Tissue Engineering Using Transfected Growth-Factor Genes

Cells, matrices, and bioreactors are tailored to promote functional tissue engineering of cartilage.

Lyndon B. Johnson Space Center, Houston, Texas

A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient’s own cells or, if not, at least cells matched to the patient’s cells according to a human-leucocyte-antigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient’s injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells.

The method was developed for articular chondrocytes but can (at least in principle) be extended to other biodegradable matrix materials, which include collagen, fibrin, and poly(lactic acid) [PLA], poly(glycolic acid) [PGA], and PLGA copolymers. Non-biodegradable matrix materials include polystyrene, polyesters, polypropylene, and numerous other polymers. Preferably, the matrix for a given therapeutic application should be fabricated so as to have a microstructure similar to that of the extracellular matrix to be replaced. Mechanical loads imposed on the matrix by the surrounding tissue influence the cells on and in the matrix in such a manner as to promote a regeneration of an extracellular matrix that has the proper microstructure. The cross-link density of the matrix can be tailored in fabrication in order to tailor the mechanical properties of the matrix and, in the case of a biodegradable matrix, to tailor the rate of its biodegradation. The shape and size of the matrix and the implant made from it should, of course, be chosen to suit the implant site and tissue type. The matrix material can be coated with materials that promote specific adhesion and metabolic behavior of both transfected cells and native cells.

Another important consideration in the design of a matrix is porosity. Pores must be large enough that cells can reside within them and that nutrients can migrate to the cells and waste products can diffuse away from the cells. Typical pore sizes range from 50 to 300 μm; the size or range of sizes can be chosen to obtain the cell behavior and matrix properties desired for a given application. Moreover, the range of pore sizes for a given application can be chosen to promote a specific timetable and amount of vascular ingrowth from the surrounding tissue as well as migration of native cells.

This work was done by Henning Madry, Robert S. Langer, Lisa E. Freed, Stephen Trippel, and Gordana Vunjak-Novakovic of Massachusetts Institute of Technology for Johnson Space Center.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:

Technology Licensing Office
Massachusetts Institute of Technology
Five Cambridge Center, Kendall Square
Room NE25-230
Cambridge, MA 02142-1493
Phone: (617) 253-6966
Fax: (617) 258-6790
E-mail: tlo@mit.edu
Refer to NRC-23352, volume and number of this NASA Tech Briefs issue, and the page number.

Automation of Vapor-Diffusion Growth of Protein Crystals

High-throughput experiments are accelerated through automation of routine operations.

Marshall Space Flight Center, Alabama

Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis.

The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop con-