adaptive control law as

u = K̂T
1 y + K̂2r + k̂3 (10)

where K̂1 (t) ∈ Rn×m, K̂2 (t) ∈ Rm×mr , and k̂3 (t) ∈ Rm are the adaptive gains. Therefore, the closed-loop
corrected-state equation is

˙̄x = Ax+B
(
K̂T

1 y + K̂2r + k̂3

)
+ ˙̃
β

= Ax+B
(
KT

1 y +K2r + k3

)
+B

(
K̃T

1 y + K̃2r + k̃3

)
+ ˙̃
β

=
(
A+BKT

1

)
x+B

(
K̃T

1 y + K̃2r + k̃3

)
+BK2r +BKT

1 β +Bk3 + ˙̃
β (11)

where K̃1 = K̂1 −K1, K̃2 = K̂2 −K2, and k̃3 = k̂3 − k3. The following matching conditions are assumed to
be satisfied for some ideal gains K1, K2, k3:

Am = A+BKT
1 , Bm = BK2, BK

T
1 β = −Bk3. (12)

Using (12) and (9) in (11), we get

˙̄x = Amx̄+Bmr +B
(
K̃T

1 y + K̃2r + k̃3

)
−Amβ̃ + ˙̃

β. (13)

Define a measurable auxiliary error signal ê(t) ∈ Rn as

ê = x̄− xm. (14)

Therefore, from (9), we have
ê = x− xm + β̃ = e+ β̃. (15)

Differentiating (14) with respect to time, the closed-loop auxiliary error system can be expressed as

˙̂e = ˙̄x− ẋm. (16)
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Substituting (13) and (2) into (16) yields

˙̂e = Amê+B
(
K̃T

1 y + K̃2r + k̃3

)
−Amβ̃ + ˙̃

β. (17)

The following theorem gives adaptive gain update and bias estimation laws that guarantee closed-loop signal
boundedness as well as bounded tracking error.
Theorem 1: For the system given by (1), (2); the adaptive controller (10), the gain adaptation laws

˙̂
K1 = −Γ1yê

TPB

˙̂
K2 = −Γ2B

TP êrT (18)
˙̂
k3 = −Γ3B

TP ê

where Γ1 ∈ Rn×n, Γ2 ∈ Rm×m, Γ3 ∈ Rm×m are constant symmetric positive definite matrices and P was
defined in (4), and the bias estimation law

˙̂
β = −ηP−1ATmP ê (19)

where η ∈ R is a tunable positive constant gain, guarantee that all the closed-loop signals including the
adaptive gains and bias estimate are bounded and the tracking error e (t) is bounded.
Proof: Define

V = êTP ê+
n∑
i

K̃T
1iΓ
−1
1 K̃1i +

mr∑
i

K̃T
2iΓ
−1
2 K̃2i + k̃T3 Γ−1

3 k̃3 +
1
η
β̃TP β̃ (20)

where the subscript i denotes the ith column of K̃1, K̃2. Differentiating (20) with respect to time, using (4),
(17), properties of matrix trace, and the gain update laws in (18), the following expression is obtained upon
simplification:

V̇ < −êTQê− 2êTPAmβ̃ − 2êTP ˙̂
β − 2

η
β̃TP

˙̂
β. (21)

Using the bias estimation law of (19) in (21), we get

V̇ < −êTQê− 2êTPAmβ̃ + 2ηêTATmP ê+ 2β̃TATmP ê
= − êTQê− ηêTQê = − (1 + η) êTQê.

Therefore, V̇ < 0, i.e., V (T ) is bounded for all T , and ê(t), β̂ (t) , y(t), K̂1, K̂2, k̂3 are all bounded and
ê(t), β̃ (t) ∈ L2. From (17), (19) and closed-loop signal boundedness, we have ˙̂e (t) , ˙̃

β ∈ L∞, therefore

limt→∞ ê(t) = 0. Because ê(t) ∈ L2 ∩ L∞ and y(t) ∈ L∞, ˙̂
K1i,

˙̂
K2i,

˙̂
k3 ∈ L2 ∩ L∞. It can be verified

that ¨̂
K1i,

¨̂
K2i,

¨̂
k3 ∈ L∞, therefore, limt→∞

˙̂
K1i(t) = 0, limt→∞

˙̂
K2i(t) = 0, limt→∞

˙̂
k3(t) = 0. That is, all

signals and estimates are bounded, and limt→∞(x̄− xm) = 0. �
If sufficient persistent excitation is present, β̃ (t) should approach 0 as t→∞, and therefore e (t)→ 0 as

t→∞.
The adaptive control law in Theorem 1 guarantees stability (signal boundedness) and bounded tracking

error. However, it would be desirable to achieve asymptotic tracking. In an effort to accomplish asymptotic
tracking, the next section addresses the case when a separate asymptotically stable bias estimator is available
(e.g., [14]).

IV. MRAC with Asymptotic Bias Estimation

Suppose an asymptotically stable bias estimator is available. This section illustrates how such an esti-
mator can be employed in a MRAC setting to achieve asymptotic state tracking.

Consider a bias estimator with estimation error dynamics of the form

˙̃
β = Aβ β̃ (22)

where β̂ (t) is an estimate of β, and
β̃ (t) = β − β̂ (t)
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is the estimation error. Aβ ∈ Rn×n is a known asymptotically stable matrix, such that limt→∞β̃ (t) = 0.
Defining the adaptive control law as in (10) and proceeding as in Section III, we obtain (17). The following
result gives an adaptive control law that guarantees signal boundedness and asymptotic tracking.
Theorem 2: For the system given by (1), (2); the adaptive controller (10), the bias estimator (22), and the
gain adaptation laws

˙̂
K1 = −Γ1yê

TPB

˙̂
K2 = −Γ2B

TP êrT (23)
˙̂
k3 = −Γ3B

TP ê

where Γ1 ∈ Rn×n, Γ2 ∈ Rm×m, Γ3 ∈ Rm×m are constant symmetric positive definite matrices and P
was defined in (4), guarantee that all the closed-loop signals including adaptive gains are bounded and the
tracking error e (t)→ 0 as t→∞.
Proof: Define

V = êTP ê+
n∑
i

K̃T
1iΓ
−1
1 K̃1i +

mr∑
i

K̃T
2iΓ
−1
2 K̃2i + k̃T3 Γ−1

3 k̃3 + β̃TPβ β̃ (24)

where the subscript i denotes the ith column of K̃1, K̃2; and Pβ = PTβ ∈ Rn×n is a positive definite solution
to the Lyapunov inequality

ATβPβ + PβAβ < −Qβ (25)

for some positive definite matrix Qβ = QTβ ∈ Rn×n. Differentiating (24) with respect to time, using (4),
(17), (22), (25), and properties of matrix trace, the following expression is obtained upon simplification:

V̇ ≤ −êTQê− 2êTP (Am −Aβ) β̃ − β̃TQβ β̃ + 2k̃T3
{
BTP ê+ Γ−1

3
˙̂
k3

}
(26)

+2Tr
[
K̃T

1

{
yêTPB + Γ−1

1
˙̂
K1

}]
+ 2Tr

[
K̃T

2

{
BTP êrT + Γ−1

2
˙̂
K2

}]
.

Using the gain update laws (23) in (26), we get

V̇ ≤ −êTQê− 2êTP (Am −Aβ) β̃ − β̃TQβ β̃
= −zT Q̄z

where z ∈ R2n is defined as
z =

[
ê β̃

]T
and Q̄ ∈ R2n×2n is defined as

Q̄ =

[
Q P (Am −Aβ)

(Am −Aβ)T P Qβ

]
.

Since Q is positive definite, the matrix Q̄ is positive definite iff

Qβ − (Am −Aβ)T PQ−1P (Am −Aβ) > 0. (27)

Qβ can be chosen such that (27) is satisfied; therefore, V̇ < 0, i.e., V (T ) is bounded for all T , and
ê(t), β̂ (t) , y(t), K̂1, K̂2, k̂3 are all bounded and ê(t), β̃ (t) ∈ L2. From (17), (22) and closed-loop signal
boundedness, we have ˙̂e (t) , ˙̃

β ∈ L∞, therefore limt→∞ ê(t) = 0. From (22), limt→∞β̃ (t) = 0. Therefore,

from (15), limt→∞ e (t) = 0. Because ê(t) ∈ L2 ∩ L∞ and y(t) ∈ L∞, ˙̂
K1i,

˙̂
K2i,

˙̂
k3 ∈ L2 ∩ L∞. It can

be verified that ¨̂
K1i,

¨̂
K2i,

¨̂
k3 ∈ L∞, therefore, limt→∞

˙̂
K1i(t) = 0, limt→∞

˙̂
K2i(t) = 0, limt→∞

˙̂
k3(t) = 0.

That is, all signals and estimates are bounded, and limt→∞(x− xm) = 0. �
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V. Non-Model-Based Observers for Longitudinal Aircraft Dynamics

In this section, we illustrate how sensor bias estimators can be developed and used in conjunction with
MRAC. The bias estimates are an outcome of non-model-based observers, which additionally, also generate
estimates of other measurable states. It is shown, how these additional state estimates, and the bias estimates
are combined with MRAC to yield asymptotic state tracking even in the presence of unknown sensor bias.
Specifically, we consider a fourth-order longitudinal dynamic model of an aircraft. The state variables
are: true airspeed v(t), angle-of-attack α(t), pitch angle θ(t), and pitch rate q(t). Thus, the state is x =[
v α θ q

]T
.

V.A. Rate Gyro Bias Observer

The pitch rate is usually measured by a rate gyro which is typically subject to bias buildup. Differentiating
pitch angle to obtain the pitch rate is not advisable due to the presence of noise. Consider that the available
state measurement (y = x+ β) has an unknown constant bias in the pitch rate measurement, such that

β =
[
0 0 0 b

]T
(28)

where b is an unknown constant. Thus, the measured pitch rate (qm (t)) can be expressed as

qm = q + b = θ̇ + b.

Therefore, the actual pitch rate (q = θ̇) is
θ̇ = −b+ qm. (29)

The attitude (pitch angle) sensor usually consists of a two degrees-of-freedom (DOF) vertical gyro. The
measurements degrade when the gimbal axes are not orthogonal, or a gimbal lock occurs when the spin
axis is aligned with the outer gimbal axis. Therefore, it may be preferable to use other methods such as
differential GPS signals to measure the aircraft attitude. Suppose an independent bias-free measurement
yo (t) of the pitch angle is available as

yo = θ.

Since, the unknown bias b is constant, the Eq. in (29) can be augmented with the equation: ḃ = 0. This
yields

ẋo = Aoxo +Boqm (30)
yo = Coxo

where

xo =

[
θ

b

]
; Ao =

[
0 −1
0 0

]
; Bo =

[
1
0

]
; Co =

[
1 0

]
. (31)

Since (Co, Ao) is observable, an estimator can be constructed as

˙̂xo = Aox̂o +Boqm +H (yo − ŷo) (32)

where H ∈ R2 is an observer gain (e.g., Kalman gain)

H =
[
h1 h2

]T
. (33)

Using (30) and (32), we get the following estimation error dynamics

˙̃xo = (Ao −HCo) x̃o (34)

where x̃o (t) = xo (t)− x̂o (t) is the estimation error. Using (31) and (33) in (34), we have[ ˙̃
θ
˙̃
b

]
=

[
−h1 −1
−h2 0

][
θ̃

b̃

]
. (35)
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Since, the actual θ is measurable, the initial estimate of θ̂ (0) can be initialized to its true value, such that
θ̃ (0) = 0, while b̂ (0) can be chosen arbitrarily.

The control law is defined as in (10), such that using the matching conditions in (12), the following
closed-loop corrected-state equation is obtained:

˙̄x = Amx̄+Bmr +B
(
K̃T

1 y + K̃2r + k̃3

)
−Amβ̃ + ˙̃

β (36)

where
β̃ =

[
0 0 0 b̃

]T
. (37)

Substituting from (2) and (36) into (16), the following closed-loop error system is obtained:

˙̂e = Amê+B
(
K̃T

1 y + K̃2r + k̃3

)
−Amβ̃ + ˙̃

β. (38)

Using (37) with (35), (38) can be expressed as

˙̂e = Amê+B
(
K̃T

1 y + K̃2r + k̃3

)
−Am4b̃− h̄2θ̃ (39)

where Am4 represents the 4th column of Am, and h̄2 =
[
0 0 0 h2

]T
. Define a constant matrix M ∈ R4×2

such that
M =

[
h̄2 Am4

]
.

Then (39) can be expressed as

˙̂e = Amê+B
(
K̃T

1 y + K̃2r + k̃3

)
−Mx̃o. (40)

The following result shows signal boundedness and asymptotic tracking using such a bias estimator.
Theorem 3: For the system given by (1), (2); the adaptive controller (10), the gain adaptation laws in (18),
and the non-model-based observer in (32) guarantee that all the closed-loop signals including the adaptive
gains are bounded and the tracking error e (t)→ 0 as t→∞.
Proof: Define

V = êTP ê+
n∑
i

K̃T
1iΓ
−1
1 K̃1i +

mr∑
i

K̃T
2iΓ
−1
2 K̃2i + k̃T3 Γ−1

3 k̃3 + x̃To Pox̃o (41)

where the subscript i denotes the ith column of K̃1, K̃2; and Po = PTo ∈ R2×2 is a positive definite solution
to the Lyapunov inequality

ATo Po + PoAo < −Qo (42)

for some positive definite matrix Qo = QTo ∈ R2×2. Differentiating (41) with respect to time, using (4), (40),
(42), properties of matrix trace, and the gain update laws in (23), the following expression is obtained upon
simplification:

V̇ < −êTQê− 2êTPMx̃o − x̃ToQox̃o
= −zT Q̄z

where z ∈ R6 is defined as z =
[
ê x̃o

]T
, and Q̄ ∈ R6×6 is defined as

Q̄ =

[
Q PM

(PM)T Qo

]
.

Since Q is positive definite, therefore V̇ < 0 iff Qo − (PM)T Q−1PM is positive definite. Q0 can be chosen
such that Q̄ is positive definite. The rest of the proof is similar to Theorem 2. Therefore, all signals and
estimates are bounded, and limt→∞(x− xm) = 0. �
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V.B. Velocity Bias Observer

Similar to the non-model-based observer designed to estimate the bias in pitch rate, an observer can be built
to estimate the bias in true airspeed if reliable ground position and wind speed measurements are available.
Consider that the available state measurement (y = x+β) has an unknown constant bias in the true airspeed
measurement, such that

β =
[
b 0 0 0

]T
where b is an unknown constant. Thus, the measured airspeed (vm (t)) is expressed as

vm = v + b (43)

where v (t) is the true airspeed. The true airspeed is related to the ground speed and the wind speed as

v = vg − vw (44)

where vg (t) and vw (t) are the ground speed and the wind speed components along the flight path, respec-
tively. Therefore using (44) in (43), we have

vm = vg − vw + b = ẋp − vw + b

where xp (t) is the ground position. Thus, the ground speed (vg = ẋp) is

ẋp = −b+ vm + vw. (45)

Suppose an independent bias-free measurement yo (t) of the ground position is available (e.g., using GPS
signals) as

yo = xp

and in addition, the wind speed vw (t) measurement is available (e.g., from satellite data15). Then, (45)
can be augmented with ḃ = 0 to achieve an observable system similar to (30) and the unknown bias in
true airspeed can be estimated. Closed-loop signal boundedness and asymptotic tracking can be shown in a
manner similar to Section V.A.

Remark: The rate-gyro and the airspeed bias observers can be used simultaneously to estimate and
accommodate the biases occurring simultaneously in the pitch-rate and airspeed measurements. Closed-loop
signal boundedness and asymptotic tracking can be easily shown by extending the development in Sections
V.A and V.B.

VI. Application Example- Large Transport Aircraft

Simulation studies are performed on a fourth-order longitudinal dynamics model of a large transport
aircraft in a wings-level cruise condition with known nominal trim conditions. In the presence of unknown
sensor bias, the control objective is to track the response of a reference model to a reference input command
superimposed with white noise (as shown in Figure 1). As in most MRAC schemes, the adaptation/estimation
gains (Γ′s and η) are selected by trial and error.

VI.A. Dynamic Model

The state variables for a fourth-order longitudinal dynamics model are: true airspeed v (m/s), angle-of-attack
α (deg), pitch angle θ (deg), and pitch rate q (deg/s). The actuators are elevator and engine throttle input,
which produce control inputs ue (deg) and ut, respectively. The elevator input ue represents the elevator
position (deg) and the throttle input ut represents the thrust multiplied by a constant scale factor, and hence
no units are used for ut. Actuator dynamics are not considered. The linear time-invariant plant is described
by (1), where the system matrices are

A =


−0.0062 −0.0815 −0.1709 −0.0026
−0.0344 −0.5717 0 1.0050

0 0 0 1.0000
0.0115 −1.0490 0 −0.6803

 , B =


0 1.3287

−11.4027 −0.0401
0 0

−44.5192 0.8824

 .
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The state is x(t) =
[
v α θ q

]T
, and the control input is u(t) =

[
ue ut

]T
.

(For other flight conditions such as coordinated turns, the model would be different).

VI.B. Reference Model

The reference model is chosen as:

Am = A+BKT
1 , Bm = BK2

where K1 is the LQR gain designed to obtain satisfactory closed-loop response. The gain K2 = I2, so that
Bm = B. In practice, K2 is chosen to provide proper scaling of the reference input r(t).

VI.C. Simulation Cases

To test the performance of various adaptive control laws presented in this paper, simulations are performed
for the following four cases in the presence of unknown sensor bias:

• Case 1: Standard MRAC with biased measurements (Section II)

• Case 2: Feedback-based bias estimation with MRAC (Section III)

• Case 3: Use of asymptotic bias estimator with MRAC (Section IV)

• Case 4: Use of non-model-based observers with MRAC (Section V)

In each of these cases, it is assumed that the unknown bias appears at t = 0.
Case 1: The unknown constant bias in the state measurement is arbitrarily chosen as

β =
[
5 2 −1 10

]T
. (46)

The units of the components of β, which represent the biases in (v, α, θ, q), are m/s, deg, deg, and deg/s
respectively. Using the biased measurements, the standard MRAC control law (5) of Section II is implemented
with the adaptive gains K̂1 and K̂2 initialized to half of their true values, and the adaptation gains are chosen
arbitrarily, so that

K̂1 (0) = 0.5K1, K̂2 (0) = 0.5K2, Γ1 = 0.005I4, Γ2 = 0.005I2. (47)

The plant and reference model states, tracking errors, and control input are shown in Figures 2, 3, and 4,
respectively. As stated in Section II, the closed-loop signal boundedness or bounded tracking error cannot
be proved. However, in this example, the tracking errors appear to approach some non-zero constant values.

Case 2: For the sensor bias as in (46), the control law in (10) is implemented where the bias estimate
is generated using the bias estimation law in (19). The gain k̂3 is initialized to zero with adaptation rate
Γ3 = 0.005I2, while other gains are chosen as in (47). The plant and reference model states, tracking errors,
control input, and bias estimates are shown in Figures 5, 6, 7, and 8, respectively. Except for velocity,
the controller and the bias estimator effectively compensate for the sensor bias, and achieve an acceptable
tracking performance. The bias estimates converge to values that are not necessarily the true values. A
better tracking performance and bias estimation may be possible if the persistent excitation (PE) condition
is satisfied.

Case 3: For the same sensor bias as in (46), the adaptive control law (10) of Section IV is implemented.
The adaptive gain initialization and adaptation gains are chosen same as in Cases 1 and 2. The matrix Aβ
of the asymptotic bias estimator in (22) is arbitrarily chosen as

Aβ = 1.1Am.

The bias estimate converges to its true value as shown in Figure 12. The plant and reference model states,
tracking errors, and control input are shown in Figures 9, 10, and 11, respectively. The tracking errors
converge to zero asymptotically.

Case 4: The bias vector considered in this case is different compared to the other cases because in order
to use the non-model-based observer developed in Section V, it is assumed that the bias exists only in the
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airspeed and pitch-rate measurements, while reliable bias-free measurements of angle-of-attack and pitch
angle are available. Therefore,

β =
[
25 0 0 10

]T
. (48)

The adaptive gain initialization and adaptation gains are chosen same as in Case 2. The wind speed is
assumed to be known as vw = 10 (m/s). The observer gain is chosen so as to obtain a fast convergence
(within 1.0 sec), as indicated by the bias estimates convergence in Figure 16. The plant and reference model
states, tracking errors, and control input are shown in Figures 13, 14, and 15, respectively. The tracking
errors converge to zero asymptotically.

However, if the standard MRAC control law in (5) is implemented with a bias in airspeed and pitch
rate feedback without compensating for the sensor bias via an observer, then there is a large offset in the
airspeed, angle-of-attack and pitch angle as indicated by the plant response shown in Figure 17.

VI.D. Discussion

The steady-state tracking errors improve as the design progresses from Case 1 to Case 3 (cf. Figures 3, 6,
10). Also note the improvements in the steady-state condition of the airplane as the design progresses from
Case 1 to Case 3 (cf. Figures 2, 5, 9). In Case 1, using just the standard MRAC control law, the airplane
trims 5 (m/s) too slow (consistent with the 5 (m/s) too high sensor measurement) and at a flight-path
angle (γ = θ − α) of about −4 (deg) (descending steeper than a normal landing approach). In Case 2, with
the addition of feedback-based bias estimation to the MRAC control law, the airplane flight-path angle is
partially corrected to about −1 (deg) while the speed error is not affected. In Case 3, with an asymptotic
bias estimator, both the flight-path angle and the speed are fully corrected.

In Case 4, the bias only exists in airspeed and pitch-rate measurements. The non-model-based observer
developed in Section V combined with MRAC is able to achieve asymptotic tracking (Figure 13). However,
if a standard MRAC approach is used, then the steady-state response has large offsets (Figure 17). In this
case the aircraft has a glide path angle of about −9 degrees. The aircraft is rapidly coming down while the
reference model is not. This shows that when using standard MRAC, the sensor bias has adverse effects on
both the steady-state tracking performance and the steady-state flight condition of the airplane.

VII. Concluding Remarks

This paper addressed the problem of accommodating unknown sensor bias in control of uncertain systems.
Such a bias can have serious detrimental effects on closed-loop stability and performance. In particular, the
standard model reference adaptive control (MRAC) law for state tracking cannot guarantee signal bound-
edness or boundedness of the tracking error if biased sensor data is used to synthesize the control input.
Therefore, a modified MRAC control law was developed, which incorporates sensor bias estimation along
with gain adaptation, and was shown to guarantee signal boundedness and bounded state tracking error.
For a case wherein a separate asymptotically convergent bias estimator is available, an MRAC control law
was developed and was shown to provide signal boundedness and asymptotic tracking. Such asymptotically
convergent estimators can be designed if additional independent sensor measurements are available. An
example of a bias estimator was presented for longitudinal aircraft dynamics with constant biases in the
pitch rate gyro and the airspeed measurements. It was also shown that the bias can be estimated and used
in conjunction with MRAC to guarantee asymptotic state tracking and closed-loop stability. Numerical
examples were presented to demonstrate the proposed schemes.

The examples presented in this paper consisted of longitudinal dynamics in a wings-level cruise flight.
Other flight conditions such as coordinated turns should be considered in future work using a six degree-of-
freedom model. Application of the method to a full nonlinear model should also be investigated. Future work
should also focus on extending the results to a broad class of sensor faults (including unknown scale factor
and time-varying bias), and on methods for constructing bias estimators using data fusion for all available
multiple redundant sensors. In addition, the methods need to be extended to address actuator faults that
occur simultaneously with sensor faults, in order to effectively prevent loss of control in aircraft.
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Figure 1. Reference command for all cases
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Figure 2. Case 1: Plant and reference model states
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Figure 3. Case 1: State tracking error
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Figure 4. Case 1: Control input
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Figure 5. Case 2: Plant and reference model states
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Figure 6. Case 2: State tracking error
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Figure 7. Case 2: Control input
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Figure 8. Case 2: Bias estimate
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Figure 9. Case 3: Plant and reference model states
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Figure 10. Case 3: State tracking error
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Figure 11. Case 3: Control input
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Figure 12. Case 3: Bias estimate
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Figure 13. Case 4: Plant and reference model states
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Figure 14. Case 4: State tracking error
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Figure 15. Case 4: Control input
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Figure 16. Case 4: Bias estimate
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Figure 17. Case 4: Plant and reference model states without using a non-model-based observer
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