
Communication
Process

EDGE
Graphics

Docking
Simulation

Standalone Test Exec (STX)

Epoc Headset
Test Flow and Data Manager

(TFDM)
Demo/Prototype Orchestrator

System
Monitor

Camera
LabVIEW Application

Database

Software Orchestration Portable Demonstration

LTE I/F

LTE I/F

LTE I/F

LTE I/F

LTE I/F

LTE I/F

LTE I/F
LTE I/F

Human Cognitive Technology
Human Cognitive Technology may someday help reduce size, weight, and power of spacecraft controls and
provide a third hand for astronauts or ground controllers. Commercially emerging technology could
translate brain neural, and electrical signals from muscular responses into commands which can actuate
mechanisms using non-invasive, non-gel brain-computer interfaces (BCI). In the long run, neural and
muscular-response technologies will allow the operation of crew/spacecraft systems to become a natural
extension of the human mind and body for a more organic and intuitive approach to spacecraft operation
and control.

IEEE AutoTestCon 2011

Accelerate… Discovery!
NASA is demonstrating the benefits of an open-standards interface for test orchestration. In this display,
• Data interfaces are being dynamically positioned and then discovered by plug-and-play
• Database tables are being created by a script operating on metadata provided by the data sources
• Test operations are being orchestrated by REST architecture, without a command set
• Assorted operating systems are represented
• Test articles include simulations, hardware, even people, in a distributable configuration
• Web-based scripts are operating on IEEE 1671 ATML-formatted parameters
• A web browser can probe a test orchestration interface– while a test is running

Future work should easily achieve features like Save, Restore, DiffReport, and DiffView; a system “health”
roll-up; and issue tracking. Automation Hooks Architecture seeks to use a spiral approach to converge
open standards for tools interfaces to streamline the engineering workflow.



Abstract— The Automation Hooks Architecture Trade Study

for Flexible Test Orchestration sought a standardized data-

driven alternative to conventional automated test programming

interfaces. The study recommended composing the interface

using multicast DNS (mDNS/SD) service discovery,

Representational State Transfer (Restful) Web Services, and

Automatic Test Markup Language (ATML).

We describe additional efforts to rapidly mature the

Automation Hooks Architecture candidate interface definition by

validating it in a broad spectrum of applications. These activities

have allowed us to further refine our concepts and provide

observations directed toward objectives of economy, scalability,

versatility, performance, severability, maintainability,

scriptability and others.

Index Terms— Software standards, Test equipment, Test

facilities, Testing, Software management, Software reusability

I. INTRODUCTION

ASA proposed a foundation for a new open-standards

based test orchestration software architecture [1]. The

Automation Hooks Architecture is being developed to

fulfill a game changing technology need for a simple scalable

systems engineering solution which can minimize the largely

unspoken lifecycle business costs of performing traditional

test control and measurement operations. The intent of the

architecture is to achieve these operating cost reductions by

providing a non-proprietary framework for improvement and

standardization of software automation tools to assist or

replace current engineering and science workflows. Increased

efficiency is achieved by reducing manual data collection,

manual intervention in cycle test procedures and configuration

checkpoints and restores, eliminating data format changes

between tools, and reducing other labor-intensive non-skilled

tasks. The architecture also provides a framework for

cumulative knowledge capture which transcribes institutional

operational knowledge into explicit instructions and associated

documentation.

Manuscript received June 1, 2011. This work was performed in NASA

Johnson Space Center’s Avionic Systems Division.

C. A. Lansdowne is with the National Aeronautics and Space
Administration, Houston, TX 77058 USA (phone: 281-483-1265; fax: 281-

483-6297; e-mail: chatwin.lansdowne@ nasa.gov).

J. R. Maclean is with METECS, Houston, TX 77058 USA (phone 281-
483-3265; e-mail: john.r.maclean@ nasa.gov).

 While addressing cost of operations, the architecture also

addresses the increasing embedded complexity of avionic

subsystems which require us to “use a computer to test a

computer” to provide synchronization, hard stare, and

management of detailed configuration and status data that are

not practical in manual operations. Machines are simply more

attentive and impartial observers than people, and can write

faster too.

At the heart of the current architecture is a loosely-coupled

highly modular software interface built on platform-

independent open standards using open-source

implementations widely available from active user

communities. A shallow connection to existing software

applications was achieved that is inexpensive to integrate and

maintain, connecting through a variety of already available

Application Program Interfaces (APIs), with data-driven

harvest at the origin using a single portable Automation Hooks

Architecture (AHA) protocol-interface development.

A resource based web services protocol and widely

supported and standardized service-discovery techniques

create a machine-discoverable and machine-readable test set

interface that can coexist with a user interface; dedicated user

interfaces don’t scale well, and we believe this interface can.

The interface definition is inherently already compatible with

a broad assortment of web-based software. Using

Representation State Transfer (Rest) software architecture

principles (including self-described messages and hypermedia-

assisted state transitions) promotes loose coupling,

consistency, and transparency. The interface can be self-

contained, packed with documentation so that a script author

or a machine or a data post-analyst need not look elsewhere.

The robust interface stands alone with no middle-ware

dependencies and minimal reliance on supporting

infrastructure. The interface is intended to require no

maintenance of its components or the platform. The

Automatic Test Markup Language (ATML) provides a

standard set of language constructs for describing test-specific

information that integrates nicely into the web-services based

interface architecture. The underlying protocol set is very

mature and we believe converges API trends that we see in

aerospace, test, DoD, and consumer products communities.

As we demonstrate in Section III, this non-proprietary

interface is highly versatile, a criterion for broad usage and

acceptance.

Automation Hooks Architecture

for Flexible Test Orchestration –

Concept Development and Validation

Chatwin A. Lansdowne, John R. Maclean, Members, IEEE

Christopher E. Winton, Patrick A. McCartney

N

1569424063 2

II. BESTIARY

 Each independently controlled or monitored module of test

equipment or test software is combined with a common AHA

interface component to create a Logical Test Element (LTE).

We distinguish (Figure 1) between the LTE interface, which

implements the AHA protocol, and the LTE application,

which controls the hardware or implements the simulation.

The LTE interface and the LTE application may be developed

by different skill-sets. The interface between the two is

referred to as the backend interface. The backend interface

will be application specific and several implementations that

cover a wide range of NASA requirements have been

developed for the examples discussed in this paper. The

backend interface is deliberately kept quite shallow to

minimize the burden of providing and maintaining it.

Figure 1. AHA Reference Topology

 A Logical Test Element exposes its orchestration states as

resources in a Restful web services interface. It also

advertises its existence and capabilities for standard

(mDNS/SD) service discovery. Standard business model

resource groups can be defined to support specific test

capabilities such as data gathering, event triggering and so on.

An LTE could be anything from a web-cam, to a software

simulation, to custom support software for an avionics

subsystem, to COTS test equipment like a signal generator or

oscilloscope. One useful LTE is a host computer itself, with

the interface providing identification, performance, and

processor loading statistics while also enabling applications to

be started by a remote manager.

Two special case LTE concepts were prototyped to evaluate

test flow with the AHA: the Standalone Test Executive (STX)

and the Test Flow and Data Manager (TFDM). In addition to

the standard LTE interface described above, these elements

include DNS discovery software and a web client and are

capable of discovering, monitoring, and commanding the other

LTEs. Each has a specific role to play in the AHA test flow.

 The Test Flow and Data Manager (TFDM) responsibilities

include discovering and selecting LTEs to form a Test

Configuration, configuring each LTE to a desired initial state,

coordinating with the STX to execute Test Runs, and

gathering and storing coordinated data from the LTEs. The

TFDM also provides a central location for a Test Conductor to

interact with multiple LTEs. The TFDM is data driven from

the LTE resource metadata. In the implementation examples

discussed in this paper, when an LTE is selected as part of an

activity, a script creates a database table for it using the

ATML metadata provided in the interface. The TFDM

invokes test scripts, collects the data, and provides near real-

time access to results. Although we anticipate a few sizes and

shapes of TFDM, this code block is intended to be essentially

write-once, developed by a skill set that is web- and database-

oriented.

 The Standalone Test Executive (STX) is intended to be

composed by a subject-matter expert and contains specific

knowledge of some of the LTEs, of the technique for running

a specific test, and of the expected relationships among

instrumented parameters. The STX represents captured expert

knowledge. Obviously, a test procedure or outline might call

out a sequence of various STX invocations. The STX itself

generally provides for configuration and status through an

LTE interface. For example, the STX might be given a time

budget to ration, or it might calculate and report modeled ideal

performance compared with measurements, or transfer

functions or ratios. The STX is initiated and supported by the

TFDM which provides environmental variables, and data

logging, plotting, and reporting services.

 These concepts were developed through several small-scale

demonstration activities.

III. CONCEPT VALIDATIONS

In order to develop and demonstrate solutions for the most

challenging aspects of the architecture, while demonstrating

its flexibility, several small “proof” tasks were undertaken.

Large-scale demonstrations were not possible or desirable in

this design cycle, and software products were not finished out.

The demonstrations were understood to be exploratory:

disposable, unburdened by intellectual property concerns, and

outside the critical path of other projects. They were

conducted in an effort to identify best practices, and

accumulate lessons learned. The intent was to expose the

technology to a representative variety of applications and an

assortment of operating environments and applications. All of

these activities were conducted within the Avionic Systems

Division of the Engineering Directorate at NASA’s Johnson

Space Center.

A. Orchestration of Software Simulations

We demonstrated the use of the AHA interface to sequence,

start up, discover, monitor, and shut down Trick simulations

and EDGE (Engineering Dynamic Onboard Ubiquitous

Graphics (DOUG) Graphics Environment) graphics

applications. This activity used AHA (Figure 2) to orchestrate

a distributed Orion abort-to-orbit test scenario split between

JSCs Avionics Integration Environment (AIE) facility and the

Reconfigurable Cockpit Simulation Facility which supplied

hand controller (HC) hardware and cockpit displays.

An XSLT file was co-hosted with the ATML file in order to

improve human readability when using a browser. We also

began using Asynchronous Javascript and XML (AJAX) to

improve display performance in browser interfaces. The LTE

interfaces were executed on Linux systems and were

distributed between the facilities. An AJAX orchestration

LTE LTELTE

Database

LTE App LTE App

UUT UUT Standalone

Test Exec

(STX)

Test Flow and Data

Manager (TFDM)

Interaction

Test Operations Network

LTE I/F LTE I/F LTE I/F

Web Browser

Test

Report

LTE I/F

LTE

Panels

1) mDNS/DNS-SD Discovery
2) RESTful Interface Architecture
3) Descriptive Language (ATML)
4) No Orchestration command set

1569424063 3

interface panel generated by the TFDM was accessed through

a browser collocated with the operator cockpit.

Figure 2. Orchestrating Simulations using AHA

B. Orchestration of a Parametric Sweep

The Electronic Systems Test Laboratory (ESTL) at JSC set

up an off-line “Orchestration Sandbox” consisting of a simple

communication link instrumented for Bit Error Rate, with

clock jitter as a stimulus variable. This project reused pre-

existing fully-developed LabVIEW applications running under

Windows XP and the LTE interface connected to them

through an ActiveX backend interface without altering

existing LabVIEW code. In a parametric sweep, a stimulus is

changed and allowed to settle, and then measurement statistics

are settled during an “observation interval” before the data for

the interval is recorded. Thus, the data is not plotted as a

“strip-chart” against a time axis drawn from the same table,

but instead data tables must be joined before the data is

selected from multiple parallel tables. This simple task

requires no more sophistication than a relational database

offers provided that a common index exists.

 Figure 3. Parametric Sweep Orchestration using AHA

This activity (Figure 3) allowed us to refine the concept of

the “STX,” and it was here that we recognized that the

“TFDM” needs to provide its own AHA interface. By

exposing resources, the TFDM allows the STX to discover

which of the LTEs visible on the network are selected as part

of the activity, and the STX can prescribe when and what

documentation the TFDM should collect. We can further see

that this solution offers a natural approach to distributed

testing, where each facility in a different location can have its

own orchestrator, and an additional orchestrator can

orchestrate the orchestrators. The same stacking technique

might be used to scale a TFDM by dividing the workload

instead of redeveloping database and network infrastructure to

increase performance.

 To ease the integration with LabVIEW, we experimented

with using an Orchestration Virtual Instrument (OVI) hidden

panel which could control a front panel as a user would. This

concept allowed us to leave the finished LabVIEW panels and

AHA LTE interface code alone. This concept was later

generalized, but now a LabVIEW Template approach is

making this extra layer vestigial. The OVI cannot be entirely

eliminated because changing values through the LabVIEW

ActiveX interface does not trigger “value-change” events as

the keyboard does.

 In working with LabVIEW we also stumbled over pop-up

dialog boxes, and latched Booleans. At present, we simply

avoid these. Error messages can be handled through a status-

bar, logging time-tagged errors to a file, beeping, or other

mechanism.

 We were able to join the tables and plot the curve as it was

being run, as well as overlay baseline prior data. For this

activity we simply joined the tables based on time stamps

truncated to the nearest second. Although this approach did

support the demonstration, we would like to develop a more

sophisticated and reliable technique using an additional table

to associate records by observation interval.

 Traditional approaches to test automation use extensive

custom command sets. We were very pleased with the

simplicity of resource-driven scripts, and the robust recovery

of the test flow when manual interventions were required

because the automation had wandered beyond limitations.

C. Mixed Avionics Hardware and Simulations

In an effort to shift to a more portable “road-show” format,

we built a Portable Avionics Testbed Demonstrator using a

laptop, a tablet, a Beagle board, an I/O pump, and a pair of

hand controllers (Figure 4). This was a human-in-the-loop

test, where an evaluator used a hand controller to perform a

spacecraft docking.

 Figure 4. Orchestrating Mixed Hardware and Simulations

The Beagle board, standing in for a spacecraft controller,

was configured and statused by a “Ground Support

Equipment” LabVIEW application running under Windows on

the tablet. The simulation and graphics packages were

running under Linux. These modules could all be discovered

and parameters from the controller and the simulation were

stripped into the database.

LTE I/F

EDGE GraphicsDocking Simulation

LTE I/F LTE I/F
LTE I/F

Attitude Control
Test Flow Data Manager

I/O Pump

1569424063 4

D. Equipment Monitoring

For the Equipment Monitoring application we did not

continuously log data and the topology does not include a

TFDM (Figure 5). Essentially, a LabVIEW application

monitored equipment in two racks (Fore and Aft) of hardware

in the JSC Avionics Integration Laboratory (JAIL). An

operator could monitor the LabVIEW control panel, but an

STX also continuously monitored the panel in the background.

As a capability demonstration, when a parameter would reach

an alarm trip-point, the STX would point a webcam at the

offending rack, and then email the out-of-range parameter

value and the photograph to a responsible engineer.

The web camera we selected hosted its own web interface,

providing a great opportunity to compare implementations; we

were able here to directly integrate our interface with an off-

the-shelf product using only the LTE Interface and no

additional software. One advantage of the AHA web server

interface is that through the use of hypermedia links it can

play easily with an existing web interface on the AHA

application software without getting in the way. We also

demonstrated that we could re-host our interface onto a

VxWorks embedded platform running LabVIEW, and we

necessarily used a Hypervisor interface in place of the

ActiveX connection we use with LabVIEW under Windows.

(Our first-ever LabVIEW prototype used a DLL connection,

but we don’t recommend this more deeply integrated

connection for LabVIEW). And so we now had connected our

LTE Interface to socket, ActiveX, REST, and Hypervisor

interfaces for data harvest.

 Figure 5. Equipment Monitoring using AHA

E. Supporting a Principle Investigator

We seized an intersection opportunity to support a Human

Cognitive Technology Demonstration by removing our hand

controller from the Portable Avionics Testbed Demonstrator

and replacing it with a Brain Computer Interface (Figure 6).

This allowed an evaluator to perform a hands-free docking

task in support of an investigator.

At this stage, we added a Hyperic system monitoring

application as an LTE that monitors health of our hosts. We

also used an STX to provide the evaluator with some

assistance, supervision, and feedback. An LTE interface was

connected in front of the Microsoft Windows-based Emotive

headset software using the Emotiv Software Development Kit.

A TFDM AJAX interface was used for startup, shutdown,

configuring data logging, and producing the ATML test

results.

 Figure 6. Configuring an Experiment using AHA

F. Code Cleanup and Code Generalization

Finally, we had an opportunity to work back through our

code and try to incorporate a few of the lessons learned. In

this process, we tried to generalize our LTE Interface software

and improve the robustness of our prototype implementation

of the architecture. We also made a first pass at constructing a

LabVIEW Template package where the interface is always

transparently present from the start of development.

Additionally we prototyped some verification tools to exercise

our interfaces repetitively while measuring performance and

validating responses.

The LabVIEW Template development also intended to

demonstrate that the LTE interface could also be used to host

other useful features such as links to the GUI and auto-

generated help files (harvested from documentation entered

into the user interface), and a blog feature.

We finally modified our TFDM orchestrator to implement

parallel threads so that an activity can flow around a non-

responsive LTE. The orchestrator also supports multiple

clients. Importantly, we implemented a caching architecture

so that relatively bulky but static metadata need be retrieved

from an LTE interface only once. To be effective, this means

that the LTEs need to implement the “Expires” and “Cache-

Control” headers already provided by HTTP in our protocol

set. Our tests indicate this will offer significant performance

improvement by reducing network traffic and sheltering LTE

hosts.

Placing a blog feature in the LTE Interface package provides

operators with a consistent and convenient method of

journaling an activity so that notes can easily be collected

together and compared. One application of course is that an

operator can capture notes (timing and rationale for

configuration changes, anomalies, observations, and

conclusions) that are available later during analysis and

reporting. But the blog is also a strategy for achieving and

tracking software quality by standardizing and promoting

communication between users and developers. The blog is

implemented as an extra pair of resources in our interface, and

so the feature need not be confined to user-oriented LTEs.

The blog feature of course is not implemented in ATML. It

uses the Atom syndication format instead to create feeds of

content entries that can be subscribed to using widely

Camera

LTE I/F

Standalone Test Exec (STX)

LTE I/FLTE I/F

Racks

Notification

Communication

Process

LTE I/F

EDGE Graphics
Docking Simulation

Standalone Test Exec (STX)

LTE I/F
LTE I/F

LTE I/F LTE I/F

Epoc Headset

Test Flow and Data Manager (TFDM)

LTE I/FLTE I/FLTE I/F

System MonitorSystem Monitor
Camera

1569424063 5

available feed readers. The help files are composed in HTML.

The LabVIEW GUI uses a browser plug-in downloaded

automatically from National Instruments. Thus, we see no

reason that we cannot co-host other XML formats with ATML

in our interface. For example, our REST architecture “pulls”

data, but we believe we could support XTCE stream

definitions and links to XTCE-described streams. Further, we

currently use only the TestResults and Common ATML

schemas but the interface could host additional ATML

documents.

Throughout our architecture validation tasks, we expected

that we would standardize our resource tree. We have

concluded this is both an unnecessary and undesirable

constraint, and instead recommend a hypermedia layout. The

hypermedia layout will improve our backward compatibility

as we make changes (“future-proofing”), will improve

performance by separating data from metadata, and will

simplify scripting as parameters are duplicatively grouped into

functional “collections” instead of singularly categorized into

a tree.

We are splitting our protocol set because we believe much of

it has versatility extending to many other usages. Our

formulation of mDNS/SD, Rest, HTTP, and hypermedia we

are relabeling as an “mREST” foundation. Our formulation of

specific orchestration features combined with ATML becomes

the “testing” application of “mREST.” We believe this will

simplify our interface definition and expand the opportunity

for collaboration.

G. Scale-to-Zero Bench Test

Often a hardware or firmware developer will write a simple

application in a high-level language like LabVIEW to control

and status their unit during development. A part of our

concept of operations for the LabVIEW Template has been

that we could transparently embed our machine-facing

interface in a user-facing application from the beginning of

development, and the designer would find it useful enough

that the interface itself would receive some functional

verification long before the software appeared at an

integration activity.

Figure 7. Zero-Infrastructure Data Logging using AHA

As a demonstration then, Microsoft Excel was co-hosted

with the LabVIEW Template (Figure 7). The URL for the

LTE Interface was pasted into Excel as the location of an

external XML data source file. Formulas were used for

convenience, to identify elements to be captured. And finally

a macro was composed from a recording. The 16-line macro

refreshed the data once a second for ten seconds, each time

inserting a row in the spreadsheet and pasting the linked data.

Even array elements were captured this way. Of course the

spreadsheet could also be used to analyze the data, calculate

figures of merit or compare to models, and maintain plots.

And a formula result could be used to control the program

flow so that change-only data is logged.

But the point of this exercise was to demonstrate that no

extra hardware, middle-ware, documentation, or even special

skill is required to begin exploiting the power of the API.

Implementation on a trivial scale accomplishes worthwhile

performance-logging work.

IV. OVERALL LESSONS

Shallow internal connections were a goal because they

minimize the cost of adding and maintaining the interface and

maximize the possibility of retrofitting the interface. We see it

will be possible to accumulate a set of tools for quickly

installing the interface or building it in from the beginning of

an LTE development.

RESTful architecture concepts were found to greatly

simplify implementation and reduce coupling between test

elements. Thinking of test integration and test flow in terms

of resource manipulation instead of large command sets was a

paradigm shift. We think it holds promise for simplifying

testing design, scripting and implementation. Another

paradigm shift we encountered was using discovery

techniques and hypermedia instead of rigid interface control

documents to reduce the cost and effort of maintaining

interface compatibility between test elements. We believe this

has promise in reducing overall lifecycle costs for testing in

the NASA environment and has application to other areas

requiring asset management at NASA and in industry.

V. AREAS FOR FUTURE DEVELOPMENT

Although ATML is a rich and adolescent (approaching

maturity) schema set, we remain concerned that our concept of

operations, where an LTE may be Test Equipment in one

situation and a Unit Under Test during a calibration, may

require accommodations. To date we have not found

institutional support for engaging specific NASA experts who

could mitigate these concerns by evaluating ATML against

other completed study conclusions. Areas of potential concern

include a comparison with NExIOM (NASA Exploration

Information Ontology Model) [2] to identify gaps, a

comparison with MDX (multidimensional expressions used

for data-mining of OLAP databases by business intelligence),

a comparison with XTCE (xml Telemetric and Command

Exchange) to determine interoperability (we strongly suspect

translation losses here cannot be avoided), and special

requirements for live operating environments and distributed

testing conducted by teams with many affiliations.

We would like to finish construction of our LabVIEW

template to promote some meaningful deployment, allow us to

use larger topologies in our next development spiral, and clean

up our portability between Windows and Linux.

LabVIEW Template

LTE I/F

Microsoft Excel

Data Logger Macro

1569424063 6

We still need to prototype a sophisticated transient response

test with event-driven flow and data aggregation (trials, points,

curves, surfaces). This will push our tools significantly

forward and help uncover advanced issues with data formats

and labeling.

Soon we will need to prototype a procedure executor (as-run

or re-run). One area of interest will be to see how resource-

oriented test flows, such as those implemented by our STX,

can be described as ATML test requirements. We will add

trivial orchestration features that promote deployment, and

investigate more advanced features that promote scalability.

We will also begin involving more data product consumers

to evaluate our formats and processes, begin fielding our tools

to assist research projects, and then begin injecting our

technology set into facilities and projects.

In the process we will continue to refine and stabilize our

standard collections and standard resource definitions. For

example, most LTEs will want to provide a “health” collection

where some resources like “not_safe” are standardized and

others simply adhere to conventions so that an operator can

use software tools to manage a larger number of software

applications.

VI. CONCLUSION

The Automation Hooks Architecture initiative reduces the

cost of technology and science production by mobilizing

equipment, people, and knowledge through the use of

common tools plugged into open-standards interfaces.

We believe a spiral approach to affordable and effective

data integration is prudent: set up all of the pieces and look at

how they fit together before returning to invest more heavily

in developing quality and features in each of them.

Our effort is by nature collaborative as we seek to identify a

simple but broadly powerful formulation of interfaces and

tools for data collection and reduction. Advancement and

distributed use of this approach is encouraged as the next step

strategies for larger scale adoption as a standard.

We currently rate this interface as Technology Readiness

Level 5.

ACKNOWLEDGMENT

This endeavor required focusing many kinds of

nonintersecting experts on a multi-faceted problem.

We would like to thank Robert Klinger and Craig Ross,

supporting the Maestro orchestrator development at Marshall

Spaceflight Center, for their concept of stacking copies of a

single orchestrator development to perform distributed testing.

Maestro is the orchestrator developed for the Constellation

Program and is built around a Program-specific interface.

Joan Zucha, ESCG, provided the Soft Decision Analyzer

prototype to make bit error rate measurements in the

Orchestration Sandbox, a trivial use of the SDA.

Kwaku Nornoo, ESCG, introduced the concept of an

Orchestration Virtual Instrument to assist with LabVIEW

integration.

Juan Uribe, ESCG, and Ellen Keulemans, ESCG, provided

the equipment-monitoring applications for JAEL.

We thank Jason Ekstrand for producing the Portable

Avionics Testbed Demo during a summer internship at JSC.

Our principle investigator for Human Cognitive Technology

is David Fletcher, also known as “Jedi Master.”

We would also like to thank Chris Gorringe, ATML (IEEE

SCC20 TII) Chair, for supporting us with an open dialog on

ATML usage.

And none of our proofs would have been possible without

the faith placed in us and guidance provided by David Lee and

Andre Sylvester.

REFERENCES

[1] C. A. Lansdowne, J. R. MacLean, et. al., Automation Hooks Architecture
Trade Study for Flexible Test Orchestration, ISBN 978-1-4244-7960-3,

Autotestcon Proceedings, Sep. 2010.

[2] P.J. Keller, Preparing for Semantic Technology in SOA, SOA
Symposium Government and Industry Best Practices, April 2010.

Automation Hooks Architecture
for Flexible Test Orchestration

Concept Development and Validation
AutoTestCon 2011
September, 2011

Chatwin Lansdowne
John MacLean

Christopher Winton
Patrick McCartney

Custom Software is Doing More Work Than Ever

• New tools put software production in the hands of subject-matter experts
• Control panels on COTS products are being replaced by software
• Dedicated stand-alone test stations are being built around proprietary solutions

These developments are user-centric data-islands

• Can we define a software and data architecture
that will integrate on a macro-scale…

• That we can produce and use on a micro-scale…

…it’s just Standards

Study Result presented
AutoTestCon 2010

• REST Architecture
– elsewhere used: Microsoft Robotics, webcam, Web of Things
– “pull” data flow
– powerful control with two simple commands
– can host support files and links– interface definitions, requirements, theory of operation, links to streaming

data and web-based GUI
• Advertised

– elsewhere used: LXI, consumer products
– enables unmanaged dynamic IP address and port assignments

• HTTP
– elsewhere used: web browsers, web pages, Excel
– standardizes messaging, error messages, cache controls, message compression, security
– TCP/IP-based (adjustable time-out)

• xml
– elsewhere used: migration to xml, although not painless, is the path being taken by architecturally-aware

organizations like Microsoft and DoD
– standardizes communication of metadata, which we’re using to create tables in modern xml-enabled databases

• xml:ATML (IEEE 1671)
– elsewhere used: coming feature in DoD procurement specs
– standardizes units, arrays, time zone– and opens exciting opportunities for COTS tools and radically different

engineering work flows
• Orchestration features

– Available scheduled data collection and configuration changes
– Health and Status

http://www.microsoft.com/robotics/�
http://www.webofthings.com/�
http://www.webofthings.com/�

4

AHA Reference Topology

LTE LTELTE

Database

LTE App LTE App

UUT UUT Standalone
Test Exec
(STX)

Test Flow and Data
Manager (TFDM)

Interaction

Test Operations Network

LTE I/F LTE I/F LTE I/F

Web Browser

Test
Report

LTE I/F

LTE

Panels

1) mDNS/DNS-SD Discovery
2) RESTful Interface Architecture
3) Descriptive Language (ATML)
4) No Orchestration command set

Concept Validations

Orchestrating Software Simulations
Orchestrating a Parametric Sweep
Avionics Testbed
Equipment Monitoring
Supporting a Principle Investigator
Code Cleanup and Generalization

AIE Sim Host

OSIRIS
Environment ,

Dynamics & Sensor Models RAMSES
FSW

AIE VMC Emulator

TCP/IP
ROC

Graphics
(out the window

and birds-eye view)
Cockpit
Displays

TTGb Switch

TCP/IP

Hand
Controllers

Serial data sent
over Ethernet

TCP/IPPDU
Emulator

TTE TTE

TTE

JESNET
Connectivity

Orchestration
Interface

web interface

AIE
TFDM

Test Flow & Data Manager

TCP/IP

HTTP

AIE Test Automation Host

Integrated AIE/ROC Orion Demo

LTE LTE LTELTE

Osiris
Sim

EDGE
BEV

Time Triggered Giga Bit

Test Operations Network

LTE I/F LTE I/F LTE I/F
LTE I/F

Web Browser

Ramses
Sim

HC Sim

HC

LTE LTE

EDGE
OTW

LTE I/F

EDGE
Hatch

LTE I/F

Database

Test Flow and
Data Manager
(TFDM)

Test Report

Integrated AIE/ROC Orion Demo

 Startup, shutdown, and monitoring of AIE and ROC LTEs from ROC
 Improved LTE browser interface with XSLT
 Added EDGE interface
 Upgraded TFDM prototype to Asynchronous JavaScript and XML (AJAX)

Parametric Sweep Configuration

TFDM Panels

TFDM Real-Time
Plot Panel

Soft Decision
Analyzer

TFDM Test-Specific Panel

Jitter
Controller

STX

Transmitter
Components

Jittery
Clock

Pattern Generator

800
MHz Mixer

 Prototyped automation of parametric test flow
(sweep a curve)

 Developed Standalone Test Exec concepts
 Added interface to existing ESTL LabVIEW test

software with no modifications
 Added additional database and reporting capability

Receiver
Components

Amps

Bit Synchronizer

Detector

Attenuator

RECEIVER
CHANNEL

HP8081A
Pattern Generator

HP33250
Arb Generator

E5810A
LAN/GPIB Gateway

HP8663A
Signal Generator

Kay C-Core
XD3A
Diode

Det

GDP 2265D
Bit Synchronizer

Soft Decision
Analyzer Platform

Ethernet Switch

Jitter Controller
Platform

TFDM Platform

Jit
te

r C
on

tr
ol

le
r

GPIB

800MHz

Ref Data
Ref Clock

OOK Data

Test Data
Test Clock

AHA

AHAAHASCPI

E L E C T R O N I C S Y S T E M S T E S T L A B O R A T O R Y

Automated BER vs. Jitter Sweep Test

TRANSMITTER

SCPI

10

Portable Development Test bed:
Mixed Avionics Hardware, Simulations, and Crew

Windows/Linux
Test Set

Trick Docking
Simulation

THC
Single-board Computers
running control software

EDGE
Graphics

RHC

I/O
Pump

 Low-cost orchestration development test bed
 Leveraging off of a functional LIDS docking model developed for CxTF
 Single board computers and I/O pump to mimic avionics hardware
 Uses results from three intern projects

11

Docking
SimulationHand Controllers I/O Pump EDGE(Visualization)Spacecraft Attitude Control

Electronics

LTE I/F

EDGE GraphicsDocking Simulation

LTE I/F LTE I/F
LTE I/F

Attitude Control Test Flow Data Manager

I/O Pump

Portable Development Test bed:
Mixed Avionics Hardware, Simulations, and Crew

Iteration 4: Sep-Oct/10

 Additional LTE Interfaces
 Human-in-the-loop Orchestration

13

Iteration 4: Sep-Oct/10

JAEL Rack Monitoring Application

14

JAEL Monitoring Application

Camera

LTE I/F

Standalone Test Exec (STX)

LTE I/FLTE I/F

Racks

Notification

 Prototyped interface to Hypervisor/VxWorks version of Labview
 Use of LTE/IF with off the shelf hardware (netcam)
 Use of STX to monitor LTE I/F (No TFDM)

Iteration 4: Sep-Oct/10

bootup

LTE Resource Example (AIE)

15

welcome

files/folders

lte

logrequests

{req_name}

synctestset

dropbox

control
status

resources

exec

trick/edge

scenario health

schedule

…

16

Iteration 4: Sep-Oct/10 Human-in-the-Loop Emotive Evaluation

17

Iteration 4: Sep-Oct/10 Human-in-the-Loop Emotive Evaluation

Emotive EmoEngine Docking
Simulation

Emotive to Trick
Communication

Process
Emotiv
Epoc

EDGE

Because Epoc headset has only
four cognitive outputs, an auto
pilot provides thruster control
for
•Rotational Degrees of freedom
•Up/Down
•Attitude Hold (upon request)

Epoc Headset provides
thruster control for
•Forward/Back
•Starboard/Port

18

Iteration 4: Sep-Oct/10 Human-in-the-Loop Emotive Evaluation

The EDGE graphics program
provides three views to the Epoc
Operator along with telemetry
overlays, command strength
indicators and STX messages

Boresight Camera View

Bird’s Eye View

Docking Interface View

Telemetry Overlays

Epoc Command Strength

Epoc Command Strength

19

Iteration 4: Sep-Oct/10 Human-in-the-Loop Emotive Evaluation

 Prototyped Orchestration

 Bring up and down software and simulations
 Configure headset and evaluation parameters for each run
 Initialize simulation state and pass/fail monitoring
Monitor docking performance and collect statistics
 Assist participant with paper-pilot activities
 keep spacecraft in evaluation envelope
 switch coarse-vernier
 extend LIDS ring/ turn on docking light

Determine and report pass/fail of run
Organize test results
Monitor health of computers and software

20

Communication
Process

LTE I/F

EDGE GraphicsDocking Simulation Standalone Test Exec (STX)

LTE I/F
LTE I/F

LTE I/F LTE I/F

Epoc Headset

Test Flow and Data Manager (TFDM)

LTE I/FLTE I/FLTE I/F

System MonitorSystem Monitor
Camera

Human-in-the-Loop Emotive Evaluation Iteration 4: Sep-Oct/10

21

LabVIEW Template

LTE I/F

Microsoft Excel
Data Logger Macro

Bench Test Evaluation Post-Iteration 4: May/11

Linking to the API from Excel

ATML: Think Outside the Rack

ATML: Think Outside the Rack

Unit
Under Test /
Development

Test
Procedure
ExecutorTest

Scripts

More Kinds of Tests

• Engineering Properties of Materials: Outgassing,
tensile strength, thermal, etc.

• Subsystem EMI/EMC
• Subsystem Vibration and Thermal
• System (internal) Integration mixed with

Simulations
• End-to-End Systems integration: Proof of

Concept to FEIT, MEIT
• Training Sessions
• and the list goes on…

AHA is a “Straw-man”

• We’re no longer just flagging the problem,
we’re trying to piece together a candidate
plug-and-play solution

• We examined a lot of choices and prototyped
the ideas we thought were most promising

Does anyone have a better idea?

BACKUP

Criteria for a Software Architecture
• Platform-independent: everyone can use

their own appropriate operating system,
language, and tools

• Inexpensive: quick to add, easy to learn,
simple to test and maintain

• Rapid Assembly: quick and easy to
integrate and troubleshoot

• Data Integrity: minimal translations, meta-
data capture, archive-quality product, restore
by write-back, simplified analysis and
reporting

• Self-Contained: the instructions and
documentation are in the interface

• Open Standards: architectural interfaces
can be specified by referencing published
non-NASA standards

• Non-proprietary: support multiple COTS
vendors for robustness

• Open Source: supporting user communities
are active and tools and chunks are widely
available, widely tested, and widely reviewed

• Web-based: works with the tools you carry

in your pocket
• Data-Driven: the code can be stable, only

support-files change
• Low-infrastructure: stand-alone capable,

minimal reliance supporting infrastructure
and staff IT experts

• Modularity: operations can proceed with
broken modules

• Durability: maintenance is not required for
legacy bought-off modules on legacy
platforms

• Retrofit to compiled code: sometimes we
have to work with what’s available…

• Convergence: a direction observed in
aerospace, test, DoD, and consumer products
industries and communities

• Versatility: the more useful it is, the wider
it will be implemented

• Scalability: scale up– or down to one

Restoring the Viability of NASA’s Facilities and Developments

The need for Modern Standards and Practices

• Common tools and Portability of skills
• Agility: Flexibility and Speed

– Fewer standing, dedicated capabilities
– Reuse/redeployment of assets and people

• Increased quality and detail in Data Products
– No typos
– More statistical significance and resolution
– Ability to locate and interpret “cold” data
– Analyzing “sets” not “points”

Why Think Outside the Command Set?

• The state of the configuration is always
available to read, write, record, or restore

• The HTTP command and error-message sets
already have extremely broad acceptance

• Move from Command-Driven to Data-Driven–
with REST, the interface is self-describing.
Scripting and orchestrating are accomplished
by manipulating collections of discoverable
“resources.”

Why Think Outside the Rack?

• Distributed tests: box level, sub-system integration,
system integration, systems integration… fielded
systems, dispersed instrumentation, distributed
simulations

• Do the ATML document modules support these
concepts? There is a “configuration under test” and
“element description” rather than a “test set” and a
“UUT”.

• Is ATML sufficiently modular that vendors of generic
test equipment could post an “element description”
which can be picked up and folded into a “test set
description”? Post ATML results at an interface just as
they provide LXI? Do ATML documents “roll up”?

Why Do I Like ATML?
• Basic metadata for measurements: Units, Unit (statistic)

Qualifier, Tolerance, Resolution…
• Standardized time, complex data structures like arrays
• Classified markings
• Contact information
• Potential for widespread use in aerospace and beyond

aerospace
• Comes with an architecture for test automation, and COTS

tools are already showing up (this is an intriguing trend
we’re still contemplating).

… ATML is a rich and thoughtful schema, and it’s a standard
produced by a significant world organization and backed by
significant enterprises

NASA Use-Case Example
Orion Transponder – Baseband Processor Integration

Need to Track Data from Twelve Panels
Created by Four Entities

http://rds.yahoo.com/_ylt=A9G_bI9aCgNLBzkBi16jzbkF/SIG=131me3lpe/EXP=1258576858/**http:/spider.ipac.caltech.edu/staff/lmh/Logos/imagery/jpl/jpl_large_logo.gif�
http://rds.yahoo.com/_ylt=A9G_bI9aCgNLBzkBi16jzbkF/SIG=131me3lpe/EXP=1258576858/**http:/spider.ipac.caltech.edu/staff/lmh/Logos/imagery/jpl/jpl_large_logo.gif�

Tentative Comments for ATML

Interoperability with XMLA and
mdXML

• XML for Analysis… is an industry standard for data
access in analytical systems, such as OLAP and
Data Mining. XMLA is maintained by XMLA
Council with Microsoft, Hyperion and SAS being
the official XMLA Council founder members.[1]

• MultiDimensional eXpressions… XMLA specifies
MDXML as the query language. In the XMLA 1.1
version, the only construct in MDXML is an MDX
statement enclosed in the <Statement> tag.

http://en.wikipedia.org/wiki/XML_for_Analysis�
http://en.wikipedia.org/wiki/OLAP�
http://en.wikipedia.org/wiki/Data_Mining�
http://en.wikipedia.org/wiki/Microsoft�
http://en.wikipedia.org/wiki/Hyperion_Solutions_Corporation�
http://en.wikipedia.org/wiki/SAS_Institute�
http://en.wikipedia.org/wiki/XML_for_Analysis�
http://en.wikipedia.org/wiki/Multidimensional_Expressions�
http://en.wikipedia.org/wiki/Multidimensional_Expressions�
http://en.wikipedia.org/wiki/Multidimensional_Expressions�
http://en.wikipedia.org/wiki/Multidimensional_Expressions�

Aggregation Clues in ATML
- <xs:attributeGroup name="UnitAttributes">
- <xs:annotation>

<xs:documentation>In nearly all ATS use cases, strictly limiting units of measure to SI or
English units is restrictive. In numerous cases, it is desirable to qualify a unit with an additional
text string, e.g., Peak-to-Peak or RMS for voltage measurements. This attribute group allows
for the inclusion of a standard SI unit of measure (as defined in IEEE Std 260.1 [B18]), a
nonstandard unit of measure, and a qualifier thereto. Name Type Description Use
nonStandardUnit c:NonBlankString Any nonstandard unit not already defined in IEEE Std 260.1
Optional standardUnit c:StandardUnit When used, this attribute shall contain only a unit of
measure defined in IEEE Std 260.1 Optional unitQualifier c:NonBlankString A textual qualifier
that is to be applied to the attribute of either the standardUnit or nonStandardUnit. Examples:
RMS or Peak-to-Peak for a standardUnit of volts. Optional NOTE—If one is not sure if a
particular unit being utilized is standard or nonstandard, assume it is nonstandard, and
represent it as a nonStandardUnit.</xs:documentation>

</xs:annotation>
<xs:attribute name="standardUnit" type="c:StandardUnit" use="optional" />
<xs:attribute name="nonStandardUnit" type="c:NonBlankString" use="optional" />
<xs:attribute name="unitQualifier" type="c:NonBlankString" use="optional" />
</xs:attributeGroup>

urn:IEEE-1671:2009.02:Common

Aggregation features in MDX

• Avg function (MDX)
• Count function (MDX)
• Sum function (MDX)
• Min function (MDX)
• Max function (MDX)
• Median function (MDX)
I don’t see “RMS” or

“Product”…
• VarP function (MDX)
• StdDevP function (MDX)

• In practice, it appears
that “measures” in a
“fact table” are used
to control aggregation.

• Can the “fact table”
be generated from the
ATML Test Results?

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_avg.html�
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_count.html�
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_sum.html�
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_min.html�
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_max.html�
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_median.html�
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_varp.html�
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dwe.cubemdx.doc/mdx_stddevp.html�

XMLA Data Types

• Arrays– format seems not to be standardized,
user gets to decide and then user interprets

• Sets– array (ordered collection) of tuples

• Tuples– essentially structs, collections,
clusters… {([Measures].[Sales], [Time].[Fiscal].[2006]),

([Measures].[Sales], [Time].[Fiscal].[2007])}

([Time].[Fiscal].[Month].[August],
[Customer].[By Geography].[All Customers].[USA],
[Measures].[Sales])

http://en.wikipedia.org/wiki/MultiDimensional_eXpressions�

ATML Collection Complex Type
<xs:complexType name="Collection“>
<xs:annotation> <xs:documentation>The Collection complex type shall be the base type for XML schema elements intended to contain

multiple data values, i.e., unordered sets of values, ordered vectors of values (with the order of items in the vector being represented by the order of
c:Collection/Item child elements), or collections of named values, also known as records (with the names being represented by the name attribute of the
c:Collection/Item child element).
</xs:documentation> </xs:annotation>
<xs:sequence> <xs:group ref="c:DatumQuality"/>

<xs:element name="Item" minOccurs="0" maxOccurs="unbounded">
<xs:annotation><xs:documentation>Base type: Extension of c:Value Properties: isRef 0, content complex The Collection/Item child element shall contain an

individual data value or vector. This child element is recursive; thus a Collection/Item may be a collection of data values or vectors.
</xs:documentation></xs:annotation><xs:complexType>

<xs:complexContent>
<xs:extension base="c:Value“>

<xs:attribute name="name" type="c:NonBlankString" use="optional">
<xs:annotation><xs:documentation>A descriptive or common name for the individual data value or vector.</xs:documentation></xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="defaultStandardUnit" type="c:StandardUnit" use="optional">
<xs:annotation><xs:documentation>This attribute shall contain a unit of measure as defined in IEEE Std 260.1™
[B18].</xs:documentation></xs:annotation></xs:attribute>
<xs:attribute name="defaultNonStandardUnit" type="c:NonBlankString" use="optional“>
<xs:annotation><xs:documentation>This attribute shall contain any nonstandard unit, not already defined in IEEE Std
260.1.</xs:documentation></xs:annotation></xs:attribute>
<xs:attribute name="defaultUnitQualifier" type="c:NonBlankString" use="optional“><xs:annotation><xs:documentation>A textual qualifier that is to be
applied to the attribute of either the standardUnit or nonStandardUnit. Examples include RMS and Peak-to-Peak for a unit of
volts.</xs:documentation></xs:annotation></xs:attribute>
</xs:complexType>

Using “Live” ATML

• We find that we would like to be able to tag
ATML data with a range or list of expected
values. In a “live” setting, this allows us to
screen entries, or provide a user with a pick-
list.

Tolerance Tags assume symmetry
- <xs:group name="DatumQuality">
…
- <xs:sequence>
…
- <xs:element name="ErrorLimits" type="c:Limit" minOccurs="0">
- <xs:annotation>
<xs:documentation>Base type: c:Limit Properties: isRef 0, content complex The DatumQuality/ErrorLimits child element

shall contain the error limits.</xs:documentation>
</xs:annotation>
</xs:element>

- <xs:element name="Range" type="c:Limit" minOccurs="0">
- <xs:annotation>
<xs:documentation>Base type: c:Limit Properties: isRef 0, content complex The DatumQuality/Range child element shall

contain the range.</xs:documentation>
</xs:annotation>
</xs:element>

- <xs:element name="Confidence" type="xs:double" minOccurs="0">
- <xs:annotation>
<xs:documentation>Base type: xs:double Properties: isRef 0, content simple The DatumQuality/Confidence child

element shall contain the required confidence.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:group>

Example of asymmetric uncertainty:
Skewed Binomial Trials

• Example: Observe 1 million packets sent, one is
lost. “Measured” loss rate is 1E-6.
– If I run the experiment again, I might lose 2, or none.
– 95% confidence interval extends +457% to the high

side, but -457% to the low side is not even sane.
Actual is about -76%.

• Example: Observe 1 million packets sent, zero
lost. “Measured” loss rate is 0.
– The experiment actually means I can say with 95%

confidence that the loss rate is below 3E-6. It could be
zero, but we don’t know.

Example of Asymmetric uncertainty:
Time to Fail

Source: Epidemiology of Satellite Anomalies and Failures: A Subsystem-Centric Approach, Rachel A. Haga and Joseph H. Saleh, IEEE Aerospace
Conference, March 2011

Standard units
- <xs:attributeGroup name="UnitAttributes">
- <xs:annotation>

<xs:documentation>In nearly all ATS use cases, strictly limiting units of measure to SI or
English units is restrictive. In numerous cases, it is desirable to qualify a unit with an
additional text string, e.g., Peak-to-Peak or RMS for voltage measurements. This attribute
group allows for the inclusion of a standard SI unit of measure (as defined in IEEE Std
260.1 [B18]), a nonstandard unit of measure, and a qualifier thereto. Name Type
Description Use nonStandardUnit c:NonBlankString Any nonstandard unit not already
defined in IEEE Std 260.1 Optional standardUnit c:StandardUnit When used, this attribute
shall contain only a unit of measure defined in IEEE Std 260.1 Optional unitQualifier
c:NonBlankString A textual qualifier that is to be applied to the attribute of either the
standardUnit or nonStandardUnit. Examples: RMS or Peak-to-Peak for a standardUnit of
volts. Optional NOTE—If one is not sure if a particular unit being utilized is standard or
nonstandard, assume it is nonstandard, and represent it as a
nonStandardUnit.</xs:documentation>

</xs:annotation>
<xs:attribute name="standardUnit" type="c:StandardUnit" use="optional" />
<xs:attribute name="nonStandardUnit" type="c:NonBlankString" use="optional" />
<xs:attribute name="unitQualifier" type="c:NonBlankString" use="optional" />
</xs:attributeGroup>

Standard Units

Standard Units

• The requirement is
really pretty
ambiguous or silent
about plain-text
representation of
products, degrees,
subscripts, and
symbols

Flow from SysML to ATML

• NASA has an emerging interest in using SysML
early in the design process to capture interfaces
and behavior of subsystems.

• If SysML is rich enough and tools natural enough,
SysML files could feed information (interfaces,
requirements, design intent) to the test phase.

• Is there a strategy for natural smooth flow from
SysML to Capabilities, WireLists, Common,
HardwareCommon, UUTDescription, etc.?

Saving Aliases

• Example:
– generic oscilloscope software saves data marked

“channel 1 voltage”

– user needs to remap this as “strain gauge 5”

• In practice most of the configurable and status
variables are not central to the inquiry

• Candidate solution is an Alias Table

Saving Queries

• Expect scripts to generate queries for tables
and plots of “usually relevant” variables at
time of run.

• A user reanalyzing the data while writing a
report or reexamining archived cold data
should continue to have access to queries
saved in/with the data set.

Indexing: Parametric Associations

• Performing a parametric sweep: The
“observation interval”
– Configure and settle the “stimulus” actuator
– Reset and settle the “response” measurement

• Several ways to associate data
– Using time-tags can be ambiguous
– Managing an index at the “LTE” data sources is failure

prone
– Including a table associating “observation intervals”

with pointers into each of the other tables is a logical
housekeeping flow

	Slide Number 1
	24478-1.pdf
	Automation Hooks Architecture �for Flexible Test Orchestration��Concept Development and Validation
	Custom Software is Doing More Work Than Ever
	Study Result presented AutoTestCon 2010
	AHA Reference Topology
	Concept Validations
	Slide Number 6
	Slide Number 7
	Parametric Sweep Configuration
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Iteration 4: Sep-Oct/10
	Iteration 4: Sep-Oct/10
	Slide Number 14
	LTE Resource Example (AIE)
	Iteration 4: Sep-Oct/10
	Iteration 4: Sep-Oct/10
	Iteration 4: Sep-Oct/10
	Iteration 4: Sep-Oct/10
	Iteration 4: Sep-Oct/10
	Post-Iteration 4: May/11
	Linking to the API from Excel
	Slide Number 23
	ATML: Think Outside the Rack
	ATML: Think Outside the Rack
	More Kinds of Tests
	AHA is a “Straw-man”
	Backup
	Criteria for a Software Architecture
	Restoring the Viability of NASA’s Facilities and Developments�The need for Modern Standards and Practices
	Why Think Outside the Command Set?
	Why Think Outside the Rack?
	Why Do I Like ATML?
	NASA Use-Case Example�Orion Transponder – Baseband Processor Integration
	Tentative Comments for ATML
	Interoperability with XMLA and mdXML
	Aggregation Clues in ATML
	Aggregation features in MDX
	XMLA Data Types
	ATML Collection Complex Type
	Using “Live” ATML
	Tolerance Tags assume symmetry
	Example of asymmetric uncertainty: Skewed Binomial Trials
	Example of Asymmetric uncertainty: Time to Fail
	Standard units
	Standard Units
	Standard Units
	Flow from SysML to ATML
	Saving Aliases
	Saving Queries
	Indexing: Parametric Associations

